Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (1) : 29-33    https://doi.org/10.1007/s11706-010-0009-0
Research articles
Electrospun nanofibers: Work for medicine?
Susan LIAO,Casey K. CHAN,S. RAMAKRISHNA,
Healthcare and Energy Materials Laboratory, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore;
 Download: PDF(229 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Attempts have been made to fabricate nanofibrous scaffolds to mimic the chemical composition and structural properties of the extracellular matrix (ECM) for tissue/organ replacement. Nanofiber scaffolds with various patterns have been successfully produced from synthetic and natural polymers through a relatively simple technique of electrospinning. The resulting patterns can mimic some of the diverse tissue-specific orientation and three-dimensional (3D) fibrous structures. Studies on cell-nanofiber interactions, including studies on stem cells, have revealed the importance of nanotopography on cell adhesion, proliferation and differentiation. Furthermore, clinical application of electrospun nanofibers including wound healing, tissue regeneration, drug delivery and stem cell therapy are highly feasible due to the ease and flexibility of fabrication of making nanofiber with this cost-effective method using electrospinning. In this review, we have highlighted the current state of the art and provided future perspectives on electrospun nanofiber in medical applications.
Keywords biomimetic materials      nanofiber      electrospinning      stem cell      medicine      
Issue Date: 05 March 2010
 Cite this article:   
Susan LIAO,Casey K. CHAN,S. RAMAKRISHNA. Electrospun nanofibers: Work for medicine?[J]. Front. Mater. Sci., 2010, 4(1): 29-33.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0009-0
https://academic.hep.com.cn/foms/EN/Y2010/V4/I1/29
Hunt J A. Materials in a cellular world. NatureMaterials, 2008, 7(8): 617–618

doi: 10.1038/nmat2242
Stevens M M, George J H. Exploring and engineeringthe cell surface interface. Science, 310(5751): 1135–1138

doi: 10.1126/science.1106587
Langer R, Tirrell D A. Designing materials for biologyand medicine. Nature, 2004, 428(6982): 487–492

doi: 10.1038/nature02388
Lutolf M P, Hubbell J A. Synthetic biomaterials asinstructive extracellular microenvironments for morphogenesis in tissueengineering. Nature Biotechnology, 2005, 23(1): 47–55

doi: 10.1038/nbt1055
Liao S, Chan C K, Ramakrishna S. Stem cells and biomimetic materials strategies for tissueengineering. Materials Science and Engineering:C, 2008, 28(8): 1189–1202

doi: 10.1016/j.msec.2008.08.015
McAllister T N, Maruszewski M, Garrido S A. Effectiveness of haemodialysis access with an autologoustissue-engineered vascular graft: a multicentre cohort study. The Lancet, 2009, 373(9673): 1440–1446

doi: 10.1016/S0140-6736(09)60248-8
Barnes C P, Sell S A, Boland E D, et al. Nanofiber technology: designing the next generationof tissue engineering scaffolds. AdvancedDrug Delivery Reviews, 2007, 59(14): 1413–1433

doi: 10.1016/j.addr.2007.04.022
Doktycz M J, Simpson M L. Nano-enabled synthetic biology. Molecular Systems Biology, 2007, 3: 125

doi: 10.1038/msb4100165
Wozney J M, Li R H. Engineering what comes naturally. Nature Biotechnology, 2003, 21(5): 506–508

doi: 10.1038/nbt0503-506
Dzenis Y. Spinningcontinuous fibers for nanotechnology. Science, 2004, 304(5679): 1917–1919

doi: 10.1126/science.1099074
Xia Y. Nanomaterialsat work in biomedical research. NatureMaterials, 2008, 7(10): 758–760

doi: 10.1038/nmat2277
Li D, Xia Y. Electrospinning of nanofibers:reinventing the wheel. Advanced Materials, 2004, 16(14): 1151–1170

doi: 10.1002/adma.200400719
Townsend-Nicholson A, Jayasinghe S N. Cell electrospinning:?a uniquebiotechnique for encapsulating living organisms for generating activebiological microthreads/scaffolds. Biomacromolecules, 2006, 7(12): 3364–3369

doi: 10.1021/bm060649h
Teo W E, Ramakrishna S. Electrospun fibre bundlemade of aligned nanofibres over two fixed points. Nanotechnology, 2005, 16(9): 1878–1884

doi: 10.1088/0957-4484/16/9/077
Teo W E, Liao S, Chan C K, et al. Remodeling of three-dimensional hierarchicallyorganized nanofibrous assemblies. CurrentNanoscience, 2008, 4(4): 361–369

doi: 10.2174/157341308786306080
Ma K, Chan C K, Liao S, et al. Electrospun nanofiber scaffolds for rapid andrich capture of bone marrow-derived hematopoietic stem cells. Biomaterials, 2008, 29(13): 2096–2103

doi: 10.1016/j.biomaterials.2008.01.024
Chan C K, Liao S, Li B, et al. Early adhesive behavior of bone-marrow-derivedmesenchymal stem cells on collagen electrospun fibers. Biomedical Materials, 2009, 4(3): 035006 (10 pages)
Zeugolis D I, Khew S T, Yew E S Y, et al. Electro-spinning of pure collagen nano-fibres– just an expensive way to make gelatin. Biomaterials, 2008, 29(15): 2293–2305

doi: 10.1016/j.biomaterials.2008.02.009
Guo X-T, Shi M, Shu M-G, et al. Ex vivo expandinghematopoietic stem cells by intracellular delivery of Cdx4 fusionproteins. Medical Hypotheses, 2007, 68(6): 1389–1391

doi: 10.1016/j.mehy.2006.09.068
Jiang X-S, Chai C, Zhang Y, et al. Surface-immobilization of adhesion peptideson substrate for ex vivo expansionof cryopreserved umbilical cord blood CD34+ cells. Biomaterials, 2006, 27(13): 2723–2732

doi: 10.1016/j.biomaterials.2005.12.001
Feng Q, Chai C, Jiang X S, et al. Expansion of engrafting human hematopoieticstem/progenitor cells in three-dimensional scaffolds with surface-immobilizedfibronectin. Journal of Biomedical MaterialsResearch, 2006, 78A(4): 781–791

doi: 10.1002/jbm.a.30829
Chua K N, Chai C, Lee P C, et al. Surface-aminated electrospun nanofibers enhanceadhesion and expansion of human umbilical cord blood hematopoieticstem/progenitor cells. Biomaterials, 2006, 27(36): 6043–6051

doi: 10.1016/j.biomaterials.2006.06.017
Chua K N, Chai C, Lee P C, et al. Functional nanofiber scaffolds with differentspacers modulate adhesion and expansion of cryopreserved umbilicalcord blood hematopoietic stem/progenitor cells. Experimental Hematology, 2007, 35(5): 771–781

doi: 10.1016/j.exphem.2007.02.002
Nur-E-Kamal A, Ahmed I, Kamal J, et al. Three-dimensional nanofibrillar surfaces promoteself-renewal in mouse embryonic stem cells. Stem Cells, 2006, 24(2): 426–433

doi: 10.1634/stemcells.2005-0170
Li W J, Tuli R, Huang X, et al. Multilineage differentiation of human mesenchymalstem cells in a three-dimensional scaffold. Biomaterials, 2005, 26(25): 5158–5166

doi: 10.1016/j.biomaterials.2005.01.002
Shin M, Yoshimoto H, Vacanti J P. In vivo bone tissueengineering using mesenchymal stem cells on a novel electrospun nanofibrousscaffold. Tissue Engineering, 2004, 10(1–2): 33–41

doi: 10.1089/107632704322791673
Kang X, Xie Y, Powell H M, et al. Adipogenesis of murine embryonic stem cellsin a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials, 2007, 28(3): 450–458

doi: 10.1016/j.biomaterials.2006.08.052
Xin X J, Hussain M, Mao J J. Continuing differentiation of human mesenchymal stemcells and induced chondrogenic and osteogenic lineages in electrospunPLGA nanofiber scaffold. Biomaterials, 2007, 28(2): 316–325

doi: 10.1016/j.biomaterials.2006.08.042
Dalby M J, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiationusing nanoscale symmetry and disorder. Nature Materials, 2007, 6(12): 997–1003

doi: 10.1038/nmat2013
Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineagespecification. Cell, 2006, 126(4): 677–689

doi: 10.1016/j.cell.2006.06.044
Sill T J, von-Recum H A. Electrospinning: applicationsin drug delivery and tissue engineering. Biomaterials, 2008, 29(13): 1989–2006

doi: 10.1016/j.biomaterials.2008.01.011
[1] Xin PAN, Binbin SUN, Xiumei MO. Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering[J]. Front. Mater. Sci., 2018, 12(4): 438-446.
[2] Wanyu ZHAO, Jian LI, Bingbing FAN, Gang SHAO, Hailong WANG, Bozhen SONG, Shengnan WEI, Rui ZHANG. Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth[J]. Front. Mater. Sci., 2017, 11(4): 353-357.
[3] Yinxian YU, Binbin SUN, Chengqing YI, Xiumei MO. Stem cell homing-based tissue engineering using bioactive materials[J]. Front. Mater. Sci., 2017, 11(2): 93-105.
[4] Juan WANG,Binbin SUN,Muhammad Aqeel BHUTTO,Tonghe ZHU,Kui YU,Jiayu BAO,Yosry MORSI,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Xiumei MO. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering[J]. Front. Mater. Sci., 2017, 11(1): 22-32.
[5] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[6] Junfeng ZHOU,Liang CHENG,Xiaodan SUN,Xiumei WANG,Shouhong JIN,Junxiang LI,Qiong WU. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation[J]. Front. Mater. Sci., 2016, 10(3): 260-269.
[7] Qilin WEI,Feiyang XU,Xingjian XU,Xue GENG,Lin YE,Aiying ZHANG,Zengguo FENG. The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning[J]. Front. Mater. Sci., 2016, 10(2): 113-121.
[8] Jianchao ZHAN,Yosry MORSI,Hany EI-HAMSHARY,Salem S. AL-DEYAB,Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers[J]. Front. Mater. Sci., 2016, 10(1): 90-100.
[9] Yi ZHANG,Cencen ZHANG,Lijie LIU,David L. KAPLAN,Hesun ZHU,Qiang LU. Hierarchical charge distribution controls self-assembly process of silk in vitro[J]. Front. Mater. Sci., 2015, 9(4): 382-391.
[10] Su-Ju XU,Fu-Zhai CUI,Xiang-Dong KONG. Tumor-suppressor effects of chemical functional groups in an in vitro co-culture system[J]. Front. Mater. Sci., 2014, 8(2): 136-141.
[11] Chong WANG,Min WANG. Electrospun multifunctional tissue engineering scaffolds[J]. Front. Mater. Sci., 2014, 8(1): 3-19.
[12] Jin-Ling MA,Jeroen J. J. P. van den BEUCKEN,Ju-Li PAN,Fu-Zhai CUI,Su CHEN. Bone regeneration using coculture of mesenchymal stem cells and angiogenic cells[J]. Front. Mater. Sci., 2014, 8(1): 32-38.
[13] Bhaarathi DHURAI, Nachimuthu SARASWATHY, Ramasamy MAHESWARAN, Ponnusamy SETHUPATHI, Palanisamy VANITHA, Sukumar VIGNESHWARAN, Venugopal RAMESHBABU. Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics[J]. Front Mater Sci, 2013, 7(4): 350-361.
[14] Jian-Guang ZHANG, Xiu-Mei MO. Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers[J]. Front Mater Sci, 2013, 7(2): 129-142.
[15] Qing-Yuan MENG, Toshihiro AKAIKE. Maintenance and induction of murine embryonic stem cell differentiation using E-cadherin-Fc substrata without colony formation[J]. Front Mater Sci, 2013, 7(1): 51-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed