Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2013, Vol. 7 Issue (3) : 237-247    https://doi.org/10.1007/s11706-013-0214-8
REVIEW ARTICLE
Silk fibroin-based scaffolds for tissue engineering
Zi-Heng LI1, Shi-Chen JI1, Ya-Zhen WANG1,2, Xing-Can SHEN1(), Hong LIANG1
1. Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; 2. School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
 Download: PDF(228 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Silk fibroin (SF) from the Bombyx mori silkworm exhibits attractive potential applications as biomechanical materials, due to its unique mechanical and biological properties. This review outlines the structure and properties of SF, including of its biocompatibility and biodegradability. It highlights recent researches on the fabrication of various SF-based composites scaffolds that are promising for tissue engineering applications, and discusses synthetic methods of various SF-based composites scaffolds and valuable approaches for controlling cell behaviors to promote the tissue repair. The function of extracellular matrices and their interaction with cells are also reviewed here.

Keywords silk fibroin (SF)      scaffold      tissue engineering      biomaterial      tissue repair     
Corresponding Author(s): SHEN Xing-Can,Email:xcshen@mailbox.gxnu.edu.cn   
Issue Date: 05 September 2013
 Cite this article:   
Zi-Heng LI,Shi-Chen JI,Ya-Zhen WANG, et al. Silk fibroin-based scaffolds for tissue engineering[J]. Front Mater Sci, 2013, 7(3): 237-247.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-013-0214-8
https://academic.hep.com.cn/foms/EN/Y2013/V7/I3/237
1 Sirichaisit J, Young R J, Vollrath F. Molecular deformation in spider dragline silk subjected to stress. Polymer , 2000, 41(3): 1223–1227
2 Demura M, Asakura T, Kuroo T. Immobilization of biocatalysts with Bombyx mori silk fibroin by several kinds of physical treatment and its application to glucose sensors. Biosensors , 1989, 4(6): 361-372
3 Lawrence B D, Cronin-Golomb M, Georgakoudi I, . Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules , 2008, 9(4): 1214-1220
4 Leal-Ega?a A, Scheibel T. Silk-based materials for biomedical applications. Biotechnology and Applied Biochemistry , 2010, 55(3): 155-167
5 Murphy A R, Kaplan D L. Biomedical applications of chemically-modified silk fibroin. Journal of Materials Chemistry , 2009, 19(36): 6443-6450
6 Porter D, Vollrath F. Silk as a biomimetic ideal for structural polymers. Advanced Materials , 2009, 21(4): 487-492
7 Wang Y, Kim H J, Vunjak-Novakovic G, . Stem cell-based tissue engineering with silk biomaterials. Biomaterials , 2006, 27(36): 6064-6082
8 Wang Y, Blasioli D J, Kim H J, . Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials , 2006, 27(25): 4434-4442
9 Hofmann S, Wong Po Foo C T, Rossetti F, . Silk fibroin as an organic polymer for controlled drug delivery. Journal of Controlled Release , 2006, 111(1-2): 219-227
10 Wenk E, Wandrey A J, Merkle H P, . Silk fibroin spheres as a platform for controlled drug delivery. Journal of Controlled Release , 2008, 132(1): 26-34
11 Chen J, Altman G H, Karageorgiou V, . Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. Journal of Biomedical Materials Research Part A , 2003, 67(2): 559-570
12 Liivak O, Blye A, Shah N, . A microfabricated wet-spinning apparatus to spin fibers of silk proteins. Structure-property correlations. Macromolecules , 1998, 31(9): 2947-2951
13 Arai T, Freddi G, Innocenti R, . Biodegradation of Bombyx mori silk fibroin fibers and films. Journal of Applied Polymer Science , 2004, 91(4): 2383-2390
14 Jin H J, Park J, Karageorgiou V, . Water-stable silk films with reduced β-sheet content. Advanced Functional Materials , 2005, 15(8): 1241-1247
15 Langer R, Vacanti J P. Tissue engineering. Science , 1993, 260(5110): 920-926
16 Nerem R M, Sambanis A. Tissue engineering: from biology to biological substitutes. Tissue Engineering , 1995, 1(1): 3-13
17 Mondal M, Trivedy K, Nirmal K S. The silk proteins, sericin and fibroin in silkworm, Bombyx mori linn.- a review. Caspian Journal of Environmental Sciences , 2007, 5(2): 63-76
18 Ogawa S, Tomita M, Shimizu K, . Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. Journal of Biotechnology , 2007, 128(3): 531-544
19 Chen X, Shao Z, Knight D P, . Conformation transition kinetics of Bombyx mori silk protein. Proteins: Structure, Function, and Bioinformatics , 2007, 68(1): 223-231
20 Harris M, Johnson T B. Study of silk fibroin in the dispersed state. Industrial & Engineering Chemistry , 1930, 22(9): 965-967
21 Harris M, Johnson T B. Study of the fibroin from silk in the isoelectric region. Industrial & Engineering Chemistry , 1930, 22(5): 539-542
22 Kay L M, Schroeder W A. The chromatographic separation and identification of some peptides in partial hydrolysates of silk fibroin. Journal of the American Chemical Society , 1954, 76(13): 3564-3568
23 Kay L M, Schroeder W A, Munger N, . The chromatographic separation and identification of some peptides in partial hydrolysates of tussah silk fibroin. Journal of the American Chemical Society , 1956, 78(11): 2430-2434
24 Schroeder W A, Kay L M, Lewis B, . The amino acid composition of Bombyx mori silk fibroin and of tussah silk fibroin. Journal of the American Chemical Society , 1955, 77(14): 3908-3913
25 Rousseau M E, Beaulieu L, Lefèvre T, . Characterization by Raman microspectroscopy of the strain-induced conformational transition in fibroin fibers from the silkworm Samia cynthia ricini. Biomacromolecules , 2006, 7(9): 2512-2521
26 Hu B W, Zhou P, Noda I, . Generalized two-dimensional correlation analysis of NMR and Raman spectra for structural evolution characterizations of silk fibroin. The Journal of Physical Chemistry B , 2006, 110(36): 18046-18051
27 Hernandez Cruz D, Rousseau M-E, West M M, . Quantitative mapping of the orientation of fibroin β-sheets in B.mori cocoon fibers by scanning transmission X-ray microscopy. Biomacromolecules , 2006, 7(3): 836-843
28 Tanaka C, Takahashi R, Asano A, . Structural analyses of Anaphe silk fibroin and several model peptides using 13C NMR and X-ray diffraction methods. Macromolecules , 2008, 41(3): 796-803
29 Ha S W, Gracz H S, Tonelli A E, . Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules , 2005, 6(5): 2563-2569
30 Asakura T, Watanabe Y, Itoh T. NMR of silk fibroin. 3. Assignment of carbonyl carbon resonances and their dependence on sequence and conformation in Bombyx mori silk fibroin using selective isotopic labeling. Macromolecules , 1984, 17(11): 2421-2426
31 Ohgo K, Bagusat F, Asakura T, . Investigation of structural transition of regenerated silk fibroin aqueous solution by Rheo-NMR spectroscopy. Journal of the American Chemical Society , 2008, 130(12): 4182-4186
32 Demura M, Minami M, Asakura T, . Structure of Bombyx mori silk fibroin based on solid-state NMR orientational constraints and fiber diffraction unit cell parameters. Journal of the American Chemical Society , 1998, 120(6): 1300-1308
33 Zhou C Z, Confalonieri F, Jacquet M, . Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins: Structure, Function, and Bioinformatics , 2001, 44(2): 119-122
34 Heslot H. Artificial fibrous proteins: a review. Biochimie , 1998, 80(1): 19-31
35 Kratky O, Schauenstein E, Sekora A. An unstable lattice in silk fibroin. Nature , 1950, 165(4191): 319-320
36 Ambrose E J, Bamford C H, Elliott A, . Water soluble silk: an α-protein. Nature , 1951, 167(4242): 264-265
37 Carlisle C H, Bernal J D. Crystallography. Annual Reports on the Progress of Chemistry , 1955, 52: 380-403
38 Kratky O.Zur molekularen morphologie des seidenfibroins. Monatshefte Für Chemie- Chemical Monthly , 1956, 87(2): 269 -280
39 Warwicker J O. Comparative studies of fibroins. II. The crystal structures of various fibroins. Journal of Molecular Biology , 1960, 2(6): 350-362
40 Valluzzi R, Gido S P, Zhang W, . Trigonal crystal structure of Bombyx mori silk incorporating a threefold helical chain conformation found at the air-water interface. Macromolecules , 1996, 29(27): 8606-8614
41 Sohn S, Strey H H, Gido S P. Phase behavior and hydration of silk fibroin. Biomacromolecules , 2004, 5(3): 751-757
42 Mercer E H. Studies on the soluble proteins of the silk gland of the silkworm, Bombyx mori. Textile Research Journal , 1954, 24(2): 135-145
43 Lu Q, Feng Q, Hu K, . Preparation of three-dimensional fibroin/collagen scaffolds in various pH conditions. Journal of Materials Science: Materials in Medicine , 2008, 19(2): 629-634
44 Zhou P, Xie X, Knight D P, . Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR. Biochemistry , 2004, 43(35): 11302-11311
45 Cunniff P M, Fossey S A, Auerbach M A, . Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polymers for Advanced Technologies , 1994, 5(8): 401-410
46 Pérez-Rigueiro J, Viney C, Llorca J, . Mechanical properties of single-brin silkworm silk. Journal of Applied Polymer Science , 2000, 75(10): 1270-1277
47 Jiang C, Wang X, Gunawidjaja R, . Mechanical properties of robust ultrathin silk fibroin films. Advanced Functional Materials , 2007, 17(13): 2229-2237
48 Pins G D, Christiansen D L, Patel R, . Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophysical Journal , 1997, 73(4): 2164-2172
49 Simmons A, Ray E, Jelinski L W. Solid-state 13C NMR of Nephila lavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules , 1994, 27(18): 5235-5237
50 Parkhe A D, Seeley S K, Gardner K, . Structural studies of spider silk proteins in the fiber. Journal of Molecular Recognition , 1997, 10(1): 1-6
51 van Beek J D, Hess S, Vollrath F, . The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proceedings of the National Academy of Sciences of the United States of America , 2002, 99(16): 10266-10271
52 Giesa T, Arslan M, Pugno N M, . Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Letters , 2011, 11(11): 5038-5046
53 Vollrath F. Spiders’webs. Current Biology , 2005, 15(10): 364-365
54 Akai H, Nagashima T, Aoyagi S. Ultrastructure of posterior silk gland cells and liquid silk in Indian tasar silkworm, Antheraea ylitta drury (Lepidoptera: Saturniidae). International Journal of Insect Morphology and Embryology , 1993, 22(5): 497-506
55 Hu K, Cui F, Lv Q, . Preparation of fibroin/recombinant human-like collagen scaffold to promote fibroblasts compatibility. Journal of Biomedical Materials Research Part A , 2008, 84A(2): 483-490
56 Lv Q, Hu K, Feng Q L, . Growth of fibroblast and vascular smooth muscle cells in fibroin/collagen scaffold. Materials Science and Engineering C , 2009, 29(7): 2239-2245
57 Fan H, Liu H, Toh S L, . Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials , 2009, 30(28): 4967-4977
58 Altman G H, Diaz F, Jakuba C, . Silk-based biomaterials. Biomaterials , 2003, 24(3): 401-416
59 Peleg H, Rao U N M, Emrich L J. An experimental comparison of suture materials for tracheal and bronchial anastomoses. The Thoracic and Cardiovascular Surgeon , 1986, 34(6): 384-388
60 Soong H K, Kenyon K R. Adverse reactions to virgin silk sutures in cataract surgery. Ophthalmology , 1984, 91(5): 479-483
61 Wen C M, Ye S T, Zhou L X, . Silk-induced asthma in children: a report of 64 cases. Annals of Allergy , 1990, 65(5): 375-378
62 Li X G, Wu L Y, Huang M R, . Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers , 2008, 89(6): 497-505
63 Yang Y, Shao Z, Chen X, . Optical spectroscopy to investigate the structure of regenerated Bombyx ori silk fibroin in solution. Biomacromolecules , 2004, 5(3): 773-779
64 Zhao C, Wu X, Zhang Q, . Enzymatic degradation of Antheraea ernyi silk fibroin 3D scaffolds and fibers. International Journal of Biological Macromolecules , 2011, 48(2): 249-255
65 Horan R L, Antle K, Collette A L, . In vitro degradation of silk fibroin. Biomaterials , 2005, 26(17): 3385-3393
66 Gunatillake P A, Adhikari R. Biodegradable synthetic polymers for tissue engineering. European Cells and Materials , 2003, 5: 1-16
67 Zhang J-G, Mo X-M. Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers. Frontiers of Materials Science , 2013, 7(2): 129-142
68 Ren Y J, Zhou Z Y, Liu B F, . Preparation and characterization of fibroin/hyaluronic acid composite scaffold. International Journal of Biological Macromolecules , 2009, 44(4): 372-378
69 Lun B, Jianmei X, Qilong S, . On the growth model of the capillaries in the porous silk fibroin films. Journal of Materials Science: Materials in Medicine , 2007, 18(10): 1917-1921
70 Lu Q, Zhang S, Hu K, . Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds. Biomaterials , 2007, 28(14): 2306-2313
71 Lv Q, Hu K, Feng Q, . Preparation and characterization of PLA/fibroin composite and culture of HepG2 (human hepatocellular liver carcinoma cell line) cells. Composites Science and Technology , 2007, 67(14): 3023-3030
72 Kong X, Sun X, Cui F, . Effect of solute concentration on fibroin regulated biomineralization of calcium phosphate. Materials Science and Engineering C , 2006, 26(4): 639-643
73 Hu K, Lv Q, Cui F Z, . Biocompatible fibroin blended films with recombinant human-like collagen for hepatic tissue engineering. Journal of Bioactive and Compatible Polymers , 2006, 21(1): 23-37
74 Lv Q, Hu K, Feng Q L, . Fibroin/collagen hybrid hydrogels with crosslinking method: preparation, properties, and cytocompatibility. Journal of Biomedical Materials Research Part A , 2008, 84A(1): 198-207
75 O’Connor S M, Andreadis J D, Shaffer K M, . Immobilization of neural cells in three-dimensional matrices for biosensor applications. Biosensors & Bioelectronics , 2000, 14(10-11): 871-881
76 Vasconcelos A, Freddi G, Cavaco-Paulo A. Biodegradable materials based on silk fibroin and keratin. Biomacromolecules , 2008, 9(4): 1299-1305
77 Zoccola M, Aluigi A, Vineis C, . Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends. Biomacromolecules , 2008, 9(10): 2819-2825
78 Yang Y, Ding F, Wu J, . Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials , 2007, 28(36): 5526-5535
79 Hofmann S, Hagenmüller H, Koch A M, . Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials , 2007, 28(6): 1152-1162
80 Meinel L, Fajardo R, Hofmann S, . Silk implants for the healing of critical size bone defects. Bone , 2005, 37(5): 688-698
81 Meinel L, Betz O, Fajardo R, . Silk based biomaterials to heal critical sized femur defects. Bone , 2006, 39(4): 922-931
82 Wang Y, Bella E, Lee C S D, . The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials , 2010, 31(17): 4672-4681
83 Wang Y, Kim U J, Blasioli D J, . In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials , 2005, 26(34): 7082-7094
84 Liu H, Fan H, Toh S L, . A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials , 2008, 29(10): 1443-1453
85 Nakazawa Y, Sato M, Takahashi R, . Development of small-diameter vascular grafts based on silk fibroin fibers from Bombyxmori for vascular regeneration. Journal of Biomaterials Science, Polymer Edition , 2011, 22(1-3): 195-206
86 Meinel L, Karageorgiou V, Hofmann S, . Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Journal of Biomedical Materials Research Part A , 2004, 71(1): 25-34
87 Huang W, Begum R, Barber T, . Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials , 2012, 33(1): 59-71
88 Wei Y, Gong K, Zheng Z, . Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. Journal of Materials Science: Materials in Medicine , 2011, 22(8): 1947-1964
89 Silva S S, Motta A, Rodrigues M T, . Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules , 2008, 9(10): 2764-2774
90 Roh D H, Kang S Y, Kim J Y, . Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. Journal of Materials Science: Materials in Medicine , 2006, 17(6): 547-552
91 Yang M C, Chi N H, Chou N K, . The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin - Hyaluronic acid cardiac patches. Biomaterials , 2010, 31(5): 854-862
92 Rusa C C, Bridges C, Ha S-W, . Conformational changes induced in Bombyx mori silk fibroin by cyclodextrin inclusion complexation. Macromolecules , 2005, 38(13): 5640-5646
93 Zhang X, Baughman C B, Kaplan D L. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials , 2008, 29(14): 2217-2227
94 Zhang X, Wang X, Keshav V, . Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts. Biomaterials , 2009, 30(19): 3213-3223
95 Jin H J, Park J, Valluzzi R, . Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide). Biomacromolecules , 2004, 5(3): 711-717
96 Li C, Vepari C, Jin H J, . Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials , 2006, 27(16): 3115-3124
97 Wang C Y, Zhang K H, Fan C Y, . Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomaterialia , 2011, 7(2): 634-643
98 Sahoo S, Toh S L, Goh J C H. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials , 2010, 31(11): 2990-2998
99 Bray L J, George K A, Ainscough S L, . Human corneal epithelial equivalents constructed on Bombyx mori silk fibroin membranes. Biomaterials , 2011, 32(22): 5086-5091
100 Gil E S, Hudson S M. Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly(N-isopropylacrylamide) hydrogels. Biomacromolecules , 2007, 8(1): 258-264
101 Kweon H, Ha H C, Um I C, . Physical properties of silk fibroin/chitosan blend films. Journal of Applied Polymer Science , 2001, 80(7): 928-934
102 Altman A M, Yan Y, Matthias N, . Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells , 2009, 27(1): 250-258
103 Foss C, Merzari E, Migliaresi C, . Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules , 2013, 14(1): 38-47
104 Whitesides G M, Wong A P. The intersection of biology and materials science. MRS Bulletin , 2006, 31(1): 19-27
105 Hu K, Lv Q, Cui F Z, . A novel poly (L-lactide) (PLLA)/fibroin hybrid scaffold to promote hepatocyte viability and decrease macrophage responses. Journal of Bioactive and Compatible Polymers , 2007, 22(4): 395-410
[1] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[2] Inamullah MAITLO, Safdar ALI, Muhammad Yasir AKRAM, Farooq Khurum SHEHZAD, Jun NIE. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering[J]. Front. Mater. Sci., 2017, 11(4): 307-317.
[3] Lan-Yue CUI, Xiao-Ting LI, Rong-Chang ZENG, Shuo-Qi LI, En-Hou HAN, Liang SONG. In vitro corrosion of Mg--Ca alloy --- The influence of glucose content[J]. Front. Mater. Sci., 2017, 11(3): 284-295.
[4] Yinxian YU, Binbin SUN, Chengqing YI, Xiumei MO. Stem cell homing-based tissue engineering using bioactive materials[J]. Front. Mater. Sci., 2017, 11(2): 93-105.
[5] Juan WANG,Binbin SUN,Muhammad Aqeel BHUTTO,Tonghe ZHU,Kui YU,Jiayu BAO,Yosry MORSI,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Xiumei MO. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering[J]. Front. Mater. Sci., 2017, 11(1): 22-32.
[6] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[7] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[8] Tong WANG,Qing LI,Gui-feng ZHANG,Gang ZHOU,Xin YU,Jing ZHANG,Xiu-mei WANG,Zhi-hui TANG. Comparative evaluation of a biomimic collagen/hydroxyapatite/β-tricaleium phosphate scaffold in alveolar ridge preservation with Bio-Oss Collagen[J]. Front. Mater. Sci., 2016, 10(2): 122-133.
[9] Shuang GAO,Zhiguo YUAN,Tingfei XI,Xiaojuan WEI,Quanyi GUO. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications[J]. Front. Mater. Sci., 2016, 10(2): 101-112.
[10] Jianchao ZHAN,Yosry MORSI,Hany EI-HAMSHARY,Salem S. AL-DEYAB,Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers[J]. Front. Mater. Sci., 2016, 10(1): 90-100.
[11] Jin-Ning WANG,Bin PI,Peng WANG,Xue-Feng LI,Hui-Lin YANG,Xue-Song ZHU. Sustained release of Semaphorin 3A from α-tricalcium phosphate based cement composite contributes to osteoblastic differentiation of MC3T3-E1 cells[J]. Front. Mater. Sci., 2015, 9(3): 282-292.
[12] Peng WANG,Bin PI,Jin-Ning WANG,Xue-Song ZHU,Hui-Lin YANG. Preparation and properties of calcium sulfate bone cement incorporated with silk fibroin and Sema3A-loaded chitosan microspheres[J]. Front. Mater. Sci., 2015, 9(1): 51-65.
[13] Lei ZHOU,Guo-Xin TAN,Cheng-Yun NING. Modification of biomaterials surface by mimetic cell membrane to improve biocompatibility[J]. Front. Mater. Sci., 2014, 8(4): 325-331.
[14] Yuan LIAN,Jian-Chao ZHAN,Kui-Hua ZHANG,Xiu-Mei MO. Fabrication and characterization of curcumin-loaded silk fibroin/P(LLA-CL) nanofibrous scaffold[J]. Front. Mater. Sci., 2014, 8(4): 354-362.
[15] Rong-Chang ZENG,Wei-Chen QI,Ying-Wei SONG,Qin-Kun HE,Hong-Zhi CUI,En-Hou HAN. In vitro degradation of MAO/PLA coating on Mg--1.21Li--1.12Ca--1.0Y alloy[J]. Front. Mater. Sci., 2014, 8(4): 343-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed