Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (1) : 90-100    https://doi.org/10.1007/s11706-016-0329-9
RESEARCH ARTICLE
In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers
Jianchao ZHAN1,2,Yosry MORSI3,Hany EI-HAMSHARY4,5,Salem S. AL-DEYAB4,Xiumei MO1,*()
1. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
2. College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
3. Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Vic 3122, Australia
4. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
5. Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
 Download: PDF(3586 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The gelatin–glutaraldehyde (gelatin–GA) nanofibers were electrospun in order to overcome the defects of ex-situ crosslinking process such as complex process, destruction of fiber morphology and decrease of porosity. The morphological structure, porosity, thermal property, moisture absorption and moisture retention performance, hydrolytic resistance, mechanical property and biocompatibility of nanofiber scaffolds were tested and characterized. The gelatin–GA nanofiber has nice uniform diameter and more than 80% porosity. The hydrolytic resistance and mechanical property of the gelatin–GA nanofiber scaffolds are greatly improved compared with that of gelatin nanofibers. The contact angle, moisture absorption, hydrolysis resistance, thermal resistance and mechanical property of gelatin–GA nanofiber scaffolds could be adjustable by varying the gelatin solution concentration and GA content. The gelatin–GA nanofibers had excellent properties, which are expected to be an ideal scaffold for biomedical and tissue engineering applications.

Keywords nanofiber      electrospinning      gelatin      tissue engineering     
Corresponding Author(s): Xiumei MO   
Online First Date: 08 January 2016    Issue Date: 15 January 2016
 Cite this article:   
Jianchao ZHAN,Yosry MORSI,Hany EI-HAMSHARY, et al. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers[J]. Front. Mater. Sci., 2016, 10(1): 90-100.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0329-9
https://academic.hep.com.cn/foms/EN/Y2016/V10/I1/90
Fig.1  Preparation process of gelatin–GA nanofiber scaffolds.
Fig.2  SEM images of gelatin–GA nanofiber scaffolds and corresponding diameter distribution diagrams: (a) G64; (b) G63; (c) G74; (d) G73; (e) G84; (f) G83.
Sample w(GA)/w(gelatin) a) c(gel)/(g?mL−1) b) δfs/mm c) df/nm d) ρave/(g?cm−3) e) φ/% f) σbs/MPa g) εbe/% h) E/MPa i) ηwu,max/% j)
G64 1/400 6 0.035 301±114 0.182 86.52 1.375 3.56 0.537 265±5.5
G63 1/300 6 0.037 345±72 0.21 84.42 2.187 4.53 0.651 251±3
G74 1/400 7 0.037 885±295 0.211 84.38 4.24 5.02 1.648 413±6
G73 1/300 7 0.039 992±247 0.222 83.55 7.288 4.32 2.81 385±16
G84 1/400 8 0.032 1034±601 0.223 83.5 6.69 2.93 2.77 443±26
G83 1/300 8 0.035 1046±566 0.231 82.88 3.87 2.23 1.92 435±5.5
Tab.1  The physical properties of gelatin–GA nanofiber scaffolds
Fig.3  FTIR spectra of gelatin–GA nanofibers with the mass ratio of w(GA)/w(gelatin) at (a) 1/400 and (b) 1/300.
Fig.4  XRD patterns of gelatin–GA nanofiber scaffolds.
Fig.5  DSC curves of gelatin–GA nanofiber scaffold. All the samples possess a similar water content of 12 wt.%.
Fig.6  Water-holding capacity–soak time curves of gelatin–GA nanofiber scaffolds.
Fig.7  Water evaporation rate–time curves of gelatin–GA nanofiber scaffolds.
Fig.8  Contact angles of the gelatin–GA electrospun nanofiber scaffolds.
Fig.9  Degradation curves of the gelatin–GA nanofiber scaffolds.
Fig.10  Stress–strain curves of the gelatin–GA nanofiber scaffolds.
Fig.11  Proliferation of L929 on TCP and gelatin–GA nanofiber scaffolds after 1, 3, 5 and 7 d.
BRbiological reagent
DMEMDulbecco modified Eagle medium
DMSOdimethyl sulfoxide
DSCdifferential scanning calorimetry
ECMextracellular matrix
FCSfetal calf serum
FTIRFourier transform infrared spectroscopy
GAglutaraldehyde
HFIPhexafluoroisopropanol
MTT3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
PBSphosphate buffer saline
PVApoly(vinyl alcohol)
SEMscanning electron microscopy
TCPtissue-culture plate
XRDX-ray diffraction
Tab.1  
1 Matthews  J A, Wnek  G E, Simpson  D G, . Electrospinning of collagen nanofibers. Biomacromolecules, 2002, 3(2): 232–238
2 Ma  Z, Kotaki  M, Inai  R, . Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Engineering, 2005, 11(1–2): 101–109
3 Sisson  K, Zhang  C, Farach-Carson  M C, . Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. Journal of Biomedical Materials Research Part A, 2010, 94A(4): 1312–1320
4 Zhang  S, Huang  Y, Yang  X, . Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. Journal of Biomedical Materials Research Part A, 2009, 90A(3): 671–679
5 Choi  M O, Kim  Y J. Fabrication of gelatin/calcium phosphate composite nanofibrous membranes by biomimetic mineralization. International Journal of Biological Macromolecules, 2012, 50(5): 1188–1194
6 Baiguera  S, Del Gaudio  C, Lucatelli  E, . Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials, 2014, 35(4): 1205–1214
7 Dhandayuthapani  B, Krishnan  U M, Sethuraman  S.Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. Journal of Biomedical Materials Research Part B, 2010, 94B(1): 264–272
8 Meng  Z X, Xu  X X, Zheng  W, . Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids and Surfaces B: Biointerfaces, 2011, 84(1): 97–102
9 Huang  C H, Chi  C Y, Chen  Y S, . Evaluation of proanthocyanidin-crosslinked electrospun gelatin nanofibers for drug delivering system. Materials Science and Engineering C, 2012, 32(8): 2476–2483
10 Chong  E J, Phan  T T, Lim  I J, . Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia, 2007, 3(3): 321–330
11 Sisson  K, Zhang  C, Farach-Carson  M C, . Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules, 2009, 10(7): 1675–1680
12 Gomes  S R, Rodrigues  G, Martins  G G, . In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Materials Science and Engineering C, 2013, 33(3): 1219–1227
13 Panzavolta  S, Gioffrè  M, Focarete  M L, . Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomaterialia, 2011, 7(4): 1702–1709
14 Juthamas  R, Ratthapol  R, Hathairat  J, . Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. International Journal of Biological Macromolecules, 2010, 47(4): 431–438
15 Chen  Z, Wang  L, Jiang  H. The effect of procyanidine crosslinking on the properties of the electrospun gelatin membranes. Biofabrication, 2012, 4(3): 035007
16 Reddy  N, Reddy  R, Jiang  Q. Crosslinking biopolymers for biomedical applications. Trends in Biotechnology, 2015, 33(6): 362–369
17 Jalaja  K, Kumar  P R A, Dey  T, . Modified dextran cross-linked electrospun gelatin nanofibres for biomedical applications. Carbohydrate Polymers, 2014, 114: 467–475
18 Jalaja  K, James  N R. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose. International Journal of Biological Macromolecules, 2015, 73: 270–278
19 Tang  C, Saquing  C D, Harding  J R, . In situ cross-linking of electrospun poly(vinyl alcohol) nanofibers. Macromolecules, 2010, 43(2): 630–637
20 Cao  M, Chen  Z, Tu  K, . Studies on one-step electrospinning for preparing crosslinked gelatin fibers. Acta Polymerica Sinica, 2009, 9(11): 1157–1161 (in Chinese)
21 Erencia  M, Cano  F, Tornero  J A, . Electrospinning of gelatin fibers using solutions with low acetic acid concentration: Effect of solvent composition on both diameter of electrospun fibers and cytotoxicity. Journal of Applied Polymer Science, 2015, 132(25): 1–11
22 Zhu  X, Cui  W, Li  X, . Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules, 2008, 9(7): 1795–1801
23 Mei  L, Hu  D, Ma  J, . Preparation, characterization and evaluation of chitosan macroporous for potential application in skin tissue engineering. International Journal of Biological Macromolecules, 2012, 51(5): 992–997
24 Hoque  M S, Benjakul  S, Prodpran  T. Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Journal of Food Engineering, 2010, 96(1): 66–73
25 Chen  X, Li  W, Shao  Z, . Separation of alcohol-water mixture by pervaporation through a novel natural polymer blend membrane-chitosan/silk fibroin blend membrane. Journal of Applied Polymer Science, 1999, 73(6): 975–980
26 Okuyama  K. Revisiting the molecular structure of collagen. Connective Tissue Research, 2008, 49(5): 299–310
27 Chen  Z, Wang  L, Jiang  H. The effect of procyanidine crosslinking on the properties of the electrospun gelatin membranes. Biofabrication, 2012, 4(3): 035007
28 Amadori  S, Torricelli  P, Rubini  K, . Effect of sterilization and crosslinking on gelatin films. Journal of Materials Science: Materials in Medicine, 2015, 26(2): 69–70
29 Bigi  A, Panzavolta  S, Rubini  K. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials, 2004, 25(25): 5675–5680
30 Ki  C S, Baek  D H, Gang  K D, . Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer, 2005, 46(14): 5094–5102
31 Song  J H, Kim  H E, Kim  H W. Production of electrospun gelatin nanofiber by water-based co-solvent approach. Journal of Materials Science: Materials in Medicine, 2008, 19(1): 95–102
32 Ren  L, Wang  J, Yang  F Y, . Fabrication of gelatin–siloxane fibrous mats via sol–gel and electrospinning procedure and its application for bone tissue engineering. Materials Science and Engineering C, 2010, 30(3): 437–444
33 Usha  R, Ramasami  T. Effect of crosslinking agents (basic chromium sulfate and formaldehyde) on the thermal and thermomechanical stability of rat tail tendon collagen fibre. Thermochimica Acta, 2000, 356(1–2): 59–66
34 de Carvalho  R A, Grosso  C R F. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 2004, 18(5): 717–726
35 Zhang  Y Z, Venugopal  J, Huang  Z M, . Crosslinking of the electrospun gelatin nanofibers. Polymer, 2006, 47(8): 2911–2917
36 Bigi  A, Cojazzi  G, Panzavolta  S, . Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 2001, 22(8): 763–768
37 Winter  G D. Some factors affecting skin and wound healing. Journal of Tissue Viability, 2006, 16(2): 20–23
38 Winter  G D, Scales  J T. Effect of air drying and dressings on the surface of a wound. Nature, 1963, 197(4862): 91–92
39 Metzger  S. Clinical and financial advantages of moist wound management. Home Healthcare Nurse, 2004, 22(9): 586–590
[1] Xin PAN, Binbin SUN, Xiumei MO. Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering[J]. Front. Mater. Sci., 2018, 12(4): 438-446.
[2] Wanyu ZHAO, Jian LI, Bingbing FAN, Gang SHAO, Hailong WANG, Bozhen SONG, Shengnan WEI, Rui ZHANG. Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth[J]. Front. Mater. Sci., 2017, 11(4): 353-357.
[3] Inamullah MAITLO, Safdar ALI, Muhammad Yasir AKRAM, Farooq Khurum SHEHZAD, Jun NIE. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering[J]. Front. Mater. Sci., 2017, 11(4): 307-317.
[4] Yinxian YU, Binbin SUN, Chengqing YI, Xiumei MO. Stem cell homing-based tissue engineering using bioactive materials[J]. Front. Mater. Sci., 2017, 11(2): 93-105.
[5] Juan WANG,Binbin SUN,Muhammad Aqeel BHUTTO,Tonghe ZHU,Kui YU,Jiayu BAO,Yosry MORSI,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Xiumei MO. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering[J]. Front. Mater. Sci., 2017, 11(1): 22-32.
[6] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[7] Junfeng ZHOU,Liang CHENG,Xiaodan SUN,Xiumei WANG,Shouhong JIN,Junxiang LI,Qiong WU. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation[J]. Front. Mater. Sci., 2016, 10(3): 260-269.
[8] Qilin WEI,Feiyang XU,Xingjian XU,Xue GENG,Lin YE,Aiying ZHANG,Zengguo FENG. The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning[J]. Front. Mater. Sci., 2016, 10(2): 113-121.
[9] Shuang GAO,Zhiguo YUAN,Tingfei XI,Xiaojuan WEI,Quanyi GUO. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications[J]. Front. Mater. Sci., 2016, 10(2): 101-112.
[10] Yi ZHANG,Cencen ZHANG,Lijie LIU,David L. KAPLAN,Hesun ZHU,Qiang LU. Hierarchical charge distribution controls self-assembly process of silk in vitro[J]. Front. Mater. Sci., 2015, 9(4): 382-391.
[11] Hong-Man WANG,Fu-Yao LI. Bibliometric analysis of the literature from the mainland of China on animal-derived regenerative implantable medical devices[J]. Front. Mater. Sci., 2014, 8(4): 403-408.
[12] Chong WANG,Min WANG. Electrospun multifunctional tissue engineering scaffolds[J]. Front. Mater. Sci., 2014, 8(1): 3-19.
[13] Zhong-Bing HUANG,Guang-Fu YIN,Xiao-Ming LIAO,Jian-Wen GU. Conducting polypyrrole in tissue engineering applications[J]. Front. Mater. Sci., 2014, 8(1): 39-45.
[14] Bhaarathi DHURAI, Nachimuthu SARASWATHY, Ramasamy MAHESWARAN, Ponnusamy SETHUPATHI, Palanisamy VANITHA, Sukumar VIGNESHWARAN, Venugopal RAMESHBABU. Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics[J]. Front Mater Sci, 2013, 7(4): 350-361.
[15] Zi-Heng LI, Shi-Chen JI, Ya-Zhen WANG, Xing-Can SHEN, Hong LIANG. Silk fibroin-based scaffolds for tissue engineering[J]. Front Mater Sci, 2013, 7(3): 237-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed