|
|
Pathways of nanotoxicity: Modes of detection, impact, and challenges |
Deepshikha GUPTA( ), Parul YADAV, Devesh GARG, Tejendra K. GUPTA |
Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India |
|
|
Abstract Nanotoxicology has become the subject of intense research for more than two decades. Thousands of articles have been published but the space in understanding the nanotoxicity mechanism and the assessment is still unclear. Recent researches clearly show potential benefits of nanomaterials (NMs) in diagnostics and treatment, targeted drug delivery, and tissue engineering owing to their excellent physicochemical properties. However, these NMs display hazardous health effect then to the greater part of the materials because of small size, large surface area-to-volume ratio, quantum size effects, and environmental factors. Nowadays, a large number of NMs are used in industrial products including several medical applications, consumer, and healthcare products. However, they came into the environment without any safety test. The measurement of toxicity level has become important because of increasing toxic effects on living organisms. New realistic mechanism-based strategies are still needed to determine the toxic effects of NMs. For the assessment of NMs toxicity, reliable and standardized procedures are necessary. This review article provides systematic studies on toxicity of NMs involving manufacturing, environmental factors, eco-toxic and genotoxic effects, some parameters which have been ignored of NMs versus their biological counterparts, cell heterogeneity, and their current challenges and future perspectives.
|
Keywords
nanomaterial
nanotoxicity
cytotoxicity, genotoxicity
in-vivo and in-vitro toxicity
reactive oxygen species
|
Corresponding Author(s):
Deepshikha GUPTA
|
Online First Date: 15 December 2021
Issue Date: 28 December 2021
|
|
1 |
G V Lowry, K B Gregory, S C Apte, et al.. Transformations of nanomaterials in the environment. Environmental Science & Technology, 2012, 46(13): 6893–6899
https://doi.org/10.1021/es300839e
pmid: 22582927
|
2 |
R B Shinde, M Veerapandian, A Kaushik, et al.. State-of-art bio-assay systems and electrochemical approaches for nanotoxicity assessment. Frontiers in Bioengineering and Biotechnology, 2020, 8: 325
https://doi.org/10.3389/fbioe.2020.00325
pmid: 32411681
|
3 |
J Jeevanandam, A Barhoum, Y S Chan, et al.. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 2018, 9: 1050–1074
https://doi.org/10.3762/bjnano.9.98
pmid: 29719757
|
4 |
B D Malhotra, M A Ali. Chapter 1 - Nanomaterials in biosensors: Fundamentals and applications. In: Malhotra B D, Ali M A, eds. Nanomaterials for Biosensors. William Andrew Publishing, 2018, 1–74
|
5 |
N Musee. Nanowastes and the environment: Potential new waste management paradigm. Environment International, 2011, 37(1): 112–128
https://doi.org/10.1016/j.envint.2010.08.005
pmid: 20832119
|
6 |
S Griffin, M I Masood, M J Nasim, et al.. Natural nanoparticles: A particular matter inspired by nature. Antioxidants, 2017, 7(1): 3
https://doi.org/10.3390/antiox7010003
pmid: 29286304
|
7 |
J Zuo, T Jiang, X Zhao, et al.. Preparation and application of fluorescent carbon dots. Journal of Nanomaterials, 2015, 2015: 787862
https://doi.org/10.1155/2015/787862
|
8 |
M Ajdary, M A Moosavi, M Rahmati, et al.. Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials, 2018, 8(9): 634
https://doi.org/10.3390/nano8090634
pmid: 30134524
|
9 |
P Kush, P Kumar, R Singh, et al.. Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application. Asian Journal of Pharmaceutical Sciences, 2021 (in press)
https://doi.org/10.1016/j.ajps.2021.05.005
|
10 |
R Gupta, H Xie. Nanoparticles in daily life: Applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology, 2018, 37(3): 209–230
https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009
pmid: 30317972
|
11 |
J K Patra, G Das, L F Fraceto, et al.. Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 2018, 16(1): 71
https://doi.org/10.1186/s12951-018-0392-8
pmid: 30231877
|
12 |
C Buzea, I I Pacheco, K Robbie. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007, 2(4): MR17–MR71
https://doi.org/10.1116/1.2815690
pmid: 20419892
|
13 |
M Y Wani, M A Hashim, F Nabi, et al.. Nanotoxicity: Dimensional and morphological concerns. Advances in Physical Chemistry, 2011, 450912 (15 pages)
https://doi.org/10.1155/2011/450912
|
14 |
Y Zhang, M K Ram, E K Stefanakos, et al.. Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012, 2012: 624520
https://doi.org/10.1155/2012/624520
|
15 |
A Erofeev, P Gorelkin, A Garanina, et al.. Novel method for rapid toxicity screening of magnetic nanoparticles. Scientific Reports, 2018, 8(1): 7462
https://doi.org/10.1038/s41598-018-25852-4
pmid: 29748550
|
16 |
G Gellert. Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence. Ecotoxicology and Environmental Safety, 2000, 45(1): 87–91
https://doi.org/10.1006/eesa.1999.1849
pmid: 10677271
|
17 |
X Yuan, X Zhang, L Sun, et al.. Cellular toxicity and immunological effects of carbon-based nanomaterials. Particle and Fibre Toxicology, 2019, 16: 18
https://doi.org/10.1186/s12989-019-0299-z
pmid: 30975174
|
18 |
S W Shin, I H Song, S H Um. Role of physicochemical properties in nanoparticle toxicity. Nanomaterials, 2015, 5(3): 1351–1365
https://doi.org/10.3390/nano5031351
pmid: 28347068
|
19 |
M A Iqbal, S Md, J K Sahni, et al.. Nanostructured lipid carriers system: Recent advances in drug delivery. Journal of Drug Targeting, 2012, 20(10): 813–830
https://doi.org/10.3109/1061186X.2012.716845
pmid: 22931500
|
20 |
J Rose, M Auffan, O Proux, et al.. Physicochemical properties of nanoparticles in relation with toxicity. In: Bhushan B, ed. Encyclopedia of Nanotechnology. Dordrecht: Springer Netherlands, 2012, 2085
|
21 |
A Sukhanova, S Bozrova, P Sokolov, et al.. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Research Letters, 2018, 13(1): 44
https://doi.org/10.1186/s11671-018-2457-x
pmid: 29417375
|
22 |
A R Gliga, S Skoglund, I O Wallinder, et al.. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Particle and Fibre Toxicology, 2014, 11(1): 11
https://doi.org/10.1186/1743-8977-11-11
pmid: 24529161
|
23 |
A Albanese, P S Tang, W C W Chan. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 2012, 14(1): 1–16
https://doi.org/10.1146/annurev-bioeng-071811-150124
pmid: 22524388
|
24 |
S Huo, S Jin, X Ma, et al.. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano, 2014, 8(6): 5852–5862
https://doi.org/10.1021/nn5008572
pmid: 24824865
|
25 |
B Viswanath, S Kim. Influence of nanotoxicity on human health and environment: The alternative strategies. In: de Voogt P, ed. Reviews of Environmental Contamination and Toxicology. Cham, Switzerland: Springer International Publishing, 2017, 61–104
|
26 |
H H Agus, M Hornsby, M Chen, et al.. Outstanding reviewers for toxicology research in 2017. Toxicology Research, 2018, 7(3): 320
https://doi.org/10.1039/c8tx90009d
|
27 |
C Contini, J W Hindley, T J Macdonald, et al.. Size dependency of gold nanoparticles interacting with model membranes. Communications Chemistry, 2020, 3(1): 130
https://doi.org/10.1038/s42004-020-00377-y
pmid: 33829115
|
28 |
T H Kim, M Kim, H S Park, et al.. Size-dependent cellular toxicity of silver nanoparticles. Journal of Biomedical Materials Research Part A, 2012, 100A(4): 1033–1043
https://doi.org/10.1002/jbm.a.34053
pmid: 22308013
|
29 |
Z Li, T Hulderman, R Salmen, et al.. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environmental Health Perspectives, 2007, 115(3): 377–382
https://doi.org/10.1289/ehp.9688
pmid: 17431486
|
30 |
W Hu, C Peng, M Lv, et al.. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano, 2011, 5(5): 3693–3700
https://doi.org/10.1021/nn200021j
pmid: 21500856
|
31 |
L Ou, B Song, H Liang, et al.. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Particle and Fibre Toxicology, 2016, 13(1): 57
https://doi.org/10.1186/s12989-016-0168-y
pmid: 27799056
|
32 |
O Schmid, T Stoeger. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. Journal of Aerosol Science, 2016, 99: 133–143
https://doi.org/10.1016/j.jaerosci.2015.12.006
|
33 |
A S Karakoti, L L Hench, S Seal. The potential toxicity of nanomaterials — The role of surfaces. JOM, 2006, 58(7): 77–82
https://doi.org/10.1007/s11837-006-0147-0
|
34 |
L K Limbach, Y Li, R N Grass, et al.. Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environmental Science & Technology, 2005, 39(23): 9370–9376
https://doi.org/10.1021/es051043o
pmid: 16382966
|
35 |
J Cho, K Kushiro, Y Teramura, et al.. Lectin-tagged fluorescent polymeric nanoparticles for targeting of sialic acid on living cells. Biomacromolecules, 2014, 15(6): 2012–2018
https://doi.org/10.1021/bm500159r
pmid: 24761752
|
36 |
A M El Badawy, R G Silva, B Morris, et al.. Surface charge-dependent toxicity of silver nanoparticles. Environmental Science & Technology, 2011, 45(1): 283–287
https://doi.org/10.1021/es1034188
pmid: 21133412
|
37 |
H Bahadar, F Maqbool, K Niaz, et al.. Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 2016, 20(1): 1–11
pmid: 26286636
|
38 |
B Fubini, A Hubbard. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radical Biology and Medicine, 2003, 34(12): 1507–1516
https://doi.org/10.1016/s0891-5849(03)00149-72009
pmid: 19893513
|
39 |
G Rathee, G Bartwal, J Rathee, et al.. Emerging multi-model zirconia nanosystems for high-performance biomedical applications. Advanced NanoBiomed Research, 2021, 2100039
https://doi.org/10.1002/anbr.202100039
|
40 |
J Zhu, X Ou, J Su, et al.. The impacts of surface polarity on the solubility of nanoparticle. The Journal of Chemical Physics, 2016, 145(4): 044504
https://doi.org/10.1063/1.4959805
pmid: 27475378
|
41 |
M Dusinska, S Boland, M Saunders, et al.. Towards an alternative testing strategy for nanomaterials used in nanomedicine: Lessons from NanoTEST. Nanotoxicology, 2015, 9(Sup1): 118–132
https://doi.org/10.3109/17435390.2014.991431
|
42 |
A Nel, T Xia, L Mädler, et al.. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622–627
https://doi.org/10.1126/science.1114397
pmid: 16456071
|
43 |
J Schmidt, W Vogelsberger. Aqueous long-term solubility of titania nanoparticles and titanium(IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. Journal of Solution Chemistry, 2009, 38(10): 1267–1282
https://doi.org/10.1007/s10953-009-9445-9
|
44 |
K Donaldson, V Stone. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Annali dell’Istituto Superiore di Sanita, 2003, 39(3): 405–410
pmid: 15098562
|
45 |
M L Avramescu, P E Rasmussen, M Chénier, et al.. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials. Environmental Science and Pollution Research International, 2017, 24(2): 1553–1564
https://doi.org/10.1007/s11356-016-7932-2
pmid: 27785722
|
46 |
A Thakuria, B Kataria, D Gupta. Nanoparticle-based methodo-logies for targeted drug delivery — An insight. Journal of Nanoparticle Research, 2021, 23(4): 87
https://doi.org/10.1007/s11051-021-05190-9
|
47 |
B Annangi, L Rubio, M Alaraby, et al.. Acute and long-term in vitro effects of zinc oxide nanoparticles. Archives of Toxicology, 2016, 90(9): 2201–2213
https://doi.org/10.1007/s00204-015-1613-7
pmid: 26449478
|
48 |
M Wang, Y Zhang, Xu M, et al. Roles of TRPA1 and TRPV1 in cigarette smoke-induced airway epithelial cell injury model. Free Radical Biology and Medicine, 2019, 134: 229–238
https://doi.org/10.1016/j.freeradbiomed.2019.01.004
|
49 |
Y Huang, L Ding, C Li, et al.. Safety issue of changed nanotoxicity of zinc oxide nanoparticles in the multicomponent system. Particle & Particle Systems Characterization, 2019, 36(10): 1900214
https://doi.org/10.1002/ppsc.201900214
|
50 |
E Assadian, M H Zarei, A G Gilani, et al.. Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biological Trace Element Research, 2018, 184(2): 350–357
https://doi.org/10.1007/s12011-017-1170-4
pmid: 29064010
|
51 |
H L Karlsson, P Cronholm, J Gustafsson, et al.. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 2008, 21(9): 1726–1732
https://doi.org/10.1021/tx800064j
pmid: 18710264
|
52 |
Z Chen, H Meng, G Xing, et al.. Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 2006, 163(2): 109–120
https://doi.org/10.1016/j.toxlet.2005.10.003
pmid: 16289865
|
53 |
N S Tulve, A B Stefaniak, M E Vance, et al.. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures. International Journal of Hygiene and Environmental Health, 2015, 218(3): 345–357
https://doi.org/10.1016/j.ijheh.2015.02.002
pmid: 25747543
|
54 |
C N Lok, C M Ho, R Chen, et al.. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 2006, 5(4): 916–924
https://doi.org/10.1021/pr0504079
pmid: 16602699
|
55 |
F Grande, P Tucci. Titanium dioxide nanoparticles: A risk for human health? Mini-Reviews in Medicinal Chemistry, 2016, 16(9): 762–769
https://doi.org/10.2174/1389557516666160321114341
pmid: 26996620
|
56 |
M Tsoli, H Kuhn, W Brandau, et al.. Cellular uptake and toxicity of Au55 clusters. Small, 2005, 1(8–9): 841–844
https://doi.org/10.1002/smll.200500104
pmid: 17193536
|
57 |
L W Chen, Y C Hao, Y Guo, et al.. Metal-organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation. Journal of the American Chemical Society, 2021, 143(15): 5727–5736
https://doi.org/10.1021/jacs.0c13342
pmid: 33847495
|
58 |
C A Simpson, K J Salleng, D E Cliffel, et al.. In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine: Nanotechnology Biology and Medicine, 2013, 9(2): 257–263
https://doi.org/10.1016/j.nano.2012.06.002
pmid: 22772047
|
59 |
M K Choi, J Yang, T Hyeon, et al.. Flexible quantum dot light-emitting diodes for next-generation displays. NPJ Flexible Electronics, 2018, 2(1): 10
https://doi.org/10.1038/s41528-018-0023-3
|
60 |
Y Shirasaki, G J Supran, M G Bawendi, et al.. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2013, 7(1): 13–23
https://doi.org/10.1038/nphoton.2012.328
|
61 |
J P Ryman-Rasmussen, J E Riviere, N A Monteiro-Riviere. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicological Sciences, 2006, 91(1): 159–165
https://doi.org/10.1093/toxsci/kfj122
pmid: 16443688
|
62 |
A Hoshino, K Fujioka, T Oku, et al.. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Letters, 2004, 4(11): 2163–2169
https://doi.org/10.1021/nl048715d
|
63 |
O Erol, I Uyan, M Hatip, et al.. Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomedicine: Nanotechnology Biology and Medicine, 2018, 14(7): 2433–2454
https://doi.org/10.1016/j.nano.2017.03.021
pmid: 28552644
|
64 |
T K Gupta, P R Budarapu, S R Chappidi, et al.. Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 2019, 26(38): 6851–6877
https://doi.org/10.2174/0929867326666181126113605
pmid: 30474523
|
65 |
T K Gupta, B P Singh, S Teotia, et al.. Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials. Journal of Polymer Research, 2013, 20(6): 169
https://doi.org/10.1007/s10965-013-0169-6
|
66 |
Y Morimoto, M Horie, N Kobayashi, et al.. Inhalation toxicity assessment of carbon-based nanoparticles. Accounts of Chemical Research, 2013, 46(3): 770–781
https://doi.org/10.1021/ar200311b
pmid: 22574947
|
67 |
K Fujita, M Fukuda, S Endoh, et al.. Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity. Inhalation Toxicology, 2015, 27(4): 207–223
https://doi.org/10.3109/08958378.2015.1026620
pmid: 25865113
|
68 |
E A Frank, V S Carreira, M E Birch, et al.. Carbon nanotube and asbestos exposures induce overlapping but distinct profiles of lung pathology in non-Swiss albino CF-1 mice. Toxicologic Pathology, 2016, 44(2): 211–225
https://doi.org/10.1177/0192623315620587
pmid: 26839332
|
69 |
A P D T Francis, T Devasena. Toxicity of carbon nanotubes: A review. Toxicology and Industrial Health, 2018, 34(3): 200–210
https://doi.org/10.1177/0748233717747472
pmid: 29506458
|
70 |
B Lin, H Zhang, Z Lin, et al.. Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts. Nanoscale Research Letters, 2013, 8: 236
https://doi.org/10.1186/1556-276X-8-236
pmid: 23680025
|
71 |
W Zheng, W McKinney, M Kashon, et al.. The influence of inhaled multi-walled carbon nanotubes on the autonomic nervous system. Particle and Fibre Toxicology, 2016, 13(1): 8
https://doi.org/10.1186/s12989-016-0119-7
pmid: 26864021
|
72 |
O Akhavan, E Ghaderi, H Emamy, et al.. Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon, 2013, 54: 419–431
https://doi.org/10.1016/j.carbon.2012.11.058
|
73 |
A Wang, K Pu, B Dong, et al.. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. Journal of Applied Toxicology, 2013, 33(10): 1156–1164
https://doi.org/10.1002/jat.2877
pmid: 23775274
|
74 |
K Aschberger, H J Johnston, V Stone, et al.. Review of fullerene toxicity and exposure — Appraisal of a human health risk assessment, based on open literature. Regulatory Toxicology and Pharmacology, 2010, 58(3): 455–473
https://doi.org/10.1016/j.yrtph.2010.08.017
pmid: 20800639
|
75 |
S Murugadoss, D Lison, L Godderis, et al.. Toxicology of silica nanoparticles: An update. Archives of Toxicology, 2017, 91(9): 2967–3010
https://doi.org/10.1007/s00204-017-1993-y
pmid: 28573455
|
76 |
M Ahamed, M Karns, M Goodson, et al.. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology, 2008, 233(3): 404–410
https://doi.org/10.1016/j.taap.2008.09.015
pmid: 18930072
|
77 |
S Parasuraman. Toxicological screening. Journal of Pharmacolo-gy & Pharmacotherapeutics, 2011, 2(2): 74–79
https://doi.org/10.4103/0976-500X.81895
pmid: 21772764
|
78 |
F Marano, F Rodrigues-Lima, J M Dupret, et al.. Cellular mecha-nisms of nanoparticle toxicity. In: Bhushan B, ed. Encyclopedia of Nanotechnology. Dordrecht: Springer Netherlands, 2016, 498–505
|
79 |
C H Teh, W A Nazni, A H Nurulhusna, et al.. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiology, 2017, 17(1): 36
https://doi.org/10.1186/s12866-017-0936-3
pmid: 28209130
|
80 |
M R Soboleski, J Oaks, W P Halford. Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. The FASEB Journal, 2005, 19: 440–442
https://doi.org/10.1096/fj.04-3180fje
pmid: 15640280
|
81 |
M Balouiri, M Sadiki, S K Ibnsouda. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 2016, 6(2): 71–79
https://doi.org/10.1016/j.jpha.2015.11.005
pmid: 29403965
|
82 |
W. Strober Trypan blue exclusion test of cell viability. Current Protocols in Immunology, 2015, 111: A3.B.1–A3.B.3
https://doi.org/10.1002/0471142735.ima03bs111
|
83 |
M Vinken, V Rogiers, eds. Protocols in In Vitro Hepatocyte Research. Humana Press, 2015
|
84 |
M Zhao, D Li, L Yuan, et al.. Differences in cytocompatibility and hemocompatibility between carbon nanotubes and nitrogen-doped carbon nanotubes. Carbon, 2011, 49(9): 3125–3133
https://doi.org/10.1016/j.carbon.2011.03.037
|
85 |
H R Kim, Y J Park, D Y Shin, et al.. Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. Environmental Health and Toxicology, 2013, 28: e2013003
https://doi.org/10.5620/eht.2013.28.e2013003
pmid: 23440978
|
86 |
S Gurunathan, J W Han, V Eppakayala, et al.. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Research International, 2013, 2013: 535796
https://doi.org/10.1155/2013/535796
pmid: 23936814
|
87 |
V Kumar, N Sharma, S S Maitra. In vitro and in vivo toxicity assessment of nanoparticles. International Nano Letters, 2017, 7(4): 243–256
https://doi.org/10.1007/s40089-017-0221-3
|
88 |
Y R Saadat, N Saeidi, S Z Vahed, et al.. An update to DNA ladder assay for apoptosis detection. BioImpacts, 2015, 5(1): 25–28
https://doi.org/10.15171/bi.2015.01
pmid: 25901294
|
89 |
H Y Chang, H C Huang, T C Huang, et al.. Flow cytometric detection of reactive oxygen species. Bio-Protocol, 2013, 3(8): e431
https://doi.org/10.21769/BioProtoc.431
|
90 |
M N Bin-Jumah, M Al-Abdan, G Al-Basher, et al.. Molecular mechanism of cytotoxicity, genotoxicity, and anticancer potential of green gold nanoparticles on human liver normal and cancerous cells. Dose-Response, 2020, 18(2): 1559325820912154
https://doi.org/10.1177/1559325820912154
pmid: 32284699
|
91 |
I I J Alsaedi, Z J Taqi, A M A Hussien, et al.. Graphene nanoparticles induces apoptosis in MCF-7 cells through mitochondrial damage and NF-KB pathway. Materials Research Express, 2019, 6(9): 095413
https://doi.org/10.1088/2053-1591/ab33af
|
92 |
N Asare, N Duale, H H Slagsvold, et al.. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology, 2016, 10(3): 312–321
https://doi.org/10.3109/17435390.2015.1071443
pmid: 26923343
|
93 |
S Kasibhatla, G P Amarante-Mendes, D Finucane, et al.. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harbor Protocols, 2006, 2006(3): pdb. prot4493
https://doi.org/10.1101/pdb.prot4493
|
94 |
J Bucevičius, G Lukinavičius, R Gerasimaitė. The use of hoechst dyes for DNA staining and beyond. Chemosensors, 2018, 6(2): 18
https://doi.org/10.3390/chemosensors6020018
|
95 |
P Wick, S Chortarea, O T Guenat, et al.. In vitro–ex vivo model systems for nanosafety assessment. European Journal of Nanomedicine, 2015, 7(3): 169–179
https://doi.org/10.1515/ejnm-2014-0049
|
96 |
S Mahmood, U K Mandal, B Chatterjee, et al.. Advanced characterizations of nanoparticles for drug delivery: Investigating their properties through the techniques used in their evaluations. Nanotechnology Reviews, 2017, 6(4): 355–372
https://doi.org/10.1515/ntrev-2016-0050
|
97 |
R G Tardiff. In vitro methods of toxicity evaluation. Annual Review of Pharmacology and Toxicology, 1978, 18(1): 357–369
https://doi.org/10.1146/annurev.pa.18.040178.002041
pmid: 348063
|
98 |
J M Hillegass, A Shukla, S A Lathrop, et al.. Assessing nanotoxicity in cells in vitro. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2(3): 219–231
https://doi.org/10.1002/wnan.54
pmid: 20063369
|
99 |
A Astashkina, D W Grainger. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Advanced Drug Delivery Reviews, 2014, 69–70: 1–18
https://doi.org/10.1016/j.addr.2014.02.008
pmid: 24613390
|
100 |
M Ni, M Xiong, X Zhang, et al.. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. International Journal of Nanomedicine, 2015, 10: 2537–2554
https://doi.org/10.2147/IJN.S78498
pmid: 25848270
|
101 |
G Y Li, N N Osborne. Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose) polymerase and apoptosis-inducing factor. Brain Research, 2008, 1188: 35–43
https://doi.org/10.1016/j.brainres.2007.10.073
pmid: 18053973
|
102 |
S W Ryter, H P Kim, A Hoetzel, et al.. Mechanisms of cell death in oxidative stress. Antioxidants & Redox Signaling, 2007, 9(1): 49–89
https://doi.org/10.1089/ars.2007.9.49
pmid: 17115887
|
103 |
X Lu, J Qian, H Zhou, et al.. In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. International Journal of Nanomedicine, 2011, 6: 1889–1901
|
104 |
S M Browne, M Al-Rubeai. Defining viability in mammalian cell cultures. Biotechnology Letters, 2011, 33(9): 1745–1749
https://doi.org/10.1007/s10529-011-0644-2
|
105 |
V Kumar, N Sharma, S S Maitra. In vitro and in vivo toxicity assessment of nanoparticles. International Nano Letters, 2017, 7(4): 243–256
https://doi.org/10.1007/s40089-017-0221-3
|
106 |
E Borenfreund, C Shopsis. Toxicity monitored with a correlated set of cell-culture assays. Xenobiotica, 1985, 15(8–9): 705–711
https://doi.org/10.3109/00498258509047431
pmid: 4072257
|
107 |
S Magder. Reactive oxygen species: Toxic molecules or spark of life? Critical Care, 2006, 10(1): 208
https://doi.org/10.1186/cc3992
pmid: 16469133
|
108 |
A Gomes, E Fernandes, J L F C Lima. Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 2005, 65(2–3): 45–80
https://doi.org/10.1016/j.jbbm.2005.10.003
pmid: 16297980
|
109 |
A J Wagner, C A Bleckmann, R C Murdock, et al.. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages. The Journal of Physical Chemistry B, 2007, 111(25): 7353–7359
https://doi.org/10.1021/jp068938n
pmid: 17547441
|
110 |
A G Fantel. Reactive oxygen species in developmental toxicity: Review and hypothesis. Teratology, 1996, 53(3): 196–217
https://doi.org/10.1002/(SICI)1096-9926(199603)53:3<196::AID-TERA7>3.0.CO;2-2
pmid: 8761887
|
111 |
S M Hussain, A K Javorina, A M Schrand, et al.. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicological Sciences, 2006, 92(2): 456–463
https://doi.org/10.1093/toxsci/kfl020
pmid: 16714391
|
112 |
E K Sohn , Y S Chung, S A Johari, et al.. Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. Biomed Research International, 2015, 2015: 323090
https://doi.org/10.1155/2015/323090
|
113 |
G J R Delcroix, M Jacquart, L Lemaire, et al.. Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: In vitro characterization and migration potential in rat brain. Brain Research, 2009, 1255: 18–31
https://doi.org/10.1016/j.brainres.2008.12.013
pmid: 19103182
|
114 |
H Bahadar, F Maqbool, K Niaz, et al.. Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 2016, 20(1–3): 1–11
https://doi.org/10.7508/ibj.2016.01.001
|
115 |
M Davoren, E Herzog, A Casey, et al.. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicology in Vitro, 2007, 21(3): 438–448
https://doi.org/10.1016/j.tiv.2006.10.007
pmid: 17125965
|
116 |
S J Choi, J M Oh, J H Choy. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. Journal of Inorganic Biochemistry, 2009, 103(3): 463–471
https://doi.org/10.1016/j.jinorgbio.2008.12.017
pmid: 19181388
|
117 |
E Herzog, H J Byrne, A Casey, et al.. SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicology and Applied Pharmacology, 2009, 234(3): 378–390
https://doi.org/10.1016/j.taap.2008.10.015
pmid: 19041333
|
118 |
P V AshaRani, G L K Mun, M P Hande, et al.. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009, 3(2): 279–290
https://doi.org/10.1021/nn800596w
|
119 |
A R N Reddy, Y N Reddy, D R Krishna, et al.. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology, 2010, 272(1–3): 11–16
https://doi.org/10.1016/j.tox.2010.03.017
pmid: 20371264
|
120 |
V G Walker, Z Li, T Hulderman, et al.. Potential in vitro effects of carbon nanotubes on human aortic endothelial cells. Toxicology and Applied Pharmacology, 2009, 236(3): 319–328
https://doi.org/10.1016/j.taap.2009.02.018
pmid: 19268679
|
121 |
A A Shvedova, V Castranova, E R Kisin, et al.. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. Journal of Toxicology and Environmental Health Part A, 2003, 66(20): 1909–1926
https://doi.org/10.1080/713853956
pmid: 14514433
|
122 |
P Cherukuri, S M Bachilo, S H Litovsky, et al.. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. Journal of the American Chemical Society, 2004, 126(48): 15638–15639
https://doi.org/10.1021/ja0466311
pmid: 15571374
|
123 |
K Pulskamp, S Diabaté, H F Krug. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicology Letters, 2007, 168(1): 58–74
https://doi.org/10.1016/j.toxlet.2006.11.001
pmid: 17141434
|
124 |
F Hu, K G Neoh, L Cen, et al.. Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules, 2006, 7(3): 809–816
https://doi.org/10.1021/bm050870e
pmid: 16529418
|
125 |
Y Liu, W Chen, A G Joly, et al.. Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen. The Journal of Physical Chemistry B, 2006, 110(34): 16992–17000
https://doi.org/10.1021/jp063085k
pmid: 16927992
|
126 |
J Bueno. Chapter 6 - Nanotoxicity: The impact of increasing drug bioavailability. In: Shegokar R, ed. Nanopharmaceuticals. Elsevier, 2020, 121–133
|
127 |
R Vazquez-Muñoz, B Borrego, K Juárez-Moreno, et al.. Toxicity of silver nanoparticles in biological systems: Does the complexi-ty of biological systems matter? Toxicology Letters, 2017, 276: 11–20
https://doi.org/10.1016/j.toxlet.2017.05.007
pmid: 28483428
|
128 |
B H Mao, Z Y Chen, Y J Wang, et al.. Silver nanoparticles have lethal and sublethal adverse effects on development and lon-gevity by inducing ROS-mediated stress responses. Scientific Reports, 2018, 8: 2445
https://doi.org/10.1038/s41598-018-20728-z
pmid: 29402973
|
129 |
H Li, T Huang, Y Wang, et al.. Toxicity of alumina nanoparticles in the immune system of mice. Nanomedicine, 2020, 15(9): 927–946
https://doi.org/10.2217/nnm-2020-0009
pmid: 32162999
|
130 |
I M Sadiq, S Pakrashi, N Chandrasekaran, et al.. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. Journal of Nanoparticle Research, 2011, 13(8): 3287–3299
https://doi.org/10.1007/s11051-011-0243-0
|
131 |
G M Morsy, K S Abou El-Ala, A A Ali. Studies on fate and toxicity of nanoalumina in male albino rats: Lethality, bioaccumulation and genotoxicity. Toxicology and Industrial Health, 2016, 32(2): 344–359
https://doi.org/10.1177/0748233713498449
pmid: 24097360
|
132 |
I C Lee, J W Ko, S H Park, et al.. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. International Journal of Nanomedicine, 2016, 11: 2883–2900
pmid: 27366066
|
133 |
T Wang, X Long, Y Cheng, et al.. The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquatic Toxicology, 2014, 152: 96–104
https://doi.org/10.1016/j.aquatox.2014.03.023
pmid: 24742820
|
134 |
H Shi, R Magaye, V Castranova, et al.. Titanium dioxide nanoparticles: A review of current toxicological data. Particle and Fibre Toxicology, 2013, 10(1): 15
https://doi.org/10.1186/1743-8977-10-15
pmid: 23587290
|
135 |
N Uekawa, N Endo, K Ishii, et al.. Characterization of titanium oxide nanoparticles obtained by hydrolysis reaction of ethylene glycol solution of alkoxide. Journal of Nanotechnology, 2012, 102361 (8 pages)
https://doi.org/10.1155/2012/102361
|
136 |
K Lv, J Yu, L Cui, et al.. Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity. Journal of Alloys and Compounds, 2011, 509(13): 4557–4562
https://doi.org/10.1016/j.jallcom.2011.01.103
|
137 |
K S Siddiqi, A U Rahman, Tajuddin, et al.. Properties of zinc oxide nanoparticles and their activity against microbes. Nano-scale Research Letters, 2018, 13: 141
https://doi.org/10.1186/s11671-018-2532-3
pmid: 29740719
|
138 |
D Sahu, G M Kannan, R Vijayaraghavan, et al.. Nanosized zinc oxide induces toxicity in human lung cells. ISRN Toxicology, 2013, 2013: 316075
https://doi.org/10.1155/2013/316075
pmid: 23997968
|
139 |
P K Mishra, H Mishra, A Ekielski, et al.. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discovery Today, 2017, 22(12): 1825–1834
https://doi.org/10.1016/j.drudis.2017.08.006
pmid: 28847758
|
140 |
A Ali, H Zafar, M Zia, et al.. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 2016, 9: 49–67
https://doi.org/10.2147/NSA.S99986
pmid: 27578966
|
141 |
G Cotin, S Piant, D Mertz, et al.. Chapter 2 - Iron oxide nanoparticles for biomedical applications: Synthesis, functionalization, and application. In: M Mahmoudi, S Laurent, eds. Iron Oxide Nanoparticles for Biomedical Applications. Elsevier, 2018, 43–88
|
142 |
V Tiwari, N Mishra, K Gadani, et al.. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Frontiers in Microbiology, 2018, 9: 1218
https://doi.org/10.3389/fmicb.2018.01218
pmid: 29928271
|
143 |
Q Feng, Y Liu, J Huang, et al.. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Scientific Reports, 2018, 8: 2082
https://doi.org/10.1038/s41598-018-19628-z
pmid: 29391477
|
144 |
K Bladh, L K L Falk, F Rohmund. On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Applied Physics A: Materials Science & Processing, 2000, 70(3): 317–322
https://doi.org/10.1007/s003390050053
|
145 |
T K Gupta, P R Budarapu, S R Chappidi, et al.. Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 2019, 26(38): 6851–6877
https://doi.org/10.2174/0929867326666181126113605
pmid: 30474523
|
146 |
A A Kokorina, A V Ermakov, A M Abramova, et al.. Carbon nanoparticles and materials on their basis. Colloids and Interfaces, 2020, 4(4): 42
https://doi.org/10.3390/colloids4040042
|
147 |
D Maiti, X Tong, X Mou, et al.. Carbon-based nanomaterials for biomedical applications: A recent study. Frontiers in Pharmaco-logy, 2019, 9: 1401
https://doi.org/10.3389/fphar.2018.01401
pmid: 30914959
|
148 |
D Mohanta, S Patnaik, S Sood, et al.. Carbon nanotubes: Evaluation of toxicity at biointerfaces. Journal of Pharmaceutical Analysis, 2019, 9(5): 293–300
https://doi.org/10.1016/j.jpha.2019.04.003
pmid: 31929938
|
149 |
B Wan, Z X Wang, Q Y Lv, et al.. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicology Letters, 2013, 221(2): 118–127
https://doi.org/10.1016/j.toxlet.2013.06.208
pmid: 23769962
|
150 |
P X Dong, B Wan, Z X Wang, et al.. Exposure of single-walled carbon nanotubes impairs the functions of primarily cultured murine peritoneal macrophages. Nanotoxicology, 2013, 7(5): 1028–1042
https://doi.org/10.3109/17435390.2012.694487
pmid: 22632544
|
151 |
J Palomäki, P Karisola, L Pylkkänen, et al.. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology, 2010, 267(1–3): 125–131
https://doi.org/10.1016/j.tox.2009.10.034
pmid: 19897006
|
152 |
G Jia, H Wang, L Yan, et al.. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology, 2005, 39(5): 1378–1383
https://doi.org/10.1021/es048729l
pmid: 15787380
|
153 |
C Oberdörster, A Maynard, K Donaldson, et al.. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology, 2005, 2(1): 8
https://doi.org/10.1186/1743-8977-2-8
pmid: 16209704
|
154 |
I L Bergin, F A Witzmann. Nanoparticle toxicity by the gastrointestinal route: Evidence and knowledge gaps. International Journal of Biomedical Nanoscience and Nanotechnology, 2013, 3(1–2): 163–210
https://doi.org/10.1504/IJBNN.2013.054515
pmid: 24228068
|
155 |
D H Brouwer, J H J Gijsbers, M W M Lurvink. Personal exposure to ultrafine particles in the workplace: Exploring sampling techniques and strategies. The Annals of Occupational Hygiene, 2004, 48(5): 439–453
pmid: 15240340
|
156 |
C Bennat, C C Müller-Goymann. Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. International Journal of Cosmetic Science, 2000, 22(4): 271–283
https://doi.org/10.1046/j.1467-2494.2000.00009.x
pmid: 18503414
|
157 |
W H De Jong, P J A Borm. Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 2008, 3(2): 133–149
https://doi.org/10.2147/IJN.S596
pmid: 18686775
|
158 |
A M Grabrucker, C C Garner, T M Boeckers, et al.. Development of novel Zn2+ loaded nanoparticles designed for cell-type targeted drug release in CNS neurons: In vitro evidences. PLoS One, 2011, 6(3): e17851
https://doi.org/10.1371/journal.pone.0017851
pmid: 21448455
|
159 |
S Salatin, A Y Khosroushahi. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine, 2017, 21(9): 1668–1686
https://doi.org/10.1111/jcmm.13110
pmid: 28244656
|
160 |
H Li, T Y Tsui, W Ma. Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. International Journal of Molecular Sciences, 2015, 16(8): 19518–19536
https://doi.org/10.3390/ijms160819518
pmid: 26295227
|
161 |
J M Zhang, J An. Cytokines, inflammation, and pain. International Anesthesiology Clinics, 2007, 45(2): 27–37
https://doi.org/10.1097/AIA.0b013e318034194e
pmid: 17426506
|
162 |
V J Thannickal, B L Fanburg. Reactive oxygen species in cell signaling. American Journal of Physiology: Lung Cellular and Molecular Physiology, 2000, 279(6): L1005–L1028
https://doi.org/10.1152/ajplung.2000.279.6.L1005
pmid: 11076791
|
163 |
A Manke, L Y Wang, Y Rojanasakul. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International, 2013, 2013: 942916
https://doi.org/10.1155/2013/942916
|
164 |
T K Das, M R Wati, K Fatima-Shad. Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease. Archives of Neuroscience, 2015, 2(2): e20078
https://doi.org/10.5812/archneurosci.20078
|
165 |
M Ahamed, M J Akhtar, H A Alhadlaq, et al.. Assessment of the lung toxicity of copper oxide nanoparticles: Current status. Nanomedicine, 2015, 10(15): 2365–2377
https://doi.org/10.2217/nnm.15.72
pmid: 26251192
|
166 |
R Foldbjerg, D A Dang, H Autrup. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology, 2011, 85(7): 743–750
https://doi.org/10.1007/s00204-010-0545-5
pmid: 20428844
|
167 |
M L B S Jugan, S Barillet, A Simon-Deckers, et al.. Cytotoxic and genotoxic impact of TiO2 nanoparticles on A549 cells. Journal of Biomedical Nanotechnology, 2011, 7(1): 22–23
https://doi.org/10.1166/jbn.2011.1181
pmid: 21485783
|
168 |
K Kansara, P Patel, D Shah, et al.. TiO2 nanoparticles induce cytotoxicity and genotoxicity in human alveolar cells. Molecular Cytogenetics, 2014, 7(1): P77
https://doi.org/10.1186/1755-8166-7-S1-P77
pmid: 25426167
|
169 |
W G Kreyling, M Semmler-Behnke, J Seitz, et al.. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhalation Toxicology, 2009, 21(Sup1): 55–60
https://doi.org/10.1080/08958370902942517
|
170 |
T Y Poh, N A B M Ali, M Mac Aogáin, et al.. Inhaled nanomaterials and the respiratory microbiome: Clinical, immunological and toxicological perspectives. Particle and Fibre Toxicology, 2018, 15: 46
https://doi.org/10.1186/s12989-018-0282-0
pmid: 30458822
|
171 |
T A J Kuhlbusch, C Asbach, H Fissan, et al.. Nanoparticle exposure at nanotechnology workplaces: A review. Particle and Fibre Toxicology, 2011, 8(1): 22
https://doi.org/10.1186/1743-8977-8-22
pmid: 21794132
|
172 |
R Kessler. Engineered nanoparticles in consumer products: Understanding a new ingredient. Environmental Health Perspectives, 2011, 119(3): a120–a125
https://doi.org/10.1289/ehp.119-a120
pmid: 21356630
|
173 |
M Bundschuh, J Filser, S Lüderwald, et al.. Nanoparticles in the environment: Where do we come from, where do we go to? Environmental Sciences Europe, 2018, 30(1): 6
https://doi.org/10.1186/s12302-018-0132-6
pmid: 29456907
|
174 |
G Martínez, M Merinero, M Pérez-Aranda, et al.. Environmental impact of nanoparticles’ application as an emerging technology: A review. Materials, 2021, 14(1): 166
https://doi.org/10.3390/ma14010166
pmid: 33396469
|
175 |
M Dusinska, J Tulinska, N El Yamani, et al.. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food and Chemical Toxicology, 2017, 109(Pt 1): 797–811
https://doi.org/10.1016/j.fct.2017.08.030
pmid: 28847762
|
176 |
K Bhattacharya, F T Andón, R El-Sayed, et al.. Mechanisms of carbon nanotube-induced toxicity: Focus on pulmonary inflammation. Advanced Drug Delivery Reviews, 2013, 65(15): 2087–2097
https://doi.org/10.1016/j.addr.2013.05.012
pmid: 23751779
|
177 |
S K Sohaebuddin, P T Thevenot, D Baker, et al.. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Particle and Fibre Toxicology, 2010, 7(1): 22
https://doi.org/10.1186/1743-8977-7-22
pmid: 20727197
|
178 |
S C Sahu, J Zheng, L Graham, et al.. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. Journal of Applied Toxicology, 2014, 34(11): 1155–1166
https://doi.org/10.1002/jat.2994
pmid: 24522958
|
179 |
P R Hunt, B J Marquis, K M Tyner, et al.. Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. Journal of Applied Toxicology, 2013, 33(10): 1131–1142
https://doi.org/10.1002/jat.2872
pmid: 23636779
|
180 |
C Uboldi, P Urbán, D Gilliland, et al.. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicology in Vitro, 2016, 31: 137–145
https://doi.org/10.1016/j.tiv.2015.11.005
pmid: 26571344
|
181 |
H B Bostan, R Rezaee, M G Valokala, et al.. Cardiotoxicity of nano-particles. Life Sciences, 2016, 165: 91–99
https://doi.org/10.1016/j.lfs.2016.09.017
pmid: 27686832
|
182 |
Z Du, D Zhao, L Jing, et al.. Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation. Cardiovascular Toxicology, 2013, 13(3): 194–207
https://doi.org/10.1007/s12012-013-9198-y
pmid: 23322373
|
183 |
C Yang, A Tian, Z Li. Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice. Scientific Reports, 2016, 6(1): 20203
https://doi.org/10.1038/srep20203
pmid: 26830764
|
184 |
D G Rickerby, M Morrison. Nanotechnology and the environment: A European perspective. Science and Technology of Advanced Materials, 2007, 8(1–2): 19–24
https://doi.org/10.1016/j.stam.2006.10.002
|
185 |
A Kahru, H C Dubourguier. From ecotoxicology to nanoecotoxi-cology. Toxicology, 2010, 269(2–3): 105–119
https://doi.org/10.1016/j.tox.2009.08.016
pmid: 19732804
|
186 |
M Lv, W Huang, Z Chen, et al.. Metabolomics techniques for nanotoxicity investigations. Bioanalysis, 2015, 7(12): 1527–1544
https://doi.org/10.4155/bio.15.83
pmid: 26168257
|
187 |
A Yan, Z Chen. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Sciences, 2019, 20(5): 1003
https://doi.org/10.3390/ijms20051003
pmid: 30813508
|
188 |
M H Siddiqui, M H Al-Whaibi, M Faisal, et al.. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry, 2014, 33(11): 2429–2437
https://doi.org/10.1002/etc.2697
pmid: 25066835
|
189 |
U Song, H Jun, B Waldman, et al.. Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety, 2013, 93: 60–67
https://doi.org/10.1016/j.ecoenv.2013.03.033
pmid: 23651654
|
190 |
S Bouguerra, A Gavina, M Ksibi, et al.. Ecotoxicity of titanium silicon oxide (TiSiO4) nanomaterial for terrestrial plants and soil invertebrate species. Ecotoxicology and Environmental Safety, 2016, 129: 291–301
https://doi.org/10.1016/j.ecoenv.2016.03.038
pmid: 27060256
|
191 |
M Kumari, S S Khan, S Pakrashi, et al.. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. Journal of Hazardous Materials, 2011, 190(1–3): 613–621
https://doi.org/10.1016/j.jhazmat.2011.03.095
pmid: 21501923
|
192 |
Y Wang, J Hu, Z Dai, et al.. In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiology and Biochemistry, 2016, 108: 353–360
https://doi.org/10.1016/j.plaphy.2016.08.003
pmid: 27518375
|
193 |
J M Exbrayat, E N Moudilou, E Lapied. Harmful effects of nanoparticles on animals. Journal of Nanotechnology, 2015, 2015: 861092
https://doi.org/10.1155/2015/861092
|
194 |
E J Petersen, Q Huang, W J Weber. Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environmental Science & Technology, 2008, 42(8): 3090–3095
https://doi.org/10.1021/es071366f
pmid: 18497171
|
195 |
R D Handy, T B Henry, T M Scown, et al.. Manufactured nanoparticles: Their uptake and effects on fish — A mechanistic analysis. Ecotoxicology, 2008, 17(5): 396–409
https://doi.org/10.1007/s10646-008-0205-1
pmid: 18408995
|
196 |
C Krishnaraj, S L Harper, S I Yun. In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult zebrafish (Danio rerio). Journal of Hazardous Materials, 2016, 301: 480–491
https://doi.org/10.1016/j.jhazmat.2015.09.022
pmid: 26414925
|
197 |
M Myrzakhanova, C Gambardella, C Falugi, et al.. Effects of nanosilver exposure on cholinesterase activities, CD41, and CDF/LIF-like expression in zebrafish (Danio rerio) larvae. BioMed Research International, 2013, 2013: 205183
https://doi.org/10.1155/2013/205183
pmid: 23991412
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|