|
|
Electrospun nanofibers: Work for medicine? |
Susan LIAO,Casey K. CHAN,S. RAMAKRISHNA, |
Healthcare and Energy
Materials Laboratory, Department of Mechanical Engineering, Faculty
of Engineering, National University of Singapore, Singapore 117576,
Singapore; |
|
|
Abstract Attempts have been made to fabricate nanofibrous scaffolds to mimic the chemical composition and structural properties of the extracellular matrix (ECM) for tissue/organ replacement. Nanofiber scaffolds with various patterns have been successfully produced from synthetic and natural polymers through a relatively simple technique of electrospinning. The resulting patterns can mimic some of the diverse tissue-specific orientation and three-dimensional (3D) fibrous structures. Studies on cell-nanofiber interactions, including studies on stem cells, have revealed the importance of nanotopography on cell adhesion, proliferation and differentiation. Furthermore, clinical application of electrospun nanofibers including wound healing, tissue regeneration, drug delivery and stem cell therapy are highly feasible due to the ease and flexibility of fabrication of making nanofiber with this cost-effective method using electrospinning. In this review, we have highlighted the current state of the art and provided future perspectives on electrospun nanofiber in medical applications.
|
Keywords
biomimetic materials
nanofiber
electrospinning
stem cell
medicine
|
Issue Date: 05 March 2010
|
|
|
Hunt J A. Materials in a cellular world. NatureMaterials, 2008, 7(8): 617–618
doi: 10.1038/nmat2242
|
|
Stevens M M, George J H. Exploring and engineeringthe cell surface interface. Science, 310(5751): 1135–1138
doi: 10.1126/science.1106587
|
|
Langer R, Tirrell D A. Designing materials for biologyand medicine. Nature, 2004, 428(6982): 487–492
doi: 10.1038/nature02388
|
|
Lutolf M P, Hubbell J A. Synthetic biomaterials asinstructive extracellular microenvironments for morphogenesis in tissueengineering. Nature Biotechnology, 2005, 23(1): 47–55
doi: 10.1038/nbt1055
|
|
Liao S, Chan C K, Ramakrishna S. Stem cells and biomimetic materials strategies for tissueengineering. Materials Science and Engineering:C, 2008, 28(8): 1189–1202
doi: 10.1016/j.msec.2008.08.015
|
|
McAllister T N, Maruszewski M, Garrido S A. Effectiveness of haemodialysis access with an autologoustissue-engineered vascular graft: a multicentre cohort study. The Lancet, 2009, 373(9673): 1440–1446
doi: 10.1016/S0140-6736(09)60248-8
|
|
Barnes C P, Sell S A, Boland E D, et al. Nanofiber technology: designing the next generationof tissue engineering scaffolds. AdvancedDrug Delivery Reviews, 2007, 59(14): 1413–1433
doi: 10.1016/j.addr.2007.04.022
|
|
Doktycz M J, Simpson M L. Nano-enabled synthetic biology. Molecular Systems Biology, 2007, 3: 125
doi: 10.1038/msb4100165
|
|
Wozney J M, Li R H. Engineering what comes naturally. Nature Biotechnology, 2003, 21(5): 506–508
doi: 10.1038/nbt0503-506
|
|
Dzenis Y. Spinningcontinuous fibers for nanotechnology. Science, 2004, 304(5679): 1917–1919
doi: 10.1126/science.1099074
|
|
Xia Y. Nanomaterialsat work in biomedical research. NatureMaterials, 2008, 7(10): 758–760
doi: 10.1038/nmat2277
|
|
Li D, Xia Y. Electrospinning of nanofibers:reinventing the wheel. Advanced Materials, 2004, 16(14): 1151–1170
doi: 10.1002/adma.200400719
|
|
Townsend-Nicholson A, Jayasinghe S N. Cell electrospinning:?a uniquebiotechnique for encapsulating living organisms for generating activebiological microthreads/scaffolds. Biomacromolecules, 2006, 7(12): 3364–3369
doi: 10.1021/bm060649h
|
|
Teo W E, Ramakrishna S. Electrospun fibre bundlemade of aligned nanofibres over two fixed points. Nanotechnology, 2005, 16(9): 1878–1884
doi: 10.1088/0957-4484/16/9/077
|
|
Teo W E, Liao S, Chan C K, et al. Remodeling of three-dimensional hierarchicallyorganized nanofibrous assemblies. CurrentNanoscience, 2008, 4(4): 361–369
doi: 10.2174/157341308786306080
|
|
Ma K, Chan C K, Liao S, et al. Electrospun nanofiber scaffolds for rapid andrich capture of bone marrow-derived hematopoietic stem cells. Biomaterials, 2008, 29(13): 2096–2103
doi: 10.1016/j.biomaterials.2008.01.024
|
|
Chan C K, Liao S, Li B, et al. Early adhesive behavior of bone-marrow-derivedmesenchymal stem cells on collagen electrospun fibers. Biomedical Materials, 2009, 4(3): 035006 (10 pages)
|
|
Zeugolis D I, Khew S T, Yew E S Y, et al. Electro-spinning of pure collagen nano-fibres– just an expensive way to make gelatin. Biomaterials, 2008, 29(15): 2293–2305
doi: 10.1016/j.biomaterials.2008.02.009
|
|
Guo X-T, Shi M, Shu M-G, et al. Ex vivo expandinghematopoietic stem cells by intracellular delivery of Cdx4 fusionproteins. Medical Hypotheses, 2007, 68(6): 1389–1391
doi: 10.1016/j.mehy.2006.09.068
|
|
Jiang X-S, Chai C, Zhang Y, et al. Surface-immobilization of adhesion peptideson substrate for ex vivo expansionof cryopreserved umbilical cord blood CD34+ cells. Biomaterials, 2006, 27(13): 2723–2732
doi: 10.1016/j.biomaterials.2005.12.001
|
|
Feng Q, Chai C, Jiang X S, et al. Expansion of engrafting human hematopoieticstem/progenitor cells in three-dimensional scaffolds with surface-immobilizedfibronectin. Journal of Biomedical MaterialsResearch, 2006, 78A(4): 781–791
doi: 10.1002/jbm.a.30829
|
|
Chua K N, Chai C, Lee P C, et al. Surface-aminated electrospun nanofibers enhanceadhesion and expansion of human umbilical cord blood hematopoieticstem/progenitor cells. Biomaterials, 2006, 27(36): 6043–6051
doi: 10.1016/j.biomaterials.2006.06.017
|
|
Chua K N, Chai C, Lee P C, et al. Functional nanofiber scaffolds with differentspacers modulate adhesion and expansion of cryopreserved umbilicalcord blood hematopoietic stem/progenitor cells. Experimental Hematology, 2007, 35(5): 771–781
doi: 10.1016/j.exphem.2007.02.002
|
|
Nur-E-Kamal A, Ahmed I, Kamal J, et al. Three-dimensional nanofibrillar surfaces promoteself-renewal in mouse embryonic stem cells. Stem Cells, 2006, 24(2): 426–433
doi: 10.1634/stemcells.2005-0170
|
|
Li W J, Tuli R, Huang X, et al. Multilineage differentiation of human mesenchymalstem cells in a three-dimensional scaffold. Biomaterials, 2005, 26(25): 5158–5166
doi: 10.1016/j.biomaterials.2005.01.002
|
|
Shin M, Yoshimoto H, Vacanti J P. In vivo bone tissueengineering using mesenchymal stem cells on a novel electrospun nanofibrousscaffold. Tissue Engineering, 2004, 10(1–2): 33–41
doi: 10.1089/107632704322791673
|
|
Kang X, Xie Y, Powell H M, et al. Adipogenesis of murine embryonic stem cellsin a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials, 2007, 28(3): 450–458
doi: 10.1016/j.biomaterials.2006.08.052
|
|
Xin X J, Hussain M, Mao J J. Continuing differentiation of human mesenchymal stemcells and induced chondrogenic and osteogenic lineages in electrospunPLGA nanofiber scaffold. Biomaterials, 2007, 28(2): 316–325
doi: 10.1016/j.biomaterials.2006.08.042
|
|
Dalby M J, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiationusing nanoscale symmetry and disorder. Nature Materials, 2007, 6(12): 997–1003
doi: 10.1038/nmat2013
|
|
Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineagespecification. Cell, 2006, 126(4): 677–689
doi: 10.1016/j.cell.2006.06.044
|
|
Sill T J, von-Recum H A. Electrospinning: applicationsin drug delivery and tissue engineering. Biomaterials, 2008, 29(13): 1989–2006
doi: 10.1016/j.biomaterials.2008.01.011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|