Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (4) : 307-317    https://doi.org/10.1007/s11706-017-0394-8
RESEARCH ARTICLE
Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering
Inamullah MAITLO, Safdar ALI, Muhammad Yasir AKRAM, Farooq Khurum SHEHZAD, Jun NIE()
State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
 Download: PDF(638 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Porous polymer scaffolds designed by the cryogel method are attractive materials for a range of tissue engineering applications. However, the use of toxic cross-linker for retaining the pore structure limits their clinical applications. In this research, acrylates (HEA/PEGDA, HEMA/PEGDA and PEGDA) were used in the low-temperature soli d-state photopolymerization to produce porous scaffolds with good structural retention. The morphology, pore diameter, mineral deposition and water absorption of the scaffold were characterized by SEM and water absorption test respectively. Elemental analysis and cytotoxicity of the biomineralized scaffold were revealed by using XRD and MTT assay test. The PEGDA-derived scaffold showed good water absorption ability and a higher degree of porosity with larger pore size compared to others. XRD patterns and IR results confirmed the formation of hydroxyapatite crystals from an alternative socking process. The overall cell proliferation was excellent, where PEGDA-derived scaffold had the highest and the most uniform cell growth, while HEMA/PEGDA scaffold showed the least. These results suggest that the cell proliferation and adhesion are directly proportional to the pore size, the shape and the porosity of scaffolds.

Keywords binary phase solid-state photopolymerization      phase separation      tissue engineering      biomineralization      MTT     
Corresponding Author(s): Jun NIE   
Online First Date: 29 September 2017    Issue Date: 29 November 2017
 Cite this article:   
Inamullah MAITLO,Safdar ALI,Muhammad Yasir AKRAM, et al. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering[J]. Front. Mater. Sci., 2017, 11(4): 307-317.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0394-8
https://academic.hep.com.cn/foms/EN/Y2017/V11/I4/307
Fig.1  Scheme 1 Monomer structures used for the preparation of tissue scaffolds.
Fig.2  Scheme 2 Schematic illustration for the fabrication of porous polymer scaffold by the low-temperature solid-state photopolymerization.
Fig.3  SEM images of (a) HEA/PEGDA, (b) HEMA/PEGDA and (c) PEGDA derived polymer scaffolds. (d) Water absorption ratio and porosity percentage of all samples.
Fig.4  The dependency of (a) conversion and (b)polymerization rate at −70°C investigated by using photo-DSC.
Fig.5  SEM images of Ca–P deposition on and inside the surface of (a-1)(a-6) HEA/PEGDA, (b-1)(b-6) HEMA/PEGDA and (c-1)(c-6) PEGDA polymerized scaffolds after the 1st and the 6th mineralization cycles, respectively.
Fig.6  XRD patterns of (a) HEA/PEGDA, (b) HEMA/PEGDA and (c) PEGDA derived scaffolds after 0, the 1st and the 6th mineralization cycles, respectively.
Fig.7  IR peaks of HEA/PEGDA, HEMA/PEGDA and PEGDA derived scaffolds after the 6th mineralization cycle.
Fig.8  TGA curves of (a) HEA/PEGDA, (b) HEMA/PEGDA and (c) PEGDA derived scaffolds before and after mineralization. The insets represent DTG curves.
Fig.9  The MTT test of L929 cells seeded on the scaffolds. *P>0.05 predicted statistically no significant differences when compared to the negative control of indirect cytotoxicity. The data represent mean and standard deviations of six samples.
Fig.10  Fluorescent images of L929 cells seeded on different composite derived scaffolds after the 1st and the 6th mineralization cycles:(a-1)(a-6)HEA/PEGDA; (b-1)(b-6)HEMA/PEGDA; (c-1)(c-6)PEGDA.
1 Nunes-Pereira J, Ribeiro  S, Ribeiro C , et al.. Poly (vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polymer Testing, 2015, 44: 234–241
https://doi.org/10.1016/j.polymertesting.2015.05.001
2 Li X M, Cui  R R, Sun  L W, et al.. 3D-printed biopolymers for tissue engineering application. International Journal of Polymer Science, 2014, 2014: 1–13
https://doi.org/10.1155/2014/829145
3 Chen G, Sato  T, Ushida T , et al.. Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen. Tissue Engineering, 2004, 10(3‒4): 323–330
https://doi.org/10.1089/107632704323061681 pmid: 15165449
4 Kutlusoy T, Oktay  B, Apohan N K , et al.. Chitosan-co-hyaluronic acid porous cryogels and their application in tissue engineering. International Journal of Biological Macromolecules, 2017, 103: 366–378
https://doi.org/10.1016/j.ijbiomac.2017.05.067 pmid: 28526348
5 Gomes M E, Reis  R L. Tissue engineering: key elements and some trends. Macromolecular Bioscience, 2004, 4(8): 737–742
https://doi.org/10.1002/mabi.200400094 pmid: 15468268
6 Dhandayuthapani B, Yoshida  Y, Maekawa T , et al.. Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 2011, 609–618
https://doi.org/10.1155/2011/290602
7 Martin I, Obradovic  B, Treppo S , et al.. Modulation of the mechanical properties of tissue engineered cartilage. Biorheology, 2000, 37(1‒2): 141–147
pmid: 10912186
8 Bohner M, van Lenthe  G H, Grünenfelder  S, et al.. Synthesis and characterization of porous β-tricalcium phosphate blocks. Biomaterials, 2005, 26(31): 6099–6105
https://doi.org/10.1016/j.biomaterials.2005.03.026 pmid: 15885772
9 Bose S, Vahabzadeh  S, Bandyopadhyay A . Bone tissue engineering using 3D printing. Materials Today, 2013, 16(12): 496–504
https://doi.org/10.1016/j.mattod.2013.11.017
10 Cao H, Kuboyama  N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone, 2010, 46(2): 386–395
https://doi.org/10.1016/j.bone.2009.09.031 pmid: 19800045
11 Kim H D, Bae  E H, Kwon  I C, et al.. Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation. Biomaterials, 2004, 25(12): 2319–2329
https://doi.org/10.1016/j.biomaterials.2003.09.011 pmid: 14741597
12 Li X, Liu  X, Dong W , et al.. In vitro evaluation of porous poly(L-lactic acid) scaffold reinforced by chitin fibers. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 90(2): 503–509
https://doi.org/10.1002/jbm.b.31311 pmid: 19145630
13 Grey C P, Newton  S T, Bowlin  G L, et al.. Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter. Biomaterials, 2013, 34(21): 4993–5006
https://doi.org/10.1016/j.biomaterials.2013.03.033 pmid: 23602367
14 Liu H, Nakagawa  K, Chaudhary D , et al.. Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chemical Engineering Research & Design, 2011, 89(11): 2356–2364
https://doi.org/10.1016/j.cherd.2011.02.023
15 Jain E, Srivastava  A, Kumar A . Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications. Journal of Materials Science: Materials in Medicine, 2009, 20(S1): S173–S179
https://doi.org/10.1007/s10856-008-3504-4 pmid: 18597161
16 Sahiner N, Demirci  S. Conducting semi-interpenetrating polymeric composites via the preparation of poly(aniline), poly(thiophene), and poly(pyrrole) polymers within superporous poly(acrylic acid) cryogels. Reactive & Functional Polymers, 2016, 105: 60–65
https://doi.org/10.1016/j.reactfunctpolym.2016.05.017
17 Plieva F M, Karlsson  M, Aguilar M R , et al.. Pore structure in supermacroporous polyacrylamide based cryogels. Soft Matter, 2005, 1(4): 303–309
https://doi.org/10.1039/b510010k
18 Liu R, Xu  T, Wang C . A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceramics International, 2016, 42(2): 2907–2925
https://doi.org/10.1016/j.ceramint.2015.10.148
19 Gutiérrez M C ,  Ferrer M L ,  del Monte F . Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chemistry of Materials, 2008, 20(3): 634–648
https://doi.org/10.1021/cm702028z
20 Hennink W E, van Nostrum  C F. Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 2012, 64(Supplement): 223–236
https://doi.org/10.1016/j.addr.2012.09.009
21 Hoffman A S. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2002, 54(1): 3–12
https://doi.org/10.1016/j.addr.2012.09.010 pmid: 11755703
22 Sachlos E, Czernuszka  J T. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells & Materials, 2003, 5(5): 29–40
https://doi.org/10.22203/eCM.v005a03 pmid: 14562270
23 Lu T, Li  Y, Chen T . Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International Journal of Nanomedicine, 2013, 8: 337–350
https://doi.org/10.2147/IJN.S38635 pmid: 23345979
24 Tao Y, Zhang  R, Yang W , et al.. Carboxymethylated hyperbranched polysaccharide: Synthesis, solution properties, and fabrication of hydrogel. Carbohydrate Polymers, 2015, 128: 179–187
https://doi.org/10.1016/j.carbpol.2015.04.012 pmid: 26005154
25 Henderson T M ,  Ladewig K ,  Haylock D N , et al.. Cryogels for biomedical applications. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2013, 1(21): 2682–2695
https://doi.org/10.1039/c3tb20280a
26 Beauchamp R O ,  St Clair M B G ,  Fennell T R , et al.. A critical review of the toxicology of glutaraldehyde. Critical Reviews in Toxicology, 1992, 22(3‒4): 143–174
https://doi.org/10.3109/10408449209145322 pmid: 1388704
27 Plieva F M, Karlsson  M, Aguilar M R , et al.. Pore structure of macroporous monolithic cryogels prepared from poly (vinyl alcohol). Journal of Applied Polymer Science, 2006, 100(2): 1057–1066
https://doi.org/10.1002/app.23200
28 Freed L E, Hollander  A P, Martin  I, et al.. Chondrogenesis in a cell-polymer-bioreactor system. Experimental Cell Research, 1998, 240(1): 58–65
https://doi.org/10.1006/excr.1998.4010 pmid: 9570921
29 Petricoin E F III,  Ardekani A M ,  Hitt B A , et al.. Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 2002, 359(9306): 572–577
https://doi.org/10.1016/S0140-6736(02)07746-2 pmid: 11867112
30 Burdick J A, Anseth  K S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials, 2002, 23(22): 4315–4323
https://doi.org/10.1016/S0142-9612(02)00176-X pmid: 12219821
31 Liu Y, Chan-Park  M B. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials, 2009, 30(2): 196–207
https://doi.org/10.1016/j.biomaterials.2008.09.041 pmid: 18922573
32 Hwang Y, Sangaj  N, Varghese S . Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Tissue Engineering Part A, 2010, 16(10): 3033–3041
https://doi.org/10.1089/ten.tea.2010.0045 pmid: 20486791
33 Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials, 2010, 31(17): 4639–4656
https://doi.org/10.1016/j.biomaterials.2010.02.044 pmid: 20303169
34 Chung B G, Lee  K H, Khademhosseini  A, et al.. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab on a Chip, 2012, 12(1): 45–59
https://doi.org/10.1039/C1LC20859D pmid: 22105780
35 Zhu J, Marchant  R E. Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices, 2011, 8(5): 607–626
https://doi.org/10.1586/erd.11.27 pmid: 22026626
36 Annabi N, Nichol  J W, Zhong  X, et al.. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering Part B: Reviews, 2010, 16(4): 371–383
https://doi.org/10.1089/ten.teb.2009.0639 pmid: 20121414
37 Van Vlierberghe S ,  Dubruel P ,  Schacht E . Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12(5): 1387–1408
https://doi.org/10.1021/bm200083n pmid: 21388145
38 Ravichandran R, Venugopal  J R, Sundarrajan  S, et al.. Precipitation of nanohydroxyapatite on PLLA/PBLG/collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials, 2012, 33(3): 846–855
https://doi.org/10.1016/j.biomaterials.2011.10.030 pmid: 22048006
39 Omidian H, Park  K, Kandalam U , et al.. Swelling and mechanical properties of modified HEMA-based superporous hydrogels. Journal of Bioactive and Compatible Polymers, 2010, 25(5): 483–497
https://doi.org/10.1177/0883911510375175
40 Ji L, Chang  W, Cui M , et al.. Photopolymerization kinetics and volume shrinkage of 1, 6-hexanediol diacrylate at different temperature. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 252: 216–221
https://doi.org/10.1016/j.jphotochem.2012.12.010
41 Chang W, Mu  X, Zhu X , et al.. Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers. Materials Science and Engineering C, 2013, 33(7): 4369–4376
https://doi.org/10.1016/j.msec.2013.06.023 pmid: 23910355
42 Rodríguez K ,  Renneckar S ,  Gatenholm P . Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Applied Materials & Interfaces, 2011, 3(3): 681–689
https://doi.org/10.1021/am100972r pmid: 21355545
43 Li J, Chen  Y, Yin Y , et al.. Modulation of nano-hydroxyapatite size via formation on chitosan–gelatin network film in situ. Biomaterials, 2007, 28(5): 781–790
https://doi.org/10.1016/j.biomaterials.2006.09.042 pmid: 17056107
44 Liu M, Dai  L, Shi H , et al.. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Materials Science and Engineering C, 2015, 49: 700–712
https://doi.org/10.1016/j.msec.2015.01.037 pmid: 25686999
45 Kang Z, Zhang  X, Chen Y , et al.. Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Materials Science and Engineering C, 2017, 70(Pt 2): 1125–1131
https://doi.org/10.1016/j.msec.2016.04.008 pmid: 27772713
46 Zhu X, Loh  X J. Layer-by-layer assemblies for antibacterial applications. Biomaterials Science, 2015, 3(12): 1505–1518
https://doi.org/10.1039/C5BM00307E pmid: 26415703
47 Dumont V C, Mansur  H S, Mansur  A A, et al.. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 2016, 93(Pt B): 1465–1478
https://doi.org/10.1016/j.ijbiomac.2016.04.030 pmid: 27086294
48 Yang D, Zhang  J, Xue J , et al.. Electrospinning of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers with feature surface microstructure. Journal of Applied Polymer Science, 2013, 127(4): 2867–2874
https://doi.org/10.1002/app.37653
49 Jiang S, Poh  Y Z, Loh  X J. POSS-based hybrid cationic copolymers with low aggregation potential for efficient gene delivery. RSC Advances, 2015, 5(87): 71322–71328
https://doi.org/10.1039/C5RA12580D
50 Kang Z, Zhang  X, Chen Y , et al.. Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Materials Science and Engineering C, 2017, 70(Pt 2): 1125–1131
https://doi.org/10.1016/j.msec.2016.04.008 pmid: 27772713
51 Ma G, Yang  D, Wang K , et al.. Organic-soluble chitosan/polyhydroxybutyrate ultrafine fibers as skin regeneration prepared by electrospinning. Journal of Applied Polymer Science, 2010, 118(6): 3619–3624
https://doi.org/10.1002/app.32671
52 Boyan B D, Schwartz  Z. Regenerative medicine: Are calcium phosphate ceramics ‘smart’ biomaterials? Nature Reviews Rheumatology, 2011, 7(1): 8–9
https://doi.org/10.1038/nrrheum.2010.210 pmid: 21206482
53 Porter J R, Ruckh  T T, Popat  K C. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology Progress, 2009, 25(6): 1539–1560
pmid: 19824042
54 Kretlow J D, Mikos  A G. Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Engineering, 2007, 13(5): 927–938
https://doi.org/10.1089/ten.2006.0394 pmid: 17430090
55 Shor L, Güçeri  S, Wen X , et al.. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials, 2007, 28(35): 5291–5297
https://doi.org/10.1016/j.biomaterials.2007.08.018 pmid: 17884162
56 He M, Wang  Z, Cao Y , et al.. Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility. Biomacromolecules, 2014, 15(9): 3358–3365
https://doi.org/10.1021/bm500827q pmid: 25077674
[1] Yinxian YU, Binbin SUN, Chengqing YI, Xiumei MO. Stem cell homing-based tissue engineering using bioactive materials[J]. Front. Mater. Sci., 2017, 11(2): 93-105.
[2] Juan WANG,Binbin SUN,Muhammad Aqeel BHUTTO,Tonghe ZHU,Kui YU,Jiayu BAO,Yosry MORSI,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Xiumei MO. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering[J]. Front. Mater. Sci., 2017, 11(1): 22-32.
[3] Shuang GAO,Zhiguo YUAN,Tingfei XI,Xiaojuan WEI,Quanyi GUO. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications[J]. Front. Mater. Sci., 2016, 10(2): 101-112.
[4] Jianchao ZHAN,Yosry MORSI,Hany EI-HAMSHARY,Salem S. AL-DEYAB,Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers[J]. Front. Mater. Sci., 2016, 10(1): 90-100.
[5] Hong-Man WANG,Fu-Yao LI. Bibliometric analysis of the literature from the mainland of China on animal-derived regenerative implantable medical devices[J]. Front. Mater. Sci., 2014, 8(4): 403-408.
[6] Zhong-Bing HUANG,Guang-Fu YIN,Xiao-Ming LIAO,Jian-Wen GU. Conducting polypyrrole in tissue engineering applications[J]. Front. Mater. Sci., 2014, 8(1): 39-45.
[7] Lei YANG, Chao ZHONG. Advanced engineering and biomimetic materials for bone repair and regeneration[J]. Front Mater Sci, 2013, 7(4): 313-334.
[8] Zi-Heng LI, Shi-Chen JI, Ya-Zhen WANG, Xing-Can SHEN, Hong LIANG. Silk fibroin-based scaffolds for tissue engineering[J]. Front Mater Sci, 2013, 7(3): 237-247.
[9] Min-Dan WANG, Peng ZHAI, David J. SCHREYER, Ruo-Shi ZHENG, Xiao-Dan SUN, Fu-Zhai CUI, Xiong-Biao CHEN. Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering[J]. Front Mater Sci, 2013, 7(3): 269-284.
[10] Rui-Bo ZHAO, Hua-Feng HAN, Shao DING, Ze-Hao LI, Xiang-Dong KONG. Effect of silk sericin on morphology and structure of calcium carbonate crystal[J]. Front Mater Sci, 2013, 7(2): 177-183.
[11] Ning ZHU, David COOPER, Xiong-Biao CHEN, Catherine Hui NIU. A study on the in vitro degradation of poly(L-lactide)/chitosan microspheres scaffolds[J]. Front Mater Sci, 2013, 7(1): 76-82.
[12] Hua DENG, Xing-Can SHEN, Xiu-Mei WANG, Chang DU. Calcium carbonate crystallization controlled by functional groups: A mini-review[J]. Front Mater Sci, 2013, 7(1): 62-68.
[13] Zhen-Hua CHEN, Xiu-Li REN, Hui-Hui ZHOU, Xu-Dong LI. The role of hyaluronic acid in biomineralization[J]. Front Mater Sci, 2012, 6(4): 283-296.
[14] Xiao-Hong WANG, Ute SCHLO?MACHER, Shun-Feng WANG, Heinz C. SCHR?DER, Matthias WIENS, Renato BATEL, Werner E. G. MüLLER. From nanoparticles via microtemplates and milliparticles to deep-sea nodules: biogenically driven mineral formation[J]. Front Mater Sci, 2012, 6(2): 97-115.
[15] Jin HE, Xiu-Mei WANG, Myron SPECTOR, Fu-Zhai CUI. Scaffolds for central nervous system tissue engineering[J]. Front Mater Sci, 2012, 6(1): 1-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed