Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (4) : 438-446    https://doi.org/10.1007/s11706-018-0445-9
RESEARCH ARTICLE
Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering
Xin PAN1,2, Binbin SUN1(), Xiumei MO3()
1. Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
2. Sunna Technologies (Shanghai) Co., Ltd., Shanghai 201203, China
3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
 Download: PDF(4819 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nerve guidance conduits (NGCs) can provide suitable microenvironment for nerve repair and promote the proliferation and migration of Schwann cells (SCs). Thus, we developed nerve guidance conduits (NGCs) with polypyrrole-coated polycaprolactone nanoyarns (PPy-PCL-NYs) as fillers in this study. PCL-NYs with the oriented structure were prepared with a double-needle electrospinning system and then PPy was coated on PCL-NYs via the in situ chemical polymerization. Subsequently, PCL nanofibers were collected around nanoyarns by the conventional electrospinning process as the outer layer to obtain PPy-PCL-NY nerve guidance conduits (PPy-PCL-NY NGCs). PPy-PCL-NYs were analyzed by SEM, FTIR and XPS. Results showed that PPy was homogeneously and uniformly deposited on the surface of PCL-NY. Strain–stress curves and the Young’s modulus of PPy-PCL-NYs were investigated compared with those of non-coated PCL-NYs. Studies on biocompatibility with SCs indicated that PPy-PCL-NY NGCs were more conducive to the proliferation of SCs than PCL-NY NGCs. In summary, PPy-PCL-NY NGCs show the promising potential for nerve tissue engineering repair and regeneration.

Keywords electrospinning      Schwann cell (SC)      polypyrrole (PPy)      polycaprolactone nanoyarn (PCL-NY)      nerve guidance conduit (NGC)     
Corresponding Author(s): Binbin SUN,Xiumei MO   
Online First Date: 30 November 2018    Issue Date: 10 December 2018
 Cite this article:   
Xin PAN,Binbin SUN,Xiumei MO. Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering[J]. Front. Mater. Sci., 2018, 12(4): 438-446.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0445-9
https://academic.hep.com.cn/foms/EN/Y2018/V12/I4/438
Fig.1  Schematic diagram of PPy-PCL-NY NGCs fabrication process.
Fig.2  Digital and SEM images of (a)(b)(c) PCL-NYs and (d)(e)(f) PPy-PCL-NYs.
Fig.3  SEM images of cross-sections of (a) PCL-NY NGCs, (b) PPy-PCL-NY NGCs, (c) intraductal PCL-NYs, and (d) intraductal PPy-PCL-NYs.
Fig.4  FTIR spectra of PPy, PCL-NYs and PPy-PCL-NYs.
Fig.5  XPS spectra of PCL-NYs and PPy-PCL-NYs.
Sample c(C)/% c(N)/% c(O)/% c(S)/%
PCL-NYs 75.11 0.00 0.23 0.00
PPy-PCL-NYs 76.31 4.17 1.09 0.14
Tab.1  Surface elemental compositions of PCL-NYs and PPy-PCL-NYs
Fig.6  Stress?strain curves of PCL-NYs and PPy-PCL-NYs.
Sample Elongation at break/% Tensile stress at break/MPa Young’s modulus/MPa
PCL-NYs 1546.46±25.52 76.21±0.50 10.55±0.23
PPy-PCL-NYs 1004.04±5.91 73.66±0.33 11.73±0.05
Tab.2  Mechanical properties of PCL-NYs and PPy-PCL-NYs
Fig.7  MTT results of the SC proliferation on TCP, PCL-NY NGCs and PPy-PCL-NY NGCs after culturing for 1, 3, 5 and 7 d.
Fig.8  (a)(c) HE images and (b)(d) immunofluorescence images with anti-S100 antibody of cross-sections after the SC culture for 7 d on PPy-PCL-NY NGCs (upper) and PCL-NY NGCs (lower).
1 Dvali L T, Myckatyn T M. End-to-side nerve repair: review of the literature and clinical indications. Hand Clinics, 2008, 24(4): 455–460
https://doi.org/10.1016/j.hcl.2008.04.006 pmid: 18928893
2 Li X, Yang Z, Zhang A, et al.. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats. Biomaterials, 2009, 30(6): 1121–1132
https://doi.org/10.1016/j.biomaterials.2008.10.063 pmid: 19042014
3 Yao L, de Ruiter G C, Wang H, et al.. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials, 2010, 31(22): 5789–5797
https://doi.org/10.1016/j.biomaterials.2010.03.081 pmid: 20430432
4 Ribeiro-Resende V T, Koenig B, Nichterwitz S, et al.. Strategies for inducing the formation of bands of Büngner in peripheral nerve regeneration. Biomaterials, 2009, 30(29): 5251–5259
https://doi.org/10.1016/j.biomaterials.2009.07.007 pmid: 19632717
5 Tsujimoto H, Nakamura T, Miki T, et al.. Regeneration and functional recovery of intrapelvic nerves removed during extensive surgery by a new artificial nerve conduit: a breakthrough to radical operation for locally advanced and recurrent rectal cancers. Journal of Gastrointestinal Surgery, 2011, 15(6): 1035–1042
https://doi.org/10.1007/s11605-011-1434-9 pmid: 21287289
6 Wang H B, Mullins M E, Cregg J M, et al.. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomaterialia, 2010, 6(8): 2970–2978
https://doi.org/10.1016/j.actbio.2010.02.020 pmid: 20167292
7 Hanna A S, Son Y J, Dempsey R. Live imaging of dorsal root regeneration and the resurgence of a forgotten idea. Neurosurgery, 2011, 69(2): N18–N21
https://doi.org/10.1227/01.neu.0000400019.16401.c3 pmid: 21792130
8 Xie J, MacEwan M R, Schwartz A G, et al.. Electrospun nanofibers for neural tissue engineering. Nanoscale, 2010, 2(1): 35–44
https://doi.org/10.1039/B9NR00243J pmid: 20648362
9 Gelain F, Unsworth L D, Zhang S. Slow and sustained release of active cytokines from self-assembling peptide scaffolds. Journal of Controlled Release, 2010, 145(3): 231–239
https://doi.org/10.1016/j.jconrel.2010.04.026 pmid: 20447427
10 Madduri S, Papaloïzos M, Gander B. Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Biomaterials, 2010, 31(8): 2323–2334
https://doi.org/10.1016/j.biomaterials.2009.11.073 pmid: 20004018
11 Yin Z, Chen X, Chen J L, et al.. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials, 2010, 31(8): 2163–2175
https://doi.org/10.1016/j.biomaterials.2009.11.083 pmid: 19995669
12 Lundborg G, Rosen B, Dahlin L, et al.. Tubular versus conventional repair of median and ulnar nerves in the human forearm: Early results from a prospective, randomized, clinical study. The Journal of Hand Surgery, 1997, 22(1): 99–106
13 Yucel D, Kose G T, Hasirci V. Polyester based nerve guidance conduit design. Biomaterials, 2010, 31(7): 1596–1603
https://doi.org/10.1016/j.biomaterials.2009.11.013 pmid: 19932504
14 Li D, Pan X, Sun B, et al.. Nerve conduits constructed by electrospun P(LLA-CL) nanofibers and PLLA nanofiber yarns. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(45): 8823–8831
https://doi.org/10.1039/C5TB01402F
15 Urbanek O, Sajkiewicz P, Pierini F. The effect of polarity in the electrospinning process on PCL/chitosan nanofibres’ structure, properties and efficiency of surface modification. Polymer, 2017, 124: 168–175
https://doi.org/10.1016/j.polymer.2017.07.064
16 Guimard N K, Gomez N, Schmidt C E. Conducting polymers in biomedical engineering. Progress in Polymer Science, 2007, 32(8): 876–921
https://doi.org/10.1016/j.progpolymsci.2007.05.012
17 Guo B, Glavas L, Albertsson A C. Biodegradable and electrically conducting polymers for biomedical applications. Progress in Polymer Science, 2013, 38(9): 1263–1286
https://doi.org/10.1016/j.progpolymsci.2013.06.003
18 Zhang J, Qiu K, Sun B, et al.. The aligned core‒sheath nanofibers with electrical conductivity for neural tissue engineering. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(45): 7945–7954
https://doi.org/10.1039/C4TB01185F
19 Lee J Y, Bashur C A, Goldstein A S, et al.. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 2009, 30(26): 4325–4335
https://doi.org/10.1016/j.biomaterials.2009.04.042 pmid: 19501901
20 Runge M B, Dadsetan M, Baltrusaitis J, et al.. The development of electrically conductive polycaprolactone fumarate-polypyrrole composite materials for nerve regeneration. Biomaterials, 2010, 31(23): 5916–5926
https://doi.org/10.1016/j.biomaterials.2010.04.012 pmid: 20483452
21 Schmidt C E, Shastri V R, Vacanti J P, et al.. Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(17): 8948–8953
https://doi.org/10.1073/pnas.94.17.8948 pmid: 9256415
22 Xie J, Macewan M R, Willerth S M, et al.. Conductive core‒sheath nanofibers and their potential application in neural tissue engineering. Advanced Functional Materials, 2009, 19(14): 2312–2318
https://doi.org/10.1002/adfm.200801904 pmid: 19830261
23 Sun B, Wu T, Wang J, et al.. Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2016, 4(41): 6670–6679
https://doi.org/10.1039/C6TB01710J
24 Wu T, Li D, Wang Y, et al.. Laminin-coated nerve guidance conduits based on poly(l-lactide-co-glycolide) fibers and yarns for promoting Schwann cells’ proliferation and migration. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(17): 3186–3194
https://doi.org/10.1039/C6TB03330J
25 Levitt A S, Knittel C E, Vallett R, et al.. Investigation of nanoyarn preparation by modified electrospinning setup. Journal of Applied Polymer Science, 2017, 134(19): 44813
https://doi.org/10.1002/app.44813 pmid: 28579635
26 Liu P, Wu S, Zhang Y, et al.. A fast response ammonia sensor based on coaxial PPy-PAN nanofiber yarn. Nanomaterials, 2016, 6(7): E121 (10 pages)
https://doi.org/10.3390/nano6070121 pmid: 28335248
27 Ichihara S, Inada Y, Nakamura T. Artificial nerve tubes and their application for repair of peripheral nerve injury: an update of current concepts. Injury, 2008, 39(39 Suppl 4): 29–39
https://doi.org/10.1016/j.injury.2008.08.029 pmid: 18804584
28 Matsumoto K, Ohnishi K, Kiyotani T, et al.. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Research, 2000, 868(2): 315–328
https://doi.org/10.1016/S0006-8993(00)02207-1 pmid: 10854584
29 Mo X, Li D, Ei-Hamshary H A, et al.. Electrospinning nanofibers for tissue engineering. Journal of Fiber Bioengineering and Informatics, 2013, 6(3): 225–235 doi:10.3993/jfbi09201301
30 Lietz M, Dreesmann L, Hoss M, et al.. Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials, 2006, 27(8): 1425–1436
https://doi.org/10.1016/j.biomaterials.2005.08.007 pmid: 16169587
[1] Juan WANG,Binbin SUN,Muhammad Aqeel BHUTTO,Tonghe ZHU,Kui YU,Jiayu BAO,Yosry MORSI,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Xiumei MO. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering[J]. Front. Mater. Sci., 2017, 11(1): 22-32.
[2] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[3] Qilin WEI,Feiyang XU,Xingjian XU,Xue GENG,Lin YE,Aiying ZHANG,Zengguo FENG. The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning[J]. Front. Mater. Sci., 2016, 10(2): 113-121.
[4] Jianchao ZHAN,Yosry MORSI,Hany EI-HAMSHARY,Salem S. AL-DEYAB,Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers[J]. Front. Mater. Sci., 2016, 10(1): 90-100.
[5] Chong WANG,Min WANG. Electrospun multifunctional tissue engineering scaffolds[J]. Front. Mater. Sci., 2014, 8(1): 3-19.
[6] Yi-Xia YIN,Ji-Ling YI,Li-Juan XIE,Qiong-Jiao YAN,Hong-Lian DAI,Shi-Pu LI. Synthesis, characterization and biological evaluation of poly [LA-co-(Glc-alt-Lys)] for nerve regeneration scaffold[J]. Front. Mater. Sci., 2014, 8(1): 95-101.
[7] Bhaarathi DHURAI, Nachimuthu SARASWATHY, Ramasamy MAHESWARAN, Ponnusamy SETHUPATHI, Palanisamy VANITHA, Sukumar VIGNESHWARAN, Venugopal RAMESHBABU. Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics[J]. Front Mater Sci, 2013, 7(4): 350-361.
[8] Jian-Guang ZHANG, Xiu-Mei MO. Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers[J]. Front Mater Sci, 2013, 7(2): 129-142.
[9] Gui-Ping MA, Dong-Zhi YANG, Bin-ling CHEN, Jun NIE, Shu-Min DING, Guo-Qiang SONG, . Preparation and characterization of composite fibers from organic-soluble chitosan and poly-vinylpyrrolidone by electrospinning[J]. Front. Mater. Sci., 2010, 4(1): 64-69.
[10] Susan LIAO, Casey K. CHAN, S. RAMAKRISHNA, . Electrospun nanofibers: Work for medicine?[J]. Front. Mater. Sci., 2010, 4(1): 29-33.
[11] Rui CHEN, Qin-fei KE, Yosry MORSI, Shital PATEL, Xiu-mei MO, . A novel approach via combination of electrospinning and FDM for tri-leaflet heart valve scaffold fabrication[J]. Front. Mater. Sci., 2009, 3(4): 359-366.
[12] Jian HAN, Bing CHEN, Lin YE, Ai-ying ZHANG, Jian ZHANG, Zeng-guo FENG. Synthesis and characterization of biodegradable polyurethane based on poly(?-caprolactone) and L-lysine ethyl ester diisocyanate[J]. Front Mater Sci Chin, 2009, 3(1): 25-32.
[13] YANG Dong-zhi, LONG Yu-hua, NIE Jun. Release of lysozyme from electrospun PVA/lysozyme-gelatin scaffolds[J]. Front. Mater. Sci., 2008, 2(3): 261-265.
[14] MA Guiping, YANG Dongzhi, ZHOU Yingshan, JIN Yu, NIE Jun. Preparation and characterization of chitosan/poly(vinyl alcohol)/poly(vinyl pyrrolidone) electrospun fibers[J]. Front. Mater. Sci., 2007, 1(4): 432-436.
[15] MO Xiumei, CHEN Zonggang, Hans J. Weber. Electrospun nanofibers of collagen-chitosan and P(LLA-CL) for tissue engineering[J]. Front. Mater. Sci., 2007, 1(1): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed