Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2021, Vol. 15 Issue (4) : 512-542    https://doi.org/10.1007/s11706-021-0570-8
REVIEW ARTICLE
Pathways of nanotoxicity: Modes of detection, impact, and challenges
Deepshikha GUPTA(), Parul YADAV, Devesh GARG, Tejendra K. GUPTA
Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
 Download: PDF(3051 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanotoxicology has become the subject of intense research for more than two decades. Thousands of articles have been published but the space in understanding the nanotoxicity mechanism and the assessment is still unclear. Recent researches clearly show potential benefits of nanomaterials (NMs) in diagnostics and treatment, targeted drug delivery, and tissue engineering owing to their excellent physicochemical properties. However, these NMs display hazardous health effect then to the greater part of the materials because of small size, large surface area-to-volume ratio, quantum size effects, and environmental factors. Nowadays, a large number of NMs are used in industrial products including several medical applications, consumer, and healthcare products. However, they came into the environment without any safety test. The measurement of toxicity level has become important because of increasing toxic effects on living organisms. New realistic mechanism-based strategies are still needed to determine the toxic effects of NMs. For the assessment of NMs toxicity, reliable and standardized procedures are necessary. This review article provides systematic studies on toxicity of NMs involving manufacturing, environmental factors, eco-toxic and genotoxic effects, some parameters which have been ignored of NMs versus their biological counterparts, cell heterogeneity, and their current challenges and future perspectives.

Keywords nanomaterial      nanotoxicity      cytotoxicity, genotoxicity      in-vivo and in-vitro toxicity      reactive oxygen species     
Corresponding Author(s): Deepshikha GUPTA   
Online First Date: 15 December 2021    Issue Date: 28 December 2021
 Cite this article:   
Deepshikha GUPTA,Parul YADAV,Devesh GARG, et al. Pathways of nanotoxicity: Modes of detection, impact, and challenges[J]. Front. Mater. Sci., 2021, 15(4): 512-542.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-021-0570-8
https://academic.hep.com.cn/foms/EN/Y2021/V15/I4/512
Fig.1  Mechanisms and factors for toxicity of NPs.
Fig.2  The various metallic and non-metallic NMs imposing toxicity.
S/No Organism/cell lines Test name Toxic effect of NPs Ref.
1 S. aureus, E. coli Visual turbidity assay (MIC and MBC) measuring optical density Antibacterial efficiency of NMs [79]
2 Escherichia coli Green fluorescence protein expression assay Antibacterial efficiency of NMs [80]
3 Escherichia coli Disc diffusion method Antibacterial assay [81]
4 Eukaryotic cell Trypan blue cell viability assay by staining dead cells Cell viability assay for measuring cytotoxicity of NPs [82]
5 Eukaryotic cell lines like BHK21 (baby hamster kidney); HT29 (human colorectal-adenocarcinoma), MCF-7 (breast cancer cell line), A549 (lung cancer cell line) MTT assay measuring absorbance using microplate reader Cell viability assay to measure cytotoxicity (IC50) of NMs [83]
6 Eukaryotic cell (blood cells from human or animal model) Hemocompatibility assay using light microscopy Substrate adhesion and viability [84]
7 Salmonella typhimurium, Escherichia coli AMES assay Genotoxicity, DNA oxidative damage [85]
8 Eukaryotic cell COMET assay, DNA laddering assay by gel electrophoresis Genotoxicity, DNA oxidative damage [8687]
9 Eukaryotic cell lines BHK21; HT29 Flow cytometry uses light scattering and florescence property of cells Necrotic, apoptotic, early and late apoptotic cells can be differentiated with fluorescence signals [88]
10 Eukaryotic cell lines A549, MCF-7 ROS assay using flow cytometry (IC50) is measured (DCFDA, a non-fluorescent dye in presence of ROS convert into DCF that is fluorescence) Oxidative stress of NPs can trigger the p53 mediated apoptotic pathway leading to MMP and up regulation of caspase-3 gene [89]
11 MCF-7 and other eukaryotic cell lines Loss of mitochondrial membrane potential (MMP) by staining with Rhodamine 123 dye Early apoptosis is indicated by loss in red fluorescence due to Rhodamine uptake by NPs treated cells [9091]
12 MCF-7 and other eukaryotic cell lines Gene expression of pro-apoptotic genes (caspase 3) and anti-apoptotic genes (bcl2) by RT-PCR analysis Genotoxicity of NPs (expression is more in case of pro-apoptotic genes and expression is downregulated by anti-apoptotic gene expression) [92]
13 HT29, BHK21 eukaryotic cell lines Acridine orange/ethidium bromide (AO/EB) staining method (fluorescent DNA intercalating dye) for membrane compromised cells Apoptosis and necrosis of cells against NPs can be checked [93]
14 Eukaryotic cell lines A549, MCF-7 Hoechst 33342/rhodamine B staining method (rhodamine is a membrane permeable dye staining the mitochondria and cytoplasm red while Hoechst 33342 stains the double stranded DNA blue) Live cell monitoring assay/time dependent study used to differentiate between pycnotic nuclei from normal nuclei to check the effect of NPs [94]
15 Eukaryotic cell Development of micro-organ from cultured nasal epithelium line embryonic heart Gene expression and altered development [95]
16 A549, MCF-7, BHK21 cells SEM, TEM, AFM Cell morphology/roughness/shape study for checking apoptotic cells [96]
Tab.1  List of various in-vitro methods to measure nanotoxicity [7996]
Fig.3  Important outcomes of in-vitro and in-vivo toxicity methods.
Fig.4  The main pathways of NPs endocytosis. Reproduced with permission from Ref. [159].
Fig.5  Schematic illustration depicting NM-induced cytotoxicity.
Fig.6  Toxicity of Ag NPs in plant. Reproduced with permission from Ref. [187].
Fig.7  Flowchart representing the routes of nanotoxicity involving the food chain and other pathways with their impact.
1 G V Lowry, K B Gregory, S C Apte, et al.. Transformations of nanomaterials in the environment. Environmental Science & Technology, 2012, 46(13): 6893–6899
https://doi.org/10.1021/es300839e pmid: 22582927
2 R B Shinde, M Veerapandian, A Kaushik, et al.. State-of-art bio-assay systems and electrochemical approaches for nanotoxicity assessment. Frontiers in Bioengineering and Biotechnology, 2020, 8: 325
https://doi.org/10.3389/fbioe.2020.00325 pmid: 32411681
3 J Jeevanandam, A Barhoum, Y S Chan, et al.. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 2018, 9: 1050–1074
https://doi.org/10.3762/bjnano.9.98 pmid: 29719757
4 B D Malhotra, M A Ali. Chapter 1 - Nanomaterials in biosensors: Fundamentals and applications. In: Malhotra B D, Ali M A, eds. Nanomaterials for Biosensors. William Andrew Publishing, 2018, 1–74
5 N Musee. Nanowastes and the environment: Potential new waste management paradigm. Environment International, 2011, 37(1): 112–128
https://doi.org/10.1016/j.envint.2010.08.005 pmid: 20832119
6 S Griffin, M I Masood, M J Nasim, et al.. Natural nanoparticles: A particular matter inspired by nature. Antioxidants, 2017, 7(1): 3
https://doi.org/10.3390/antiox7010003 pmid: 29286304
7 J Zuo, T Jiang, X Zhao, et al.. Preparation and application of fluorescent carbon dots. Journal of Nanomaterials, 2015, 2015: 787862
https://doi.org/10.1155/2015/787862
8 M Ajdary, M A Moosavi, M Rahmati, et al.. Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials, 2018, 8(9): 634
https://doi.org/10.3390/nano8090634 pmid: 30134524
9 P Kush, P Kumar, R Singh, et al.. Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application. Asian Journal of Pharmaceutical Sciences, 2021 (in press)
https://doi.org/10.1016/j.ajps.2021.05.005
10 R Gupta, H Xie. Nanoparticles in daily life: Applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology, 2018, 37(3): 209–230
https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009 pmid: 30317972
11 J K Patra, G Das, L F Fraceto, et al.. Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 2018, 16(1): 71
https://doi.org/10.1186/s12951-018-0392-8 pmid: 30231877
12 C Buzea, I I Pacheco, K Robbie. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007, 2(4): MR17–MR71
https://doi.org/10.1116/1.2815690 pmid: 20419892
13 M Y Wani, M A Hashim, F Nabi, et al.. Nanotoxicity: Dimensional and morphological concerns. Advances in Physical Chemistry, 2011, 450912 (15 pages)
https://doi.org/10.1155/2011/450912
14 Y Zhang, M K Ram, E K Stefanakos, et al.. Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012, 2012: 624520
https://doi.org/10.1155/2012/624520
15 A Erofeev, P Gorelkin, A Garanina, et al.. Novel method for rapid toxicity screening of magnetic nanoparticles. Scientific Reports, 2018, 8(1): 7462
https://doi.org/10.1038/s41598-018-25852-4 pmid: 29748550
16 G Gellert. Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence. Ecotoxicology and Environmental Safety, 2000, 45(1): 87–91
https://doi.org/10.1006/eesa.1999.1849 pmid: 10677271
17 X Yuan, X Zhang, L Sun, et al.. Cellular toxicity and immunological effects of carbon-based nanomaterials. Particle and Fibre Toxicology, 2019, 16: 18
https://doi.org/10.1186/s12989-019-0299-z pmid: 30975174
18 S W Shin, I H Song, S H Um. Role of physicochemical properties in nanoparticle toxicity. Nanomaterials, 2015, 5(3): 1351–1365
https://doi.org/10.3390/nano5031351 pmid: 28347068
19 M A Iqbal, S Md, J K Sahni, et al.. Nanostructured lipid carriers system: Recent advances in drug delivery. Journal of Drug Targeting, 2012, 20(10): 813–830
https://doi.org/10.3109/1061186X.2012.716845 pmid: 22931500
20 J Rose, M Auffan, O Proux, et al.. Physicochemical properties of nanoparticles in relation with toxicity. In: Bhushan B, ed. Encyclopedia of Nanotechnology. Dordrecht: Springer Netherlands, 2012, 2085
21 A Sukhanova, S Bozrova, P Sokolov, et al.. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Research Letters, 2018, 13(1): 44
https://doi.org/10.1186/s11671-018-2457-x pmid: 29417375
22 A R Gliga, S Skoglund, I O Wallinder, et al.. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Particle and Fibre Toxicology, 2014, 11(1): 11
https://doi.org/10.1186/1743-8977-11-11 pmid: 24529161
23 A Albanese, P S Tang, W C W Chan. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 2012, 14(1): 1–16
https://doi.org/10.1146/annurev-bioeng-071811-150124 pmid: 22524388
24 S Huo, S Jin, X Ma, et al.. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano, 2014, 8(6): 5852–5862
https://doi.org/10.1021/nn5008572 pmid: 24824865
25 B Viswanath, S Kim. Influence of nanotoxicity on human health and environment: The alternative strategies. In: de Voogt P, ed. Reviews of Environmental Contamination and Toxicology. Cham, Switzerland: Springer International Publishing, 2017, 61–104
26 H H Agus, M Hornsby, M Chen, et al.. Outstanding reviewers for toxicology research in 2017. Toxicology Research, 2018, 7(3): 320
https://doi.org/10.1039/c8tx90009d
27 C Contini, J W Hindley, T J Macdonald, et al.. Size dependency of gold nanoparticles interacting with model membranes. Communications Chemistry, 2020, 3(1): 130
https://doi.org/10.1038/s42004-020-00377-y pmid: 33829115
28 T H Kim, M Kim, H S Park, et al.. Size-dependent cellular toxicity of silver nanoparticles. Journal of Biomedical Materials Research Part A, 2012, 100A(4): 1033–1043
https://doi.org/10.1002/jbm.a.34053 pmid: 22308013
29 Z Li, T Hulderman, R Salmen, et al.. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environmental Health Perspectives, 2007, 115(3): 377–382
https://doi.org/10.1289/ehp.9688 pmid: 17431486
30 W Hu, C Peng, M Lv, et al.. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano, 2011, 5(5): 3693–3700
https://doi.org/10.1021/nn200021j pmid: 21500856
31 L Ou, B Song, H Liang, et al.. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Particle and Fibre Toxicology, 2016, 13(1): 57
https://doi.org/10.1186/s12989-016-0168-y pmid: 27799056
32 O Schmid, T Stoeger. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. Journal of Aerosol Science, 2016, 99: 133–143
https://doi.org/10.1016/j.jaerosci.2015.12.006
33 A S Karakoti, L L Hench, S Seal. The potential toxicity of nanomaterials — The role of surfaces. JOM, 2006, 58(7): 77–82
https://doi.org/10.1007/s11837-006-0147-0
34 L K Limbach, Y Li, R N Grass, et al.. Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environmental Science & Technology, 2005, 39(23): 9370–9376
https://doi.org/10.1021/es051043o pmid: 16382966
35 J Cho, K Kushiro, Y Teramura, et al.. Lectin-tagged fluorescent polymeric nanoparticles for targeting of sialic acid on living cells. Biomacromolecules, 2014, 15(6): 2012–2018
https://doi.org/10.1021/bm500159r pmid: 24761752
36 A M El Badawy, R G Silva, B Morris, et al.. Surface charge-dependent toxicity of silver nanoparticles. Environmental Science & Technology, 2011, 45(1): 283–287
https://doi.org/10.1021/es1034188 pmid: 21133412
37 H Bahadar, F Maqbool, K Niaz, et al.. Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 2016, 20(1): 1–11
pmid: 26286636
38 B Fubini, A Hubbard. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radical Biology and Medicine, 2003, 34(12): 1507–1516
https://doi.org/10.1016/s0891-5849(03)00149-72009 pmid: 19893513
39 G Rathee, G Bartwal, J Rathee, et al.. Emerging multi-model zirconia nanosystems for high-performance biomedical applications. Advanced NanoBiomed Research, 2021, 2100039
https://doi.org/10.1002/anbr.202100039
40 J Zhu, X Ou, J Su, et al.. The impacts of surface polarity on the solubility of nanoparticle. The Journal of Chemical Physics, 2016, 145(4): 044504
https://doi.org/10.1063/1.4959805 pmid: 27475378
41 M Dusinska, S Boland, M Saunders, et al.. Towards an alternative testing strategy for nanomaterials used in nanomedicine: Lessons from NanoTEST. Nanotoxicology, 2015, 9(Sup1): 118–132
https://doi.org/10.3109/17435390.2014.991431
42 A Nel, T Xia, L Mädler, et al.. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622–627
https://doi.org/10.1126/science.1114397 pmid: 16456071
43 J Schmidt, W Vogelsberger. Aqueous long-term solubility of titania nanoparticles and titanium(IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. Journal of Solution Chemistry, 2009, 38(10): 1267–1282
https://doi.org/10.1007/s10953-009-9445-9
44 K Donaldson, V Stone. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Annali dell’Istituto Superiore di Sanita, 2003, 39(3): 405–410
pmid: 15098562
45 M L Avramescu, P E Rasmussen, M Chénier, et al.. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials. Environmental Science and Pollution Research International, 2017, 24(2): 1553–1564
https://doi.org/10.1007/s11356-016-7932-2 pmid: 27785722
46 A Thakuria, B Kataria, D Gupta. Nanoparticle-based methodo-logies for targeted drug delivery — An insight. Journal of Nanoparticle Research, 2021, 23(4): 87
https://doi.org/10.1007/s11051-021-05190-9
47 B Annangi, L Rubio, M Alaraby, et al.. Acute and long-term in vitro effects of zinc oxide nanoparticles. Archives of Toxicology, 2016, 90(9): 2201–2213
https://doi.org/10.1007/s00204-015-1613-7 pmid: 26449478
48 M Wang, Y Zhang, Xu M, et al. Roles of TRPA1 and TRPV1 in cigarette smoke-induced airway epithelial cell injury model. Free Radical Biology and Medicine, 2019, 134: 229–238
https://doi.org/10.1016/j.freeradbiomed.2019.01.004
49 Y Huang, L Ding, C Li, et al.. Safety issue of changed nanotoxicity of zinc oxide nanoparticles in the multicomponent system. Particle & Particle Systems Characterization, 2019, 36(10): 1900214
https://doi.org/10.1002/ppsc.201900214
50 E Assadian, M H Zarei, A G Gilani, et al.. Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biological Trace Element Research, 2018, 184(2): 350–357
https://doi.org/10.1007/s12011-017-1170-4 pmid: 29064010
51 H L Karlsson, P Cronholm, J Gustafsson, et al.. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 2008, 21(9): 1726–1732
https://doi.org/10.1021/tx800064j pmid: 18710264
52 Z Chen, H Meng, G Xing, et al.. Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 2006, 163(2): 109–120
https://doi.org/10.1016/j.toxlet.2005.10.003 pmid: 16289865
53 N S Tulve, A B Stefaniak, M E Vance, et al.. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures. International Journal of Hygiene and Environmental Health, 2015, 218(3): 345–357
https://doi.org/10.1016/j.ijheh.2015.02.002 pmid: 25747543
54 C N Lok, C M Ho, R Chen, et al.. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 2006, 5(4): 916–924
https://doi.org/10.1021/pr0504079 pmid: 16602699
55 F Grande, P Tucci. Titanium dioxide nanoparticles: A risk for human health? Mini-Reviews in Medicinal Chemistry, 2016, 16(9): 762–769
https://doi.org/10.2174/1389557516666160321114341 pmid: 26996620
56 M Tsoli, H Kuhn, W Brandau, et al.. Cellular uptake and toxicity of Au55 clusters. Small, 2005, 1(8–9): 841–844
https://doi.org/10.1002/smll.200500104 pmid: 17193536
57 L W Chen, Y C Hao, Y Guo, et al.. Metal-organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation. Journal of the American Chemical Society, 2021, 143(15): 5727–5736
https://doi.org/10.1021/jacs.0c13342 pmid: 33847495
58 C A Simpson, K J Salleng, D E Cliffel, et al.. In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine: Nanotechnology Biology and Medicine, 2013, 9(2): 257–263
https://doi.org/10.1016/j.nano.2012.06.002 pmid: 22772047
59 M K Choi, J Yang, T Hyeon, et al.. Flexible quantum dot light-emitting diodes for next-generation displays. NPJ Flexible Electronics, 2018, 2(1): 10
https://doi.org/10.1038/s41528-018-0023-3
60 Y Shirasaki, G J Supran, M G Bawendi, et al.. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2013, 7(1): 13–23
https://doi.org/10.1038/nphoton.2012.328
61 J P Ryman-Rasmussen, J E Riviere, N A Monteiro-Riviere. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicological Sciences, 2006, 91(1): 159–165
https://doi.org/10.1093/toxsci/kfj122 pmid: 16443688
62 A Hoshino, K Fujioka, T Oku, et al.. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Letters, 2004, 4(11): 2163–2169
https://doi.org/10.1021/nl048715d
63 O Erol, I Uyan, M Hatip, et al.. Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomedicine: Nanotechnology Biology and Medicine, 2018, 14(7): 2433–2454
https://doi.org/10.1016/j.nano.2017.03.021 pmid: 28552644
64 T K Gupta, P R Budarapu, S R Chappidi, et al.. Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 2019, 26(38): 6851–6877
https://doi.org/10.2174/0929867326666181126113605 pmid: 30474523
65 T K Gupta, B P Singh, S Teotia, et al.. Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials. Journal of Polymer Research, 2013, 20(6): 169
https://doi.org/10.1007/s10965-013-0169-6
66 Y Morimoto, M Horie, N Kobayashi, et al.. Inhalation toxicity assessment of carbon-based nanoparticles. Accounts of Chemical Research, 2013, 46(3): 770–781
https://doi.org/10.1021/ar200311b pmid: 22574947
67 K Fujita, M Fukuda, S Endoh, et al.. Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity. Inhalation Toxicology, 2015, 27(4): 207–223
https://doi.org/10.3109/08958378.2015.1026620 pmid: 25865113
68 E A Frank, V S Carreira, M E Birch, et al.. Carbon nanotube and asbestos exposures induce overlapping but distinct profiles of lung pathology in non-Swiss albino CF-1 mice. Toxicologic Pathology, 2016, 44(2): 211–225
https://doi.org/10.1177/0192623315620587 pmid: 26839332
69 A P D T Francis, T Devasena. Toxicity of carbon nanotubes: A review. Toxicology and Industrial Health, 2018, 34(3): 200–210
https://doi.org/10.1177/0748233717747472 pmid: 29506458
70 B Lin, H Zhang, Z Lin, et al.. Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts. Nanoscale Research Letters, 2013, 8: 236
https://doi.org/10.1186/1556-276X-8-236 pmid: 23680025
71 W Zheng, W McKinney, M Kashon, et al.. The influence of inhaled multi-walled carbon nanotubes on the autonomic nervous system. Particle and Fibre Toxicology, 2016, 13(1): 8
https://doi.org/10.1186/s12989-016-0119-7 pmid: 26864021
72 O Akhavan, E Ghaderi, H Emamy, et al.. Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon, 2013, 54: 419–431
https://doi.org/10.1016/j.carbon.2012.11.058
73 A Wang, K Pu, B Dong, et al.. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. Journal of Applied Toxicology, 2013, 33(10): 1156–1164
https://doi.org/10.1002/jat.2877 pmid: 23775274
74 K Aschberger, H J Johnston, V Stone, et al.. Review of fullerene toxicity and exposure — Appraisal of a human health risk assessment, based on open literature. Regulatory Toxicology and Pharmacology, 2010, 58(3): 455–473
https://doi.org/10.1016/j.yrtph.2010.08.017 pmid: 20800639
75 S Murugadoss, D Lison, L Godderis, et al.. Toxicology of silica nanoparticles: An update. Archives of Toxicology, 2017, 91(9): 2967–3010
https://doi.org/10.1007/s00204-017-1993-y pmid: 28573455
76 M Ahamed, M Karns, M Goodson, et al.. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology, 2008, 233(3): 404–410
https://doi.org/10.1016/j.taap.2008.09.015 pmid: 18930072
77 S Parasuraman. Toxicological screening. Journal of Pharmacolo-gy & Pharmacotherapeutics, 2011, 2(2): 74–79
https://doi.org/10.4103/0976-500X.81895 pmid: 21772764
78 F Marano, F Rodrigues-Lima, J M Dupret, et al.. Cellular mecha-nisms of nanoparticle toxicity. In: Bhushan B, ed. Encyclopedia of Nanotechnology. Dordrecht: Springer Netherlands, 2016, 498–505
79 C H Teh, W A Nazni, A H Nurulhusna, et al.. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiology, 2017, 17(1): 36
https://doi.org/10.1186/s12866-017-0936-3 pmid: 28209130
80 M R Soboleski, J Oaks, W P Halford. Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. The FASEB Journal, 2005, 19: 440–442
https://doi.org/10.1096/fj.04-3180fje pmid: 15640280
81 M Balouiri, M Sadiki, S K Ibnsouda. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 2016, 6(2): 71–79
https://doi.org/10.1016/j.jpha.2015.11.005 pmid: 29403965
82 W. Strober Trypan blue exclusion test of cell viability. Current Protocols in Immunology, 2015, 111: A3.B.1–A3.B.3
https://doi.org/10.1002/0471142735.ima03bs111
83 M Vinken, V Rogiers, eds. Protocols in In Vitro Hepatocyte Research. Humana Press, 2015
84 M Zhao, D Li, L Yuan, et al.. Differences in cytocompatibility and hemocompatibility between carbon nanotubes and nitrogen-doped carbon nanotubes. Carbon, 2011, 49(9): 3125–3133
https://doi.org/10.1016/j.carbon.2011.03.037
85 H R Kim, Y J Park, D Y Shin, et al.. Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. Environmental Health and Toxicology, 2013, 28: e2013003
https://doi.org/10.5620/eht.2013.28.e2013003 pmid: 23440978
86 S Gurunathan, J W Han, V Eppakayala, et al.. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Research International, 2013, 2013: 535796
https://doi.org/10.1155/2013/535796 pmid: 23936814
87 V Kumar, N Sharma, S S Maitra. In vitro and in vivo toxicity assessment of nanoparticles. International Nano Letters, 2017, 7(4): 243–256
https://doi.org/10.1007/s40089-017-0221-3
88 Y R Saadat, N Saeidi, S Z Vahed, et al.. An update to DNA ladder assay for apoptosis detection. BioImpacts, 2015, 5(1): 25–28
https://doi.org/10.15171/bi.2015.01 pmid: 25901294
89 H Y Chang, H C Huang, T C Huang, et al.. Flow cytometric detection of reactive oxygen species. Bio-Protocol, 2013, 3(8): e431
https://doi.org/10.21769/BioProtoc.431
90 M N Bin-Jumah, M Al-Abdan, G Al-Basher, et al.. Molecular mechanism of cytotoxicity, genotoxicity, and anticancer potential of green gold nanoparticles on human liver normal and cancerous cells. Dose-Response, 2020, 18(2): 1559325820912154
https://doi.org/10.1177/1559325820912154 pmid: 32284699
91 I I J Alsaedi, Z J Taqi, A M A Hussien, et al.. Graphene nanoparticles induces apoptosis in MCF-7 cells through mitochondrial damage and NF-KB pathway. Materials Research Express, 2019, 6(9): 095413
https://doi.org/10.1088/2053-1591/ab33af
92 N Asare, N Duale, H H Slagsvold, et al.. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology, 2016, 10(3): 312–321
https://doi.org/10.3109/17435390.2015.1071443 pmid: 26923343
93 S Kasibhatla, G P Amarante-Mendes, D Finucane, et al.. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harbor Protocols, 2006, 2006(3): pdb. prot4493
https://doi.org/10.1101/pdb.prot4493
94 J Bucevičius, G Lukinavičius, R Gerasimaitė. The use of hoechst dyes for DNA staining and beyond. Chemosensors, 2018, 6(2): 18
https://doi.org/10.3390/chemosensors6020018
95 P Wick, S Chortarea, O T Guenat, et al.. In vitro–ex vivo model systems for nanosafety assessment. European Journal of Nanomedicine, 2015, 7(3): 169–179
https://doi.org/10.1515/ejnm-2014-0049
96 S Mahmood, U K Mandal, B Chatterjee, et al.. Advanced characterizations of nanoparticles for drug delivery: Investigating their properties through the techniques used in their evaluations. Nanotechnology Reviews, 2017, 6(4): 355–372
https://doi.org/10.1515/ntrev-2016-0050
97 R G Tardiff. In vitro methods of toxicity evaluation. Annual Review of Pharmacology and Toxicology, 1978, 18(1): 357–369
https://doi.org/10.1146/annurev.pa.18.040178.002041 pmid: 348063
98 J M Hillegass, A Shukla, S A Lathrop, et al.. Assessing nanotoxicity in cells in vitro. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2(3): 219–231
https://doi.org/10.1002/wnan.54 pmid: 20063369
99 A Astashkina, D W Grainger. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Advanced Drug Delivery Reviews, 2014, 69–70: 1–18
https://doi.org/10.1016/j.addr.2014.02.008 pmid: 24613390
100 M Ni, M Xiong, X Zhang, et al.. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. International Journal of Nanomedicine, 2015, 10: 2537–2554
https://doi.org/10.2147/IJN.S78498 pmid: 25848270
101 G Y Li, N N Osborne. Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose) polymerase and apoptosis-inducing factor. Brain Research, 2008, 1188: 35–43
https://doi.org/10.1016/j.brainres.2007.10.073 pmid: 18053973
102 S W Ryter, H P Kim, A Hoetzel, et al.. Mechanisms of cell death in oxidative stress. Antioxidants & Redox Signaling, 2007, 9(1): 49–89
https://doi.org/10.1089/ars.2007.9.49 pmid: 17115887
103 X Lu, J Qian, H Zhou, et al.. In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. International Journal of Nanomedicine, 2011, 6: 1889–1901
104 S M Browne, M Al-Rubeai. Defining viability in mammalian cell cultures. Biotechnology Letters, 2011, 33(9): 1745–1749
https://doi.org/10.1007/s10529-011-0644-2
105 V Kumar, N Sharma, S S Maitra. In vitro and in vivo toxicity assessment of nanoparticles. International Nano Letters, 2017, 7(4): 243–256
https://doi.org/10.1007/s40089-017-0221-3
106 E Borenfreund, C Shopsis. Toxicity monitored with a correlated set of cell-culture assays. Xenobiotica, 1985, 15(8–9): 705–711
https://doi.org/10.3109/00498258509047431 pmid: 4072257
107 S Magder. Reactive oxygen species: Toxic molecules or spark of life? Critical Care, 2006, 10(1): 208
https://doi.org/10.1186/cc3992 pmid: 16469133
108 A Gomes, E Fernandes, J L F C Lima. Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 2005, 65(2–3): 45–80
https://doi.org/10.1016/j.jbbm.2005.10.003 pmid: 16297980
109 A J Wagner, C A Bleckmann, R C Murdock, et al.. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages. The Journal of Physical Chemistry B, 2007, 111(25): 7353–7359
https://doi.org/10.1021/jp068938n pmid: 17547441
110 A G Fantel. Reactive oxygen species in developmental toxicity: Review and hypothesis. Teratology, 1996, 53(3): 196–217
https://doi.org/10.1002/(SICI)1096-9926(199603)53:3<196::AID-TERA7>3.0.CO;2-2 pmid: 8761887
111 S M Hussain, A K Javorina, A M Schrand, et al.. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicological Sciences, 2006, 92(2): 456–463
https://doi.org/10.1093/toxsci/kfl020 pmid: 16714391
112 E K Sohn , Y S Chung, S A Johari, et al.. Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. Biomed Research International, 2015, 2015: 323090
https://doi.org/10.1155/2015/323090
113 G J R Delcroix, M Jacquart, L Lemaire, et al.. Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: In vitro characterization and migration potential in rat brain. Brain Research, 2009, 1255: 18–31
https://doi.org/10.1016/j.brainres.2008.12.013 pmid: 19103182
114 H Bahadar, F Maqbool, K Niaz, et al.. Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 2016, 20(1–3): 1–11
https://doi.org/10.7508/ibj.2016.01.001
115 M Davoren, E Herzog, A Casey, et al.. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicology in Vitro, 2007, 21(3): 438–448
https://doi.org/10.1016/j.tiv.2006.10.007 pmid: 17125965
116 S J Choi, J M Oh, J H Choy. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. Journal of Inorganic Biochemistry, 2009, 103(3): 463–471
https://doi.org/10.1016/j.jinorgbio.2008.12.017 pmid: 19181388
117 E Herzog, H J Byrne, A Casey, et al.. SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicology and Applied Pharmacology, 2009, 234(3): 378–390
https://doi.org/10.1016/j.taap.2008.10.015 pmid: 19041333
118 P V AshaRani, G L K Mun, M P Hande, et al.. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009, 3(2): 279–290
https://doi.org/10.1021/nn800596w
119 A R N Reddy, Y N Reddy, D R Krishna, et al.. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology, 2010, 272(1–3): 11–16
https://doi.org/10.1016/j.tox.2010.03.017 pmid: 20371264
120 V G Walker, Z Li, T Hulderman, et al.. Potential in vitro effects of carbon nanotubes on human aortic endothelial cells. Toxicology and Applied Pharmacology, 2009, 236(3): 319–328
https://doi.org/10.1016/j.taap.2009.02.018 pmid: 19268679
121 A A Shvedova, V Castranova, E R Kisin, et al.. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. Journal of Toxicology and Environmental Health Part A, 2003, 66(20): 1909–1926
https://doi.org/10.1080/713853956 pmid: 14514433
122 P Cherukuri, S M Bachilo, S H Litovsky, et al.. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. Journal of the American Chemical Society, 2004, 126(48): 15638–15639
https://doi.org/10.1021/ja0466311 pmid: 15571374
123 K Pulskamp, S Diabaté, H F Krug. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicology Letters, 2007, 168(1): 58–74
https://doi.org/10.1016/j.toxlet.2006.11.001 pmid: 17141434
124 F Hu, K G Neoh, L Cen, et al.. Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules, 2006, 7(3): 809–816
https://doi.org/10.1021/bm050870e pmid: 16529418
125 Y Liu, W Chen, A G Joly, et al.. Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen. The Journal of Physical Chemistry B, 2006, 110(34): 16992–17000
https://doi.org/10.1021/jp063085k pmid: 16927992
126 J Bueno. Chapter 6 - Nanotoxicity: The impact of increasing drug bioavailability. In: Shegokar R, ed. Nanopharmaceuticals. Elsevier, 2020, 121–133
127 R Vazquez-Muñoz, B Borrego, K Juárez-Moreno, et al.. Toxicity of silver nanoparticles in biological systems: Does the complexi-ty of biological systems matter? Toxicology Letters, 2017, 276: 11–20
https://doi.org/10.1016/j.toxlet.2017.05.007 pmid: 28483428
128 B H Mao, Z Y Chen, Y J Wang, et al.. Silver nanoparticles have lethal and sublethal adverse effects on development and lon-gevity by inducing ROS-mediated stress responses. Scientific Reports, 2018, 8: 2445
https://doi.org/10.1038/s41598-018-20728-z pmid: 29402973
129 H Li, T Huang, Y Wang, et al.. Toxicity of alumina nanoparticles in the immune system of mice. Nanomedicine, 2020, 15(9): 927–946
https://doi.org/10.2217/nnm-2020-0009 pmid: 32162999
130 I M Sadiq, S Pakrashi, N Chandrasekaran, et al.. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. Journal of Nanoparticle Research, 2011, 13(8): 3287–3299
https://doi.org/10.1007/s11051-011-0243-0
131 G M Morsy, K S Abou El-Ala, A A Ali. Studies on fate and toxicity of nanoalumina in male albino rats: Lethality, bioaccumulation and genotoxicity. Toxicology and Industrial Health, 2016, 32(2): 344–359
https://doi.org/10.1177/0748233713498449 pmid: 24097360
132 I C Lee, J W Ko, S H Park, et al.. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. International Journal of Nanomedicine, 2016, 11: 2883–2900
pmid: 27366066
133 T Wang, X Long, Y Cheng, et al.. The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquatic Toxicology, 2014, 152: 96–104
https://doi.org/10.1016/j.aquatox.2014.03.023 pmid: 24742820
134 H Shi, R Magaye, V Castranova, et al.. Titanium dioxide nanoparticles: A review of current toxicological data. Particle and Fibre Toxicology, 2013, 10(1): 15
https://doi.org/10.1186/1743-8977-10-15 pmid: 23587290
135 N Uekawa, N Endo, K Ishii, et al.. Characterization of titanium oxide nanoparticles obtained by hydrolysis reaction of ethylene glycol solution of alkoxide. Journal of Nanotechnology, 2012, 102361 (8 pages)
https://doi.org/10.1155/2012/102361
136 K Lv, J Yu, L Cui, et al.. Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity. Journal of Alloys and Compounds, 2011, 509(13): 4557–4562
https://doi.org/10.1016/j.jallcom.2011.01.103
137 K S Siddiqi, A U Rahman, Tajuddin, et al.. Properties of zinc oxide nanoparticles and their activity against microbes. Nano-scale Research Letters, 2018, 13: 141
https://doi.org/10.1186/s11671-018-2532-3 pmid: 29740719
138 D Sahu, G M Kannan, R Vijayaraghavan, et al.. Nanosized zinc oxide induces toxicity in human lung cells. ISRN Toxicology, 2013, 2013: 316075
https://doi.org/10.1155/2013/316075 pmid: 23997968
139 P K Mishra, H Mishra, A Ekielski, et al.. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discovery Today, 2017, 22(12): 1825–1834
https://doi.org/10.1016/j.drudis.2017.08.006 pmid: 28847758
140 A Ali, H Zafar, M Zia, et al.. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 2016, 9: 49–67
https://doi.org/10.2147/NSA.S99986 pmid: 27578966
141 G Cotin, S Piant, D Mertz, et al.. Chapter 2 - Iron oxide nanoparticles for biomedical applications: Synthesis, functionalization, and application. In: M Mahmoudi, S Laurent, eds. Iron Oxide Nanoparticles for Biomedical Applications. Elsevier, 2018, 43–88
142 V Tiwari, N Mishra, K Gadani, et al.. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Frontiers in Microbiology, 2018, 9: 1218
https://doi.org/10.3389/fmicb.2018.01218 pmid: 29928271
143 Q Feng, Y Liu, J Huang, et al.. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Scientific Reports, 2018, 8: 2082
https://doi.org/10.1038/s41598-018-19628-z pmid: 29391477
144 K Bladh, L K L Falk, F Rohmund. On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Applied Physics A: Materials Science & Processing, 2000, 70(3): 317–322
https://doi.org/10.1007/s003390050053
145 T K Gupta, P R Budarapu, S R Chappidi, et al.. Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 2019, 26(38): 6851–6877
https://doi.org/10.2174/0929867326666181126113605 pmid: 30474523
146 A A Kokorina, A V Ermakov, A M Abramova, et al.. Carbon nanoparticles and materials on their basis. Colloids and Interfaces, 2020, 4(4): 42
https://doi.org/10.3390/colloids4040042
147 D Maiti, X Tong, X Mou, et al.. Carbon-based nanomaterials for biomedical applications: A recent study. Frontiers in Pharmaco-logy, 2019, 9: 1401
https://doi.org/10.3389/fphar.2018.01401 pmid: 30914959
148 D Mohanta, S Patnaik, S Sood, et al.. Carbon nanotubes: Evaluation of toxicity at biointerfaces. Journal of Pharmaceutical Analysis, 2019, 9(5): 293–300
https://doi.org/10.1016/j.jpha.2019.04.003 pmid: 31929938
149 B Wan, Z X Wang, Q Y Lv, et al.. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicology Letters, 2013, 221(2): 118–127
https://doi.org/10.1016/j.toxlet.2013.06.208 pmid: 23769962
150 P X Dong, B Wan, Z X Wang, et al.. Exposure of single-walled carbon nanotubes impairs the functions of primarily cultured murine peritoneal macrophages. Nanotoxicology, 2013, 7(5): 1028–1042
https://doi.org/10.3109/17435390.2012.694487 pmid: 22632544
151 J Palomäki, P Karisola, L Pylkkänen, et al.. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology, 2010, 267(1–3): 125–131
https://doi.org/10.1016/j.tox.2009.10.034 pmid: 19897006
152 G Jia, H Wang, L Yan, et al.. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology, 2005, 39(5): 1378–1383
https://doi.org/10.1021/es048729l pmid: 15787380
153 C Oberdörster, A Maynard, K Donaldson, et al.. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology, 2005, 2(1): 8
https://doi.org/10.1186/1743-8977-2-8 pmid: 16209704
154 I L Bergin, F A Witzmann. Nanoparticle toxicity by the gastrointestinal route: Evidence and knowledge gaps. International Journal of Biomedical Nanoscience and Nanotechnology, 2013, 3(1–2): 163–210
https://doi.org/10.1504/IJBNN.2013.054515 pmid: 24228068
155 D H Brouwer, J H J Gijsbers, M W M Lurvink. Personal exposure to ultrafine particles in the workplace: Exploring sampling techniques and strategies. The Annals of Occupational Hygiene, 2004, 48(5): 439–453
pmid: 15240340
156 C Bennat, C C Müller-Goymann. Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. International Journal of Cosmetic Science, 2000, 22(4): 271–283
https://doi.org/10.1046/j.1467-2494.2000.00009.x pmid: 18503414
157 W H De Jong, P J A Borm. Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 2008, 3(2): 133–149
https://doi.org/10.2147/IJN.S596 pmid: 18686775
158 A M Grabrucker, C C Garner, T M Boeckers, et al.. Development of novel Zn2+ loaded nanoparticles designed for cell-type targeted drug release in CNS neurons: In vitro evidences. PLoS One, 2011, 6(3): e17851
https://doi.org/10.1371/journal.pone.0017851 pmid: 21448455
159 S Salatin, A Y Khosroushahi. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine, 2017, 21(9): 1668–1686
https://doi.org/10.1111/jcmm.13110 pmid: 28244656
160 H Li, T Y Tsui, W Ma. Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. International Journal of Molecular Sciences, 2015, 16(8): 19518–19536
https://doi.org/10.3390/ijms160819518 pmid: 26295227
161 J M Zhang, J An. Cytokines, inflammation, and pain. International Anesthesiology Clinics, 2007, 45(2): 27–37
https://doi.org/10.1097/AIA.0b013e318034194e pmid: 17426506
162 V J Thannickal, B L Fanburg. Reactive oxygen species in cell signaling. American Journal of Physiology: Lung Cellular and Molecular Physiology, 2000, 279(6): L1005–L1028
https://doi.org/10.1152/ajplung.2000.279.6.L1005 pmid: 11076791
163 A Manke, L Y Wang, Y Rojanasakul. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International, 2013, 2013: 942916
https://doi.org/10.1155/2013/942916
164 T K Das, M R Wati, K Fatima-Shad. Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease. Archives of Neuroscience, 2015, 2(2): e20078
https://doi.org/10.5812/archneurosci.20078
165 M Ahamed, M J Akhtar, H A Alhadlaq, et al.. Assessment of the lung toxicity of copper oxide nanoparticles: Current status. Nanomedicine, 2015, 10(15): 2365–2377
https://doi.org/10.2217/nnm.15.72 pmid: 26251192
166 R Foldbjerg, D A Dang, H Autrup. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology, 2011, 85(7): 743–750
https://doi.org/10.1007/s00204-010-0545-5 pmid: 20428844
167 M L B S Jugan, S Barillet, A Simon-Deckers, et al.. Cytotoxic and genotoxic impact of TiO2 nanoparticles on A549 cells. Journal of Biomedical Nanotechnology, 2011, 7(1): 22–23
https://doi.org/10.1166/jbn.2011.1181 pmid: 21485783
168 K Kansara, P Patel, D Shah, et al.. TiO2 nanoparticles induce cytotoxicity and genotoxicity in human alveolar cells. Molecular Cytogenetics, 2014, 7(1): P77
https://doi.org/10.1186/1755-8166-7-S1-P77 pmid: 25426167
169 W G Kreyling, M Semmler-Behnke, J Seitz, et al.. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhalation Toxicology, 2009, 21(Sup1): 55–60
https://doi.org/10.1080/08958370902942517
170 T Y Poh, N A B M Ali, M Mac Aogáin, et al.. Inhaled nanomaterials and the respiratory microbiome: Clinical, immunological and toxicological perspectives. Particle and Fibre Toxicology, 2018, 15: 46
https://doi.org/10.1186/s12989-018-0282-0 pmid: 30458822
171 T A J Kuhlbusch, C Asbach, H Fissan, et al.. Nanoparticle exposure at nanotechnology workplaces: A review. Particle and Fibre Toxicology, 2011, 8(1): 22
https://doi.org/10.1186/1743-8977-8-22 pmid: 21794132
172 R Kessler. Engineered nanoparticles in consumer products: Understanding a new ingredient. Environmental Health Perspectives, 2011, 119(3): a120–a125
https://doi.org/10.1289/ehp.119-a120 pmid: 21356630
173 M Bundschuh, J Filser, S Lüderwald, et al.. Nanoparticles in the environment: Where do we come from, where do we go to? Environmental Sciences Europe, 2018, 30(1): 6
https://doi.org/10.1186/s12302-018-0132-6 pmid: 29456907
174 G Martínez, M Merinero, M Pérez-Aranda, et al.. Environmental impact of nanoparticles’ application as an emerging technology: A review. Materials, 2021, 14(1): 166
https://doi.org/10.3390/ma14010166 pmid: 33396469
175 M Dusinska, J Tulinska, N El Yamani, et al.. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food and Chemical Toxicology, 2017, 109(Pt 1): 797–811
https://doi.org/10.1016/j.fct.2017.08.030 pmid: 28847762
176 K Bhattacharya, F T Andón, R El-Sayed, et al.. Mechanisms of carbon nanotube-induced toxicity: Focus on pulmonary inflammation. Advanced Drug Delivery Reviews, 2013, 65(15): 2087–2097
https://doi.org/10.1016/j.addr.2013.05.012 pmid: 23751779
177 S K Sohaebuddin, P T Thevenot, D Baker, et al.. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Particle and Fibre Toxicology, 2010, 7(1): 22
https://doi.org/10.1186/1743-8977-7-22 pmid: 20727197
178 S C Sahu, J Zheng, L Graham, et al.. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. Journal of Applied Toxicology, 2014, 34(11): 1155–1166
https://doi.org/10.1002/jat.2994 pmid: 24522958
179 P R Hunt, B J Marquis, K M Tyner, et al.. Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. Journal of Applied Toxicology, 2013, 33(10): 1131–1142
https://doi.org/10.1002/jat.2872 pmid: 23636779
180 C Uboldi, P Urbán, D Gilliland, et al.. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicology in Vitro, 2016, 31: 137–145
https://doi.org/10.1016/j.tiv.2015.11.005 pmid: 26571344
181 H B Bostan, R Rezaee, M G Valokala, et al.. Cardiotoxicity of nano-particles. Life Sciences, 2016, 165: 91–99
https://doi.org/10.1016/j.lfs.2016.09.017 pmid: 27686832
182 Z Du, D Zhao, L Jing, et al.. Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation. Cardiovascular Toxicology, 2013, 13(3): 194–207
https://doi.org/10.1007/s12012-013-9198-y pmid: 23322373
183 C Yang, A Tian, Z Li. Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice. Scientific Reports, 2016, 6(1): 20203
https://doi.org/10.1038/srep20203 pmid: 26830764
184 D G Rickerby, M Morrison. Nanotechnology and the environment: A European perspective. Science and Technology of Advanced Materials, 2007, 8(1–2): 19–24
https://doi.org/10.1016/j.stam.2006.10.002
185 A Kahru, H C Dubourguier. From ecotoxicology to nanoecotoxi-cology. Toxicology, 2010, 269(2–3): 105–119
https://doi.org/10.1016/j.tox.2009.08.016 pmid: 19732804
186 M Lv, W Huang, Z Chen, et al.. Metabolomics techniques for nanotoxicity investigations. Bioanalysis, 2015, 7(12): 1527–1544
https://doi.org/10.4155/bio.15.83 pmid: 26168257
187 A Yan, Z Chen. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Sciences, 2019, 20(5): 1003
https://doi.org/10.3390/ijms20051003 pmid: 30813508
188 M H Siddiqui, M H Al-Whaibi, M Faisal, et al.. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry, 2014, 33(11): 2429–2437
https://doi.org/10.1002/etc.2697 pmid: 25066835
189 U Song, H Jun, B Waldman, et al.. Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety, 2013, 93: 60–67
https://doi.org/10.1016/j.ecoenv.2013.03.033 pmid: 23651654
190 S Bouguerra, A Gavina, M Ksibi, et al.. Ecotoxicity of titanium silicon oxide (TiSiO4) nanomaterial for terrestrial plants and soil invertebrate species. Ecotoxicology and Environmental Safety, 2016, 129: 291–301
https://doi.org/10.1016/j.ecoenv.2016.03.038 pmid: 27060256
191 M Kumari, S S Khan, S Pakrashi, et al.. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. Journal of Hazardous Materials, 2011, 190(1–3): 613–621
https://doi.org/10.1016/j.jhazmat.2011.03.095 pmid: 21501923
192 Y Wang, J Hu, Z Dai, et al.. In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiology and Biochemistry, 2016, 108: 353–360
https://doi.org/10.1016/j.plaphy.2016.08.003 pmid: 27518375
193 J M Exbrayat, E N Moudilou, E Lapied. Harmful effects of nanoparticles on animals. Journal of Nanotechnology, 2015, 2015: 861092
https://doi.org/10.1155/2015/861092
194 E J Petersen, Q Huang, W J Weber. Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environmental Science & Technology, 2008, 42(8): 3090–3095
https://doi.org/10.1021/es071366f pmid: 18497171
195 R D Handy, T B Henry, T M Scown, et al.. Manufactured nanoparticles: Their uptake and effects on fish — A mechanistic analysis. Ecotoxicology, 2008, 17(5): 396–409
https://doi.org/10.1007/s10646-008-0205-1 pmid: 18408995
196 C Krishnaraj, S L Harper, S I Yun. In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult zebrafish (Danio rerio). Journal of Hazardous Materials, 2016, 301: 480–491
https://doi.org/10.1016/j.jhazmat.2015.09.022 pmid: 26414925
197 M Myrzakhanova, C Gambardella, C Falugi, et al.. Effects of nanosilver exposure on cholinesterase activities, CD41, and CDF/LIF-like expression in zebrafish (Danio rerio) larvae. BioMed Research International, 2013, 2013: 205183
https://doi.org/10.1155/2013/205183 pmid: 23991412
[1] Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU. Metal-organic framework-based intelligent drug delivery systems for cancer theranostic: A review[J]. Front. Mater. Sci., 2021, 15(3): 374-390.
[2] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[3] Honghong ZOU, Lei WANG, Chenghui ZENG, Xiaolei GAO, Qingqing WANG, Shengliang ZHONG. Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications[J]. Front. Mater. Sci., 2018, 12(4): 327-347.
[4] Ramanathan SARASWATHY. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1--xRuxO2 by the microemulsion method[J]. Front. Mater. Sci., 2017, 11(4): 385-394.
[5] V. CHELLASAMY, P. THANGADURAI. Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment[J]. Front. Mater. Sci., 2017, 11(2): 162-170.
[6] Diah SUSANTI, Rizky Narendra Dwi WIBAWA, Lucky TANANTA, Hariyati PURWANINGSIH, Rindang FAJARIN, George Endri KUSUMA. The effect of calcination temperature on the capacitive properties of WO3-based electrochemical capacitors synthesized via a sol--gel method[J]. Front Mater Sci, 2013, 7(4): 370-378.
[7] Andris SUTKA, Gundars MEZINSKIS. Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials[J]. Front Mater Sci, 2012, 6(2): 128-141.
[8] Lan-Zheng REN, Jin-Xiu WANG. A simple hydrothermal route to fabrication of single-crystalline silver nanoplates using poly(vinyl pyrrolidone)[J]. Front Mater Sci Chin, 2010, 4(4): 407-410.
[9] Lan-Zheng REN, Jin-Xiu WANG. Facile one-pot preparation of silver nanowires using an alcohol ionic liquid[J]. Front Mater Sci Chin, 2010, 4(4): 398-401.
[10] En-Rong LI, Qian-Jun ZHANG, Wei WANG, Qing-Wen ZHU, Long BA, . Fabrication of mesoporous silica/carbon black nanospheres and load-sensitive conducting rubber nanocomposites[J]. Front. Mater. Sci., 2010, 4(1): 52-56.
[11] F. WATARI, T. AKASAKA, Xiaoming LI, M. UO, A. YOKOYAMA. Proliferation of osteoblast cells on nanotubes[J]. Front Mater Sci Chin, 2009, 3(2): 169-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed