Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2015, Vol. 9 Issue (4) : 397-404    https://doi.org/10.1007/s11706-015-0316-6
RESEARCH ARTICLE
Evaluation on biocompatibility of biomedical polyurethanes with different hard segment contents
Dai-Wei MA1,2,Rong ZHU1,2,Yi-Yu WANG1,2,Zong-Rui ZHANG1,2,Xin-Yu WANG1,2,*()
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2. Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
 Download: PDF(350 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, polyurethane (PU) materials with different contents of hard segment (20%, 25%, 30%) were prepared based on hexamethylene diisocyanate and polycarbonate diols by solution polymerization. The obtained polycarbonate-urethane (PCU) elastomers were characterized by very good hydrophobic property and excellent resistance to hydrolysis. Hemolysis, recalification time and platelet-rich plasma adhesion were used to evaluate the blood compatibility of the materials. L929 cells cultured with leach?liquor of these PU membranes were selected to perform the cytotoxicity experiments. The results indicate that the hemolysis rates of PU membranes are all less than 5%, which can meet the requirement of the national standards for biomaterials. However, compared with 20% and 30% groups, the recalification time of the sample containing 25% hard segment is longer, while the number of platelet adhesion is less. Additionally, cells cultured in the leach liquor of PU membranes with 25% hard segment proliferated relatively more thriving, meaning that this proportion of the material has the lowest cytotoxicity.

Keywords polyurethane (PU)      hydrolytic stability      blood compatibility      cytotoxicity     
Corresponding Author(s): Xin-Yu WANG   
Online First Date: 06 November 2015    Issue Date: 12 November 2015
 Cite this article:   
Dai-Wei MA,Rong ZHU,Yi-Yu WANG, et al. Evaluation on biocompatibility of biomedical polyurethanes with different hard segment contents[J]. Front. Mater. Sci., 2015, 9(4): 397-404.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-015-0316-6
https://academic.hep.com.cn/foms/EN/Y2015/V9/I4/397
Fig.1  FTIR spectra of PCDL and prepared PU membranes.
Fig.2  The water contact angles of (a) PCU-1, (b) PCU-2, and (c) PCU-3.
Fig.3  Changes of mechanical properties of PCUs with different hard segment.
PCU specimen Weight change /%
5 d 10 d 15 d 20 d
PCU-1 +1.63 +1.62 +1.71 +1.98
PCU-2 +1.25 +1.25 +1.53 +1.66
PCU-3 +0.97 +0.99 +1.06 +1.12
Tab.1  Changes of weight observed for PCU specimens after immersion in buffer solution for different time
Sample Hemolysis ratio /% a)
PCU-1 0.8±0.04
PCU-2 0.2±0.07
PCU-3 0.4±0.06
Negative control 0±0.03
Positive control 1±0.02
Tab.2  Hemolysis activity of PU with different segments
Sample No. a) Recalcification time /s Average time /s
PCU-1 1 111 110
2 103
3 118
PCU-2 1 137 151
2 155
3 160
PCU-3 1 145 132
2 130
3 122
Tab.3  PRT of PU with different segments
Fig.4  SEM images of platelets adhering to PCU membranes with the content of (a) 20%, (b) 25% and (c) 30% hard segment.
Group OD550 CPR /% CTG
24 h 48 h 72 h 24 h 48 h 72 h 24 h 48 h 72 h
Blank 0.975±0.1 1.097±0.1 1.329±0.2
PCU-1 0.616±0.1 0.721±0.1 0.943±0.2 63.2 65.7 71.0 1 1 1
PCU-2 0.903±0.2 0.978±0.2 1.162±0.1 92.6 89.1 87.4 1 1 1
PCU-3 0.786±0.1 0.831±0.2 1.034±0.2 80.6 75.8 77.8 1 2 2
Negative 0.970±0.1 0.912±0.2 1.295±0.2 100 100 100 0 0 0
Positive 0.047±0.1 0.050±0.1 0.033±0.1 0 0 0 5 5 5
Tab.4  Cytotoxicity analysis of PU membranes
ACDanticoagulant citrate dextrose
ADPadenosine diphosphate
ATRattenuated total reflection
BDO1,4-butanediol
CPRcell proliferation rate
CTGcell toxicity grading
DBTDLdibutyltin dilaurate
DMFN,N-dimethyl formamide
DMSOdimethyl sulfoxide
EDTAethylene diamine tetraacetic acid
FBSfetal bovine serum
FIBfibrinogen
FTIRFourier transform infrared spectroscopy
MTT3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
ODoptical density
PBSphosphate buffered saline
PCDLpoly(1,6-hexanediol)carbonate diols
PCUpolycarbonate-urethane
PPPplatelet-poor plasma
PRPplatelet-rich plasma
PRTplasma recalcification time
PUpolyurethane
SEMscanning electron microscopy
THFtetrahydrofuran
Tab.1  
1 Chen  L, Han  D, Jiang  L. On improving blood compatibility: from bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales. Colloids and Surfaces B: Biointerfaces, 2011, 85(1): 2–7
2 Ratner  B D. The catastrophe revisited: blood compatibility in the 21st Century. Biomaterials, 2007, 28(34): 5144–5147
3 Gorbet  M B, Sefton  M V. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 2004, 25(26): 5681–5703
4 Mao  C, Qiu  Y, Sang  H, . Various approaches to modify biomaterial surfaces for improving hemocompatibility. Advances in Colloid and Interface Science, 2004, 110(1−2): 5–17
5 Szycher  M, Siciliano  A A, Reed  A M. Polyurethane elastomers in medicine. Polymeric. Biomaterials. New York: Marcel Dekker, 1994, 233–244
6 Simmons  A, Hyvarinen  J, Odell  R A, . Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Biomaterials, 2004, 25(20): 4887–4900
7 Baumann  H, Richter  A, Klemm  D, . Concepts for preparation of novel regioselective modified cellulose derivatives sulfated, aminated, carboxylated and acetylated for hemocompatible ultrathing coatings on biomaterials. Macromolecular Chemistry and Physics, 2000, 201(15): 1950–1962
8 Bernacca  G M, Gulbransen  M J, Wilkinson  R, . In vitro blood compatibility of surface-modified polyurethanes. Biomaterials, 1998, 19(13): 1151–1165
9 Jo  H Y, Jung  W K, Kim  S K. Purification and characterization of a novel anticoagulant peptide from marine echiuroid worm, Urechis unicinctus. Process Biochemistry, 2008, 43(2): 179–184
10 Laredo  J, Xue  L, Husak  V A, . Silyl-heparin bonding improves the patency and in vivo thromboresistance of carbon-coated polytetrafluoroethylene vascular grafts. Journal of Vascular Surgery, 2004, 39(5): 1059–1065
11 Sawada  S, Iwasaki  Y, Nakabayashi  N, . Stress response of adherent cells on a polymer blend surface composed of a segmented polyurethane and MPC copolymers. Journal of Biomedical Materials Research Part A, 2006, 79(3): 476–484
12 Jia  R P, Zong  A X, He  X Y, . Synthesis of newly fluorinated thermoplastic polyurethae elastomers and theirblood compatibility. Fibers and Polymers, 2015, 16(2): 231–238
13 Yan  X, Chen  J, Yang  J, . Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Applied Materials & Interfaces, 2010, 2(9): 2521–2529
14 Fang  H, Wei  J, Yu  Y. In vivo studies of endotoxin removal by lysine-cellulose adsorbents. Biomaterials, 2004, 25(23): 5433–5440
15 Kuran  W, Sobczak  M, Listos  T, . New route to oligocarbonate diols suitable for the synthesis of polyurethane elastomers. Polymer, 2000, 41(24): 8531–8541
16 Zhang  J, Hu  C P. Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segments. European Polymer Journal, 2008, 44(11): 3708–3714
17 Sagnella  S, Mai-Ngam  K. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Colloids and Surfaces B: Biointerfaces, 2005, 42(2): 147–155
18 American Society for Testing and Materials. ASTM F 756-00, Standard Practices for Assessment of Haemolytic Properties of Materials, 2000
19 Xue  J, Zhao  W, Nie  S, . Blood compatibility of polyethersulfone membrane by blending a sulfated derivative of chitosan. Carbohydrate Polymers, 2013, 95(1): 64–71
20 Yuse  K, Guiffard  B, Belouadah  R, . Polymer nanocomposites for microactuation and magneto-electric transduction. Frontiers of Mechanical Engineering in China, 2009, 4(3): 350–354
[1] Deepshikha GUPTA, Parul YADAV, Devesh GARG, Tejendra K. GUPTA. Pathways of nanotoxicity: Modes of detection, impact, and challenges[J]. Front. Mater. Sci., 2021, 15(4): 512-542.
[2] Shuang GAO,Zhiguo YUAN,Tingfei XI,Xiaojuan WEI,Quanyi GUO. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications[J]. Front. Mater. Sci., 2016, 10(2): 101-112.
[3] Mei ZHOU,Wei-Ci WANG,Yong-Gui LIAO,Wen-Qi LIU,Miao YU,Chen-Xi OUYANG. In vitro biocompatibility evaluation of silk-fibroin/polyurethane membrane with cultivation of HUVECs[J]. Front. Mater. Sci., 2014, 8(1): 63-71.
[4] Hui-Yun ZHOU, Dong-Ju ZHOU, Wei-Fen ZHANG, Ling-Juan JIANG, Jun-Bo LI, Xi-Guang CHEN. Biocompatibility and characteristics of chitosan/cellulose acetate microspheres for drug delivery[J]. Front Mater Sci, 2011, 5(4): 367-378.
[5] Yu ZHANG, Qing-Shui YIN, Hua-Fu ZHAO, Jian LI, Yue-Teng WEI, Fu-Zhai CUI, Hua-Yang HUANG. Antibacterial and biological properties of silver-loaded coralline hydroxyapatite[J]. Front Mater Sci Chin, 2010, 4(4): 359-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed