Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (4) : 354-360    https://doi.org/10.1007/s11706-018-0437-9
RESEARCH ARTICLE
MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials
Haiyan LI, Yucheng ZHAO, Chang-An WANG()
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(321 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In pursuing excellent supercapacitor electrodes, we designed a series of MoS2/CoS2 composites consisting of flower-liked MoS2 and octahedron-shaped CoS2 through a facile one-step hydrothermal method and investigated the electrochemical performance of the samples with various hydrothermal time. Due to the coupling of two metal species and a big amount of well-developed CoS2 and MoS2, the results indicated that the MoS2/CoS2 composites electrodes exhibited the best electrochemical performance with a large specific capacitance of 490 F/g at 2 mV/s or 400 F/g at 10 A/g among all samples as the hydrothermal time reached 48 h (MCS48). Furthermore, the retention of MCS48 is 93.1% after 10000 cycles at 10 A/g, which manifests the excellent cycling stability. The outstanding electrochemical performance of MCS48 indicates that it could be a very promising and novel energy storage material for supercapacitors in the future.

Keywords MoS2/CoS2 composites      hydrothermal time      electrochemical properties      supercapacitors     
Corresponding Author(s): Chang-An WANG   
Online First Date: 20 September 2018    Issue Date: 10 December 2018
 Cite this article:   
Haiyan LI,Yucheng ZHAO,Chang-An WANG. MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials[J]. Front. Mater. Sci., 2018, 12(4): 354-360.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0437-9
https://academic.hep.com.cn/foms/EN/Y2018/V12/I4/354
Fig.1  (a) XRD patterns of MCS3, MCS6, MCS12, MCS24, MCS36 and MCS48. (b) Enlarged view of the XRD pattern for MCS48. (c) XPS pattern of MCS48.
Fig.2  SEM images of as-synthesized MoS2/CoS2 composites after the hydrothermal time of (a) 3 h, (b) 6 h, (c) 12 h, (d) 24 h, (e) 36 h, and (f) 48 h. SEM and TEM images of (g)(h) MoS2 and (i)(j) CoS2 in MCS48.
Fig.3  (a) CV curves at a scan rate of 2 mV/s and (b) specific capacitance as a function of scan rate derived from their CV curves of MoS2/CoS2 composites electrodes. (c) Galvanostatic charge–discharge curves at current density of 10 A/g and (d) specific capacitance as a function of current density derived from their galvanostatic charge–discharge curves of MoS2/CoS2 composites electrodes. (e) Cycling performance at a current density of 10 A/g. (f) Nyquist plots for MoS2/CoS2 composites electrodes, and the well-fitted equivalent circuit.
Scan rate/(mV·s−1) Specific capacitance/(F·g−1)
MCS3 MCS6 MCS12 MCS24 MCS36 MCS48
2 270 356 256 301 310 490
5 242 313 211 254 284 456
10 209 285 191 235 263 427
20 176 258 169 208 242 385
30 157 239 158 193 227 359
40 142 224 147 179 215 341
50 128 209 137 167 203 323
Tab.1  Specific capacitance calculated from the CV curves of MoS2/CoS2 composites electrodes
Current density/(A·g−1) Specific capacitance/(F·g−1)
MCS3 MCS6 MCS12 MCS24 MCS36 MCS48
0.05 290 400 305 331 331 498
0.1 280 387 279 318 318 489
0.3 277 376 271 316 316 476
0.5 273 368 262 305 305 463
1 266 354 254 286 286 434
2 250 328 242 272 272 436
5 230 300 224 255 255 425
10 208 275 203 233 233 400
Tab.2  Specific capacitance calculated from the GCD curves of MoS2/CoS2 composites electrodes
1 Ren X C, Tian C J, Li S, et al.. Facile synthesis of tremella-like MnO2 and its application as supercapacitor electrodes. Frontiers of Materials Science, 2015, 9(3): 234–240
https://doi.org/10.1007/s11706-015-0306-8
2 Zhao Y C, Misch J, Wang C A. Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials. Journal of Materials Science: Materials in Electronics, 2016, 27(6): 5533–5542
https://doi.org/10.1007/s10854-016-4457-x
3 Gao Y P, Wang L B, Li Z Y, et al.. Electrochemical performance of Ti3C2 supercapacitors in KOH electrolyte. Journal of Advanced Ceramics, 2015, 4(2): 130–134
https://doi.org/10.1007/s40145-015-0143-3
4 Bissett M A, Kinloch I A, Dryfe R A W. Characterization of MoS2-graphene composites for high-performance coin cell supercapacitors. ACS Applied Materials & Interfaces, 2015, 7(31): 17388–17398
https://doi.org/10.1021/acsami.5b04672 pmid: 26196223
5 Zhang L J, Hui K N, Hui K S, et al.. Facile synthesis of porous CoAl-layered double hydroxide/graphene composite with enhanced capacitive performance for supercapacitors. Electrochimica Acta, 2015, 186(6): 522–529
https://doi.org/10.1016/j.electacta.2015.11.024
6 Zhang L, Hui K N, Hui K S, et al.. High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode. Journal of Power Sources, 2016, 318: 76–85
https://doi.org/10.1016/j.jpowsour.2016.04.010
7 Jaramillo T F, Jørgensen K P, Bonde J, et al.. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science, 2007, 317(5834): 100–102
https://doi.org/10.1126/science.1141483 pmid: 17615351
8 Li Y, Wang H, Xie L, et al.. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2011, 133(19): 7296–7299
https://doi.org/10.1021/ja201269b pmid: 21510646
9 Bissett M A, Kinloch I A, Dryfe R A. Characterization of MoS2–graphene composites for high-performance coin cell supercapacitors. ACS Applied Materials & Interfaces, 2015, 7(31): 17388–17398
https://doi.org/10.1021/acsami.5b04672 pmid: 26196223
10 Zhou X, Xu B, Lin Z, et al.. Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 7250–7254
https://doi.org/10.1166/jnn.2014.8929 pmid: 25924398
11 Chen J, Li S L, Xu Q, et al.. Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation. Chemical Communications, 2002, 16(16): 1722–1723
https://doi.org/10.1039/b205109e pmid: 12196967
12 Ji Y, Liu X Y, Liu W, et al.. A facile template-free approach for the solid-phase synthesis of CoS2 nanocrystals and their enhanced storage energy in supercapacitors. RSC Advances, 2014, 4(91): 50220–50225
https://doi.org/10.1039/C4RA08614G
13 Wan H, Ji X, Jiang J, et al.. Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors. Journal of Power Sources, 2013, 243(6): 396–402
https://doi.org/10.1016/j.jpowsour.2013.06.027
14 Chakraborty I, Malik P K, Moulik S P. Preparation and characterisation of CoS2 nanomaterial in aqueous cationic surfactant medium of cetyltrimethylammonium bromide (CTAB). Journal of Nanoparticle Research, 2006, 8(6): 889–897
https://doi.org/10.1007/s11051-005-9032-y
15 Ding S J, Jiang S J, Zhou Y S, et al.. Catalytic characteristics of active corner sites in CoMoS nanostructure hydrodesulfurization – A mechanism study based on DFT calculations. Journal of Catalysis, 2017, 345: 24–38
https://doi.org/10.1016/j.jcat.2016.11.011
16 Lauritsen J V, Besenbacher F. Atom-resolved scanning tunneling microscopy investigations of molecular adsorption on MoS2 and CoMoS hydrodesulfurization catalysts. Journal of Catalysis, 2015, 328: 49–58
https://doi.org/10.1016/j.jcat.2014.12.034
17 Xiao J, Wan L, Yang S, et al.. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Letters, 2014, 14(2): 831–838
https://doi.org/10.1021/nl404199v pmid: 24437988
18 Chen H, Jiang J, Zhang L, et al.. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nano-scale, 2013, 5(19): 8879–8883
https://doi.org/10.1039/c3nr02958a pmid: 23903234
19 Xiao J, Yang S. Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Advances, 2011, 1(4): 588–595
https://doi.org/10.1039/c1ra00342a
20 Lu X, Pellechia P J, Flora J R V, et al.. Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. Bioresource Technology, 2013, 138: 180–190
https://doi.org/10.1016/j.biortech.2013.03.163 pmid: 23612178
21 Li H Y, Zhao Y C, Wang C A. Formation of molybdenum–cobalt sulfide by one-step hydrothermal reaction for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29(16): 13703–13708
https://doi.org/10.1007/s10854-018-9499-9
22 Tao F, Zhao Y Q, Zhang G Q, et al.. Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochemistry Communications, 2007, 9(6): 1282–1287
https://doi.org/10.1016/j.elecom.2006.11.022
23 Ragupathy P, Vasan H N, Munichandraiah N. Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies. Journal of the Electrochemical Society, 2008, 155(1): A34–A40
https://doi.org/10.1149/1.2800163
24 Chmiola J, Yushin G, Dash R, et al.. Effect of pore size and surface area of carbide derived carbons on specific capacitance. Journal of Power Sources, 2006, 158(1): 765–772
https://doi.org/10.1016/j.jpowsour.2005.09.008
[1] Jagpreet SINGH, Aditi RATHI, Mohit RAWAT, Manoj GUPTA. Graphene: from synthesis to engineering to biosensor applications[J]. Front. Mater. Sci., 2018, 12(1): 1-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed