Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (1) : 22-32    https://doi.org/10.1007/s11706-017-0368-x
RESEARCH ARTICLE
Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering
Juan WANG1,Binbin SUN1,Muhammad Aqeel BHUTTO1,Tonghe ZHU1,Kui YU3,Jiayu BAO1,Yosry MORSI4,Hany EL-HAMSHARY5,6,Mohamed EL-NEWEHY5,6,Xiumei MO1,2()
1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
2. Shandong International Biotechnology Park Development Co., Ltd., Yantai 264670, China
3. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
4. Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Vic 3122, Australia
5. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
6. Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
 Download: PDF(626 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrospun nanofibers have gained widespreading interest for tissue engineering application. In the present study, ApF/P(LLA-CL) nanofibrous scaffolds were fabricated via electrospinning. The feasibility of the material as tissue engineering nerve scaffold was investigated in vitro. The average diameter increased with decreasing the blend ratio of ApF to P(LLA-CL). Characterization of 13C NMR and FTIR clarified that there is no obvious chemical bond reaction between ApF and P(LLA-CL). The tensile strength and elongation at break increased with the content increase of P(LLA-CL). The surface hydrophilic property of nanofibrous scaffolds enhanced with the increased content of ApF. Cell viability studies with Schwann cells demonstrated that ApF/P(LLA-CL) blended nanofibrous scaffolds significantly promoted cell growth as compare to P(LLA-CL), especially when the weight ratio of ApF to P(LLA-CL) was 25:75. The present work provides a basis for further studies of this novel nanofibrous material (ApF/P(LLA-CL)) in peripheral nerve tissue repair or regeneration.

Keywords ApF/P(LLA-CL)      electrospinning      nanofibers      scaffolds      Schwann cells      peripheral nerve tissue engineering     
Corresponding Author(s): Xiumei MO   
Online First Date: 09 January 2017    Issue Date: 22 January 2017
 Cite this article:   
Juan WANG,Binbin SUN,Muhammad Aqeel BHUTTO, et al. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering[J]. Front. Mater. Sci., 2017, 11(1): 22-32.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0368-x
https://academic.hep.com.cn/foms/EN/Y2017/V11/I1/22
Fig.1  SEM images and diameter distributions of electrospun ApF/P(LLA-CL) (50:50) blend nanofibers at different concentrations: (a) 6% (w/v); (b) 8% (w/v); (c) 10% (w/v); (d) 12% (w/v).
Fig.2  SEM images and diameter distributions of 10% (w/v) ApF/P(LLA-CL) solution with different blend weight ratios of w(ApF):w(P(LLA-CL)): (a) 100:0; (b) 75:25; (c) 50:50; (d) 25:75; (e) 0:100.
Fig.3  Structural analyses of ApF/P(LLA-CL) blended nanofibers (100:0 (i); 75:25 (ii); 50:50 (iii); 25:75 (iv); 0:100 (v)): (a) ATR-FTIR spectra; (b)13C CP/MAS NMR spectra.
Fig.4  Water contact angle measurement on electrospun nanofibers surface of ApF/P(LLA-CL) blended nanofibrous scaffolds with different w(ApF):w(P(LLA-CL)) ratios.
Fig.5  Mechanical properties of ApF/P(LLA-CL) blended nanofibrous scaffolds with different w(ApF):w(P(LLA-CL)) ratios: (a) tensile stress–strain relationship; (b) elongation at break; (c) tensile strength. The data represent the mean±SD (n = 5), and the symbol “*” represents statistically significant differences (p<0.05) compared with pure P(LLA-CL) (w(ApF):w(P(LLA-CL)) = 0:100).
Fig.6  Proliferation of SCs cultured on different nanofibrous scaffolds for 1, 3, 5 and 7 d. Data are expressed as mean±SD (n = 3). The symbol “*” represents statistically significant differences (p<0.05).
Fig.7  SEM images of SCs grown for 3 d on ApF/P(LLA-CL) nanofibrous scaffolds and TCP with different w(ApF):w(P(LLA-CL)) ratios: (a) 100:0 (pure ApF); (b) 75:25; (c) 50:50; (d) 25:75; (e) 0:100 (pure P(LLA-CL)); (f) TCP.
Fig.8  Immunochemistry staining images of SCs after a 3-day culture on different nanofibrous scaffolds. Nucleus was stained by DAPI (blue) and cytoplasm was stained by rhodamine phalloidin (red).
1 Yuksel E, Choo J, Wettergreen M, . Challenges in soft tissue engineering. Seminars in Plastic Surgery, 2005, 19(3): 261–270
https://doi.org/10.1055/s-2005-919721
2 Wang C Y, Liu J J, Fan C Y, . The effect of aligned core–shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration. Journal of Biomaterials Science: Polymer Edition, 2012, 23(1–4): 167–184
https://doi.org/10.1163/092050610X545805 pmid: 21192836
3 Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Progress in Polymer Science, 2010, 35(7): 868–892
https://doi.org/10.1016/j. progpolymsci.2010.03.003 pmid: 20582161
4 Sabbatier G, Larrañaga A, Guay-Bégin A A, . Design, degradation mechanism and long-term cytotoxicity of poly(l-lactide) and poly(lactide-co-ε-caprolactone) terpolymer film and air-spun nanofiber scaffold. Macromolecular Bioscience, 2015, 15(10): 1392–1410
https://doi.org/10.1002/mabi.201500130 pmid: 26058993
5 Kim M S, Lee M H, Kwon B J, . Enhancement of human mesenchymal stem cell infiltration into the electrospun poly(lactic-co-glycolic acid) scaffold by fluid shear stress. Biochemical and Biophysical Research Communications, 2015, 463(1–2): 137–142
https://doi.org/10.1016/j. bbrc.2015.05.048 pmid: 26002463
6 Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials, 2004, 16(14): 1151–1170
https://doi.org/10.1002/adma.200400719
7 Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996, 7(3): 216–223
https://doi.org/10.1088/0957-4484/7/3/009
8 Zhou H, Lawrence J G, Bhaduri S B. Fabrication aspects of PLA–CaP/PLGA–CaP composites for orthopedic applications: a review. Acta Biomaterialia, 2012, 8(6): 1999–2016
https://doi.org/10.1016/j. actbio.2012.01.031 pmid: 22342596
9 Elsabee M Z, Naguib H F, Morsi R E. Chitosan based nanofibers. Materials Science and Engineering C, 2012, 32(7): 1711–1726
https://doi.org/10.1016/j. msec.2012.05.009
10 Jayakumar R, Prabaharan M, Nair S V, . Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advances, 2010, 28(1): 142–150
https://doi.org/10.1016/j. biotechadv.2009.11.001 pmid: 19913083
11 Rnjak-Kovacina J, Wise S G, Li Z, . Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials, 2011, 32(28): 6729–6736
https://doi.org/10.1016/j. biomaterials.2011.05.065 pmid: 21683438
12 Lee K Y, Jeong L, Kang Y O, . Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews, 2009, 61(12): 1020–1032
https://doi.org/10.1016/j. addr.2009.07.006 pmid: 19643155
13 Sell S A, McClure M J, Garg K, . Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Advanced Drug Delivery Reviews, 2009, 61(12): 1007–1019
https://doi.org/10.1016/j. addr.2009.07.012 pmid: 19651166
14 Zhang X, Reagan M R, Kaplan D L. Electrospun silk biomaterial scaffolds for regenerative medicine. Advanced Drug Delivery Reviews, 2009, 61(12): 988–1006
https://doi.org/10.1016/j. addr.2009.07.005 pmid: 19643154
15 Tao W, Li M, Zhao C. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution. International Journal of Biological Macromolecules, 2007, 40(5): 472–478
https://doi.org/10.1016/j. ijbiomac.2006.11.006 pmid: 17173967
16 Liu Y, Li Y, Li X, . The origin and dispersal of the domesticated Chinese oak silkworm, Antheraea pernyi, in China: a reconstruction based on ancient texts. Journal of Insect Science, 2010, 10(1): 180
https://doi.org/10.1673/031.010.14140 pmid: 21062145
17 Kundu S C, Kundu B, Talukdar S, . Nonmulberry silk biopolymers. Biopolymers, 2012, 97(6): 455–467
https://doi.org/10.1002/bip.22024 pmid: 22241173
18 Patra C, Talukdar S, Novoyatleva T, . Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials, 2012, 33(9): 2673–2680
https://doi.org/10.1016/j. biomaterials.2011.12.036 pmid: 22240510
19 Yukuhiro K, Kanda T, Tamura T. Preferential codon usage and two types of repetitive motifs in the fibroin gene of the Chinese oak silkworm, Antheraea pernyi. Insect Molecular Biology, 1997, 6(1): 89–95
https://doi.org/10.1046/j.1365-2583.1997.00161. x pmid: 9013260
20 Tian H, Lin L, Chen J, . RGD targeting hyaluronic acid coating system for PEI–PBLG polycation gene carriers. Journal of Controlled Release, 2011, 155(1): 47–53
https://doi.org/10.1016/j. jconrel.2011.01.025 pmid: 21281679
21 Minoura N, Aiba S, Higuchi M, . Attachment and growth of fibroblast cells on silk fibroin. Biochemical and Biophysical Research Communications, 1995, 208(2): 511–516
https://doi.org/10.1006/bbrc.1995.1368 pmid: 7695601
22 Kim B S, Mooney D J. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 1998, 16(5): 224–230
https://doi.org/10.1016/S0167-7799(98)01191-3 pmid: 9621462
23 Sun B, Li J, Liu W, . Fabrication and characterization of mineralized P(LLA-CL)/SF three-dimensional nanoyarn scaffolds. Iranian Polymer Journal, 2015, 24(1): 29–40
https://doi.org/10.1007/s13726-014-0297-9
24 Huang C, Chen S, Lai C, . Electrospun polymer nanofibres with small diameters. Nanotechnology, 2006, 17(6): 1558–1563
https://doi.org/10.1088/0957-4484/17/6/004 pmid: 26558558
25 Zhu Y, Zhang J, Zheng Y, . Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Advanced Functional Materials, 2006, 16(4): 568–574
https://doi.org/10.1002/adfm.200500624
26 Jun I, Jeong S, Shin H. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Biomaterials, 2009, 30(11): 2038–2047
https://doi.org/10.1016/j. biomaterials.2008.12.063 pmid: 19147222
27 Christopherson G T, Song H, Mao H Q. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 2009, 30(4): 556–564
https://doi.org/10.1016/j. biomaterials.2008.10.004 pmid: 18977025
28 McKee M G, Wilkes G L, Colby R H, . Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules, 2004, 37(5): 1760–1767
https://doi.org/10.1021/ma035689h
29 Zhang K, Wang H, Huang C, . Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. Journal of Biomedical Materials Research Part A, 2010, 93(3): 984–993
pmid: 19722280
30 Sezutsu H, Yukuhiro K. Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. Journal of Molecular Evolution, 2000, 51(4): 329–338
https://doi.org/10.1007/s002390010095 pmid: 11040284
31 Freddi G, Gotoh Y, Mori T, . Chemical structure and physical properties of Antheraea assama silk. Journal of Applied Polymer Science, 1994, 52(6): 775–781
https://doi.org/10.1002/app.1994.070520608
32 Zong X, Kim K, Fang D, . Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002, 43(16): 4403–4412
https://doi.org/10.1016/S0032-3861(02)00275-6
33 Xu Y, Wu J, Wang H, . Fabrication of electrospun poly(L-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Tissue Engineering Part C: Methods, 2013, 19(12): 925–936
https://doi.org/10.1089/ten. tec.2012.0328 pmid: 23557537
34 Lins L, Brasseur R. The hydrophobic effect in protein folding. FASEB Journal, 1995, 9(7): 535–540
pmid: 7737462
35 Zhong Z, Guo Q, Mi Y. Solid-state n. m. r. investigation of crosslinkable blends of novolac and poly(ε-caprolactone). Polymer, 1999, 40(1): 27–33
https://doi.org/10.1016/S0032-3861(98)00242-0
36 Howe C, Sankar S, Tonelli A E. 13C n. m. r. observation of poly(l-lactide) in the narrow channels of its inclusion compound with urea. Polymer, 1993, 34(12): 2674–2676
https://doi.org/10.1016/0032-3861(93)90609-E
37 Nakazawa Y, Asakura T. High-resolution 13C CP/MAS NMR study on structure and structural transition of Antheraea pernyi silk fibroin containing poly(L-alanine) and Gly-rich regions. Macromolecules, 2002, 35(6): 2393–2400
https://doi.org/10.1021/ma011999t
38 Altankov G, Grinnell F, Groth T. Studies on the biocompatibility of materials: fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research, 1996, 30(3): 385–391
https://doi.org/10.1002/(SICI)1097-4636(199603)30:3<385::AID-JBM13>3.0. CO;2-J pmid: 8698702
39 De Bartolo L, Morelli S, Bader A, . The influence of polymeric membrane surface free energy on cell metabolic functions. Journal of Materials Science: Materials in Medicine, 2001, 12(10): 959–963
https://doi.org/10.1023/A:1012857031409 pmid: 15348348
40 Lampin M, Warocquier-Clérout R, Legris C, . Correlation between substratum roughness and wettability, cell adhesion, and cell migration. Journal of Biomedical Materials Research, 1997, 36(1): 99–108
https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0. CO;2-E pmid: 9212394
41 Chen Z G, Wang P W, Wei B, . Electrospun collagen–chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomaterialia, 2010, 6(2): 372–382
https://doi.org/10.1016/j. actbio.2009.07.024 pmid: 19632361
42 Lutolf M P, Hubbell J A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 2005, 23(1): 47–55
https://doi.org/10.1038/nbt1055 pmid: 15637621
[1] Xin PAN, Binbin SUN, Xiumei MO. Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering[J]. Front. Mater. Sci., 2018, 12(4): 438-446.
[2] Wanyu ZHAO, Jian LI, Bingbing FAN, Gang SHAO, Hailong WANG, Bozhen SONG, Shengnan WEI, Rui ZHANG. Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth[J]. Front. Mater. Sci., 2017, 11(4): 353-357.
[3] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[4] Junfeng ZHOU,Liang CHENG,Xiaodan SUN,Xiumei WANG,Shouhong JIN,Junxiang LI,Qiong WU. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation[J]. Front. Mater. Sci., 2016, 10(3): 260-269.
[5] Qilin WEI,Feiyang XU,Xingjian XU,Xue GENG,Lin YE,Aiying ZHANG,Zengguo FENG. The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning[J]. Front. Mater. Sci., 2016, 10(2): 113-121.
[6] Jianchao ZHAN,Yosry MORSI,Hany EI-HAMSHARY,Salem S. AL-DEYAB,Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers[J]. Front. Mater. Sci., 2016, 10(1): 90-100.
[7] Chong WANG,Min WANG. Electrospun multifunctional tissue engineering scaffolds[J]. Front. Mater. Sci., 2014, 8(1): 3-19.
[8] Bhaarathi DHURAI, Nachimuthu SARASWATHY, Ramasamy MAHESWARAN, Ponnusamy SETHUPATHI, Palanisamy VANITHA, Sukumar VIGNESHWARAN, Venugopal RAMESHBABU. Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics[J]. Front Mater Sci, 2013, 7(4): 350-361.
[9] Jian-Guang ZHANG, Xiu-Mei MO. Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers[J]. Front Mater Sci, 2013, 7(2): 129-142.
[10] Gui-Ping MA, Dong-Zhi YANG, Bin-ling CHEN, Jun NIE, Shu-Min DING, Guo-Qiang SONG, . Preparation and characterization of composite fibers from organic-soluble chitosan and poly-vinylpyrrolidone by electrospinning[J]. Front. Mater. Sci., 2010, 4(1): 64-69.
[11] Susan LIAO, Casey K. CHAN, S. RAMAKRISHNA, . Electrospun nanofibers: Work for medicine?[J]. Front. Mater. Sci., 2010, 4(1): 29-33.
[12] Rui CHEN, Qin-fei KE, Yosry MORSI, Shital PATEL, Xiu-mei MO, . A novel approach via combination of electrospinning and FDM for tri-leaflet heart valve scaffold fabrication[J]. Front. Mater. Sci., 2009, 3(4): 359-366.
[13] Jian HAN, Bing CHEN, Lin YE, Ai-ying ZHANG, Jian ZHANG, Zeng-guo FENG. Synthesis and characterization of biodegradable polyurethane based on poly(?-caprolactone) and L-lysine ethyl ester diisocyanate[J]. Front Mater Sci Chin, 2009, 3(1): 25-32.
[14] YANG Dong-zhi, LONG Yu-hua, NIE Jun. Release of lysozyme from electrospun PVA/lysozyme-gelatin scaffolds[J]. Front. Mater. Sci., 2008, 2(3): 261-265.
[15] MA Guiping, YANG Dongzhi, ZHOU Yingshan, JIN Yu, NIE Jun. Preparation and characterization of chitosan/poly(vinyl alcohol)/poly(vinyl pyrrolidone) electrospun fibers[J]. Front. Mater. Sci., 2007, 1(4): 432-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed