Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (1) : 25-32    https://doi.org/10.1007/s11706-009-0013-4
RESEARCH ARTICLE
Synthesis and characterization of biodegradable polyurethane based on poly(?-caprolactone) and L-lysine ethyl ester diisocyanate
Jian HAN1, Bing CHEN2, Lin YE1, Ai-ying ZHANG1, Jian ZHANG2, Zeng-guo FENG1()
1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. Xuanwu Hospital, Capital Medical University, Beijing 100053, China
 Download: PDF(282 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A biocompatible diisocyanate, lysine ethyl ester diisocyanate, was prepared. Afterwards, biodegradable polyurethane (PU) was synthesized by the step-growth polymerization of this diisocyanate with hydroxyl terminated poly(?-caprolactone) in the presence of 1,4-butanediol as a chain-extender. The resulting PU was characterized by GPC, IR and DSC measurements. Its mechanical strength was found to increase with increasing the hard segment content. The PU microfiber meshes with high porosity were obtained by solution electrospinning technique. Their degradation behavior in the PBS and enzymatic solution was also investigated.

Keywords polyurethane      biodegradability      poly(?-caprolactone)      L-lysine ethyl ester diisocyanate      solution electrospinning     
Corresponding Author(s): FENG Zeng-guo,Email:sainfeng@bit.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Bing CHEN,Lin YE,Ai-ying ZHANG, et al. Synthesis and characterization of biodegradable polyurethane based on poly(?-caprolactone) and L-lysine ethyl ester diisocyanate[J]. Front Mater Sci Chin, 2009, 3(1): 25-32.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0013-4
https://academic.hep.com.cn/foms/EN/Y2009/V3/I1/25
Fig.1  FTIR spectra of LDI, LEED, PCL and PU
Fig.2  H-NMR spectrum of LDI
No.-NCO/-OH(mol/mol)Mna) ′10-3Mwa) ′10-3Mw/Mna)sm /MPaem /%
PU10.9531.960.41.89630
PU2139.080.32.0681100
PU31.0541.081.92.00131250
PU41.145.693.42.05181390
PU51.1558.7104.41.78212000
PU61.240.274.51.85181520
PU71.2528.160.32.15161490
Tab.1  The molecular weight and tensile strength of PCL/LDI copolymer
Fig.3  Stress-strain curves of chain-extended PU samples
No.PCL/BDO/LDI(mol/mol/mol)Mna) ′10-3Mwa) ′10-3Mw/Mna)sm /MPaem /%
PU5A0.9/0.1/1.1531.477.62.47141120
PU5B0.7/0.3/1.1540.783.72.06191680
PU5C0.5/0.5/1.1537.888.02.33231700
Tab.2  The molecular weight and tensile strength of polyurethanes
Fig.4  DSC traces for chain-extended PU samples
PUTg /°CTcf /°CTm /°C
PU5-63.1-37.037.9
PU5A-62.0-33.035.6
PU5B-61.5-25.734.6
PU5C-58.9-12.936.2
Tab.3  Polyurethane thermal transition data measured by DSC
Fig.5  SEM images of PU solution electrospinning fibrous
Fig.6  Images of tubular scaffold of PU solution electrospinning
Fig.7  Mass loss of PU in the course of hydrolytic degradation
Fig.8  Mass loss of PU in the course of enzymatic degradation
1 Scott A. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Engineering: Part B, 2008, 14(1): 3-17
2 Nair L S, Laurencin C T. Biodegradable polymers as biomaterials. Progress in Polymer Science , 2007, 32: 762-798
3 Storey R F, Wiggins J S, Puckett A D. Hydrolyzable poly(ester-urethane) networks from L-lysine diisocyanate and D,L-lactide/?-caprolactone homo- and copolyester triols. Journal of Polymer Science : Part A: Polymer Chemistry, 1994, 32: 2345-2363
4 Santerre J P, Woodhouse K, Laroche G, . Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials , 2005, 26: 7457-7470
5 Jabbari E, Khakpour M. Morphology of and release behavior from porous polyurethane microshperes. Biomaterials , 2000, 21: 2073-2079
6 Boretos J W, Pierce W S. Segmented polyurethanes: a polyester polymer: an initial evaluation for biomedical applications. Journal of Biomedical Materials Research , 1968, 2: 121-130
7 Benoit F. Degradation of polyurethane foams used in the meme breast implant. Journal of Biomedical Materials Research , 1993, 27: 1341-1348
8 Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable polymers. Biotechnology Annual Review , 2006, 12: 1387-2656
9 Tang Y W, Labow R S, Santerre J P. Enzyme-induced biodegradation of polycarbonate polyurethanes: dependence on hard-segment concentration. Journal of Biomedical Materials Research , 2001, 56: 516-528
10 Hiltunen K, Tuominen J. Hydrolysis of lactic acid-based poly(ester-urethane)s. Polymer International , 1998, 47: 186-192
11 Guelcher S A, Gallagher K M, Didier J E, . Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomaterialia , 2005, 1: 471-484
12 Gogolewski S. Biomedical polyurethanes . In: Arshady R, ed. Desk Reference of Functional Polymers. Washington, DC: American Chemical Society, 1997
13 Benoit F. Degradation of polyurethane foams used in the meme breast implant. Journal of Biomedical Materials Research , 1993, 27: 1341-1348
14 Zhang J Y, Beckman E J, Piesco N P, . A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro. Biomaterials , 2000, 21: 1247-1258
15 Fernandez A M, Abraham G A, Valentin J L, . Synthesis and characterization of biodegradable non-toxic poly(ester-urethane-urea)s based on poly(?-caprolactone) and amino acid derivatives. Polymer , 2006, 47: 785-798
16 Spaans C J, Belgraver V W, Rienstra O, . Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials , 2000, 21: 2453-2460
17 Bonassar L J, Vacanti C A. Tissue engineering: the first decade and beyond. Journal of Cellular Biochemistry, Supplement , 1998, 31: 297
18 Tabata Y. Recent progress in tissue engineering. Drug Discovery Today , 2001, 6: 483-487
19 Ma P X. Biomimetic materials for tissue engineering. Advanced Drug Delivery Reviews , 2008, 60: 184-198
20 Teebken O E, Haverich A. Tissue engineering of small diameter vascular grafts. European Journal of Vascular and Endovascular Surgery , 2002, 23: 475-485
21 Ratcliffe A. Tissue engineering of vascular grafts. Matrix Biology , 2000, 19: 353-357
22 Chen H, Jiang X W, He L, . Novel biocompatible waterborne polyurethane using L-lysine as an extender. Journal of Applied Polymer Science , 2002, 84: 2474-2480
23 Greiner A, Wendorff J H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition , 2007, 46: 5670-5703
24 Huang Z M, Zhang Y Z, Kotaki M, . A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology , 2003, 63: 2223-2253
25 Demir M M, Yilgor I, Yilgor E, . Electrospinning of polyurethane fibers. Polymer , 2002, 43: 3303-3309
26 Zhuo H T, Hu J L, Chen S J. Electrospun polyurethane nanofibres having shape memory effect. Materials Letters , 2008, 62: 2074-2076
27 Takshara A, Hadano M, Yamaguchi T, . Characterization of novel biodegradable segmented polyurethanes prepared from amino acid based diisocyanate. Macromolecular Symposium , 2005, 224: 207-217
28 Darwis D, Mitomo H, Enjoji T, . Enzymatic degradation of radiation crosslinked poly(?-caprolactone). Polymer Degradation and Stability , 1998, 62: 259-265
29 Nowick J S, Powell N A, Nguyen T M, . An improved method for the synthesis of enantiomerically pure amino acid ester isocyanates. Journal of Organic Chemistry , 1992, 57: 7364-7366
30 Skarja G A, Woodhouse K A. Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. Journal of Applied Polymer Science , 2000, 75: 1522-1534
31 Stankus J J, Guan J J, Fujimoto K, . Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials , 2006, 27: 735-744
32 Zhang X H, Baughman C B, Kaplan D L. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials , 2008, 29: 2217-2227
33 Travis J S, Horst A R. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials , 2008, 29: 1989-2006
34 Skarja G A, Woodhouse K A. In vitro degradation and erosion of degradable, segmented polyurethanes containing an amino acid-based chain extender. Journal of Biomaterials Science Polymer Edition , 2001, 12: 851-873
35 Ciardelli G, Rechichi A, Cerrai P, . Segmented polyurethanes for medical applications: Synthesis, characterization and in vitro enzymatic degradation studies. Macromolecular Symposium , 2004, 218: 261-271
36 Yamamoto N, Nakayama A, Oshima M, . Enzymatic hydrolysis of lysine diisocyanate based polyurethanes and segmented polyurethane ureas by various proteases. Reactive & Functional Polymers , 2007, 67: 1338-1345
[1] Dai-Wei MA,Rong ZHU,Yi-Yu WANG,Zong-Rui ZHANG,Xin-Yu WANG. Evaluation on biocompatibility of biomedical polyurethanes with different hard segment contents[J]. Front. Mater. Sci., 2015, 9(4): 397-404.
[2] Mei ZHOU,Wei-Ci WANG,Yong-Gui LIAO,Wen-Qi LIU,Miao YU,Chen-Xi OUYANG. In vitro biocompatibility evaluation of silk-fibroin/polyurethane membrane with cultivation of HUVECs[J]. Front. Mater. Sci., 2014, 8(1): 63-71.
[3] Zai-Feng LI, Yuan WU, Fu-Tao ZHANG, Yu-Yang CAO, Shou-Peng WU, Ting WANG. Preparation and properties of poly HTBN-based urethane--urea/organo reactive montmorillonite nanocomposites[J]. Front Mater Sci, 2012, 6(4): 338-346.
[4] Rui CHEN, Qin-fei KE, Yosry MORSI, Shital PATEL, Xiu-mei MO, . A novel approach via combination of electrospinning and FDM for tri-leaflet heart valve scaffold fabrication[J]. Front. Mater. Sci., 2009, 3(4): 359-366.
[5] LI Zai-feng, WANG Sheng-jun, LI Jin-yan. Synthesis and characterization of waterborne polyurethane/organic clay nanocomposites[J]. Front. Mater. Sci., 2008, 2(3): 271-275.
[6] LI Zai-feng, LI Jin-yan, SUN Jian, SUN Bao-qun, WANG Jin-jing, SHEN Qiang. Investigation of kinetics and morphology development for polyurethane-urea extended by DMTDA[J]. Front. Mater. Sci., 2008, 2(2): 200-204.
[7] LI Zai-feng, LI Jin-yan, YUAN Wei, SUN Bao-qun, ZHANG Fu-tao, WANG Zeng-lin. Investigation of effects of dibutyltin dilaurate on reaction injection molding polyurethane-urea kinetics, morphology and mechanical properties by FTIR[J]. Front. Mater. Sci., 2008, 2(1): 99-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed