Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2015, Vol. 9 Issue (3) : 234-240    https://doi.org/10.1007/s11706-015-0306-8
RESEARCH ARTICLE
Facile synthesis of tremella-like MnO2 and its application as supercapacitor electrodes
Xiangcang REN1,2,Chuanjin TIAN1,*(),Sa LI2,Yucheng ZHAO2,Chang-An WANG2,*
1. School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
2. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(799 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, three kinds of ultrathin tremella-like MnO2 have been simply synthesized by decomposing KMnO4 under mild hydrothermal conditions. When applied as electrode materials, they all exhibited excellent electrochemical performance. The as-prepared MnO2 samples were characterized by means of XRD, SEM, TEM and XPS. Additionally, the relationship of the crystalline nature with the electrochemical performance was investigated. Among the three samples, the product with the poorest crystallinity had the highest capacitance of 220 F/g at a current density of 0.1 A/g. It is thought that the ultrathin MnO2 nanostructures can serve as promising electrode materials for supercapacitors.

Keywords hydrothermal      manganese dioxide      supercapacitor      electrochemical property     
Corresponding Author(s): Chuanjin TIAN,Chang-An WANG   
Online First Date: 08 July 2015    Issue Date: 23 July 2015
 Cite this article:   
Xiangcang REN,Chuanjin TIAN,Sa LI, et al. Facile synthesis of tremella-like MnO2 and its application as supercapacitor electrodes[J]. Front. Mater. Sci., 2015, 9(3): 234-240.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-015-0306-8
https://academic.hep.com.cn/foms/EN/Y2015/V9/I3/234
Fig.1  XRD patterns of the obtained MnO2: 0.2 g KMnO4 (a); 4 g KMnO4 (b); 6 g KMnO4 (c).
Fig.2  XPS spectrum of the obtained MnO2 (Sample I).
Fig.3  SEM and TEM images of (a)(b) Sample I, (c)(d) Sample II, and (e)(f) Sample III.
Fig.4  CV curves of the tremella-like MnO2 at a scan rate of 5 mV/s.
Fig.5  Galvanostatic charge–discharge curves of the tremella-like MnO2 at a current density of 0.1 A/g.
Fig.6  Variation of gravimetric capacitance of the three samples with the charge–discharge current density.
Fig.7  Nyquist plots of the three samples at the alternating current (AC) voltage amplitude of 5 mV.
Fig.8  Cycling performance of the three samples for 10000 cycles at a scan rate of 5 A/g.
<?PubTbl row rht="0.36in"?>
ACalternating current
CVcyclic voltammetry
EISelectrochemical impedance spectroscopy
FE-SEMfield emission scanning electron microscopy
PTFEpolytetrafluoroethylene
PVPpoly(vinyl pyrrolidone)
SCEsaturated calomel electrode
TEMtransmission electron microscopy
XPSX-ray photoelectron spectroscopy
XRDX-ray powder diffraction
Tab.1  
1 Jiang H, Sun T, Li C, . Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances. Journal of Materials Chemistry, 2012, 22(6): 2751–2756
2 Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. Journal of Physical Chemistry C, 2008, 112(11): 4406–4417
3 Yan Y, Cheng Q, Zhu Z, . Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes. Journal of Power Sources, 2013, 240: 544–550
4 Jiang H, Ma J, Li C. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Advanced Materials, 2012, 24(30): 4197–4202
5 Yan Y, Cheng Q, Wang G, . Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. Journal of Power Sources, 2011, 196(18): 7835–7840
6 Zhang Y, Li J, Kang F, . Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications. International Journal of Hydrogen Energy, 2012, 37(1): 860–866
7 Lei Z, Zhang J, Zhao X. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. Journal of Materials Chemistry, 2012, 22(1): 153–160
8 Wei W, Huang X, Tao Y, . Enhancement of the electrocapacitive performance of manganese dioxide by introducing a microporous carbon spheres network. Physical Chemistry Chemical Physics, 2012, 14(17): 5966–5972
9 Jiang H, Lee P S, Li C. 3D carbon based nanostructures for advanced supercapacitors. Energy & Environmental Science, 2013, 6(1): 41–53
10 Meher S K, Rao G R. Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. Journal of Power Sources, 2012, 215: 317–328
11 Subramanian V, Zhu H, Vajtai R, . Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. The Journal of Physical Chemistry B, 2005, 109(43): 20207–20214
12 Fischer A E, Pettigrew K A, Rolison D R, . Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Letters, 2007, 7(2): 281–286
13 Hou Y, Cheng Y, Hobson T, . Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Letters, 2010, 10(7): 2727–2733
14 Toupin M, Brousse T, Bélanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chemistry of Materials, 2002, 14(9): 3946–3952
15 Zhang L, Kang L, Lv H, . Controllable synthesis, characterization, and electrochemical properties of manganese oxide nanoarchitectures. Journal of Materials Research, 2008, 23(03): 780–789
16 Zhou J, Yu L, Sun M, . Novel synthesis of birnessite-type MnO2 nanostructure for water treatment and electrochemical capacitor. Industrial & Engineering Chemistry Research, 2013, 52(28): 9586–9593
17 Wang Y T, Lu A H, Zhang H L, . Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. The Journal of Physical Chemistry C, 2011, 115(13): 5413–5421
18 Chen R, Zavalij P, Whittingham M S. Hydrothermal synthesis and characterization of KxMnO2·yH2O. Chemistry of Materials, 1996, 8(6): 1275–1280
19 Hashemzadeh F, Motlagh M M K, Maghsoudipour A. A comparative study of hydrothermal and sol–gel methods in the synthesis of MnO2 nanostructures. Journal of Sol-Gel Science and Technology, 2009, 51(2): 169–174
20 Li Q, Lu X F, Xu H, . Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. ACS Applied Materials & Interfaces, 2014, 6(4): 2726–2733
21 Xu M, Kong L, Zhou W, . Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. The Journal of Physical Chemistry C, 2007, 111(51): 19141–19147
22 Brousse T, Toupin M, Dugas R, . Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. Journal of the Electrochemical Society, 2006, 153(12): A2171–A2180
23 Ming B, Li J, Kang F, . Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. Journal of Power Sources, 2012, 198: 428–431
24 Jiang H, Li C, Sun T, . A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale, 2012, 4(3): 807–812
25 Dai Y, Jiang H, Hu Y, . Controlled synthesis of ultrathin hollow mesoporous carbon nanospheres for supercapacitor applications. Industrial & Engineering Chemistry Research, 2014, 53(8): 3125–3130
26 Zhu Z, Hu Y, Jiang H, . A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors. Journal of Power Sources, 2014, 246: 402–408
27 Zhao Y, Meng Y, Jiang P. Carbon@MnO2 core–shell nanospheres for flexible high-performance supercapacitor electrode materials. Journal of Power Sources, 2014, 259: 219–226
28 Zhao M Q, Ren C E, Ling Z, . Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced Materials, 2015, 27(2): 339–345
[1] Dandan HAN, Jinhe WEI, Shanshan WANG, Yifan PAN, Junli XUE, Yen WEI. Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance[J]. Front. Mater. Sci., 2020, 14(4): 450-458.
[2] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[3] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[4] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[5] Meenaketan SETHI, U. Sandhya SHENOY, Selvakumar MUTHU, D. Krishna BHAT. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications[J]. Front. Mater. Sci., 2020, 14(2): 120-132.
[6] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[7] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[8] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[9] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[10] Meng LIU, Lei LIU, Yifeng YU, Haijun LV, Aibing CHEN, Senlin HOU. Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 156-164.
[11] Ge JU, Muhammad Arif KHAN, Huiwen ZHENG, Zhongxun AN, Mingxia WU, Hongbin ZHAO, Jiaqiang XU, Lei ZHANG, Salma BILAL, Jiujun ZHANG. Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 133-144.
[12] Haiyan LI, Yucheng ZHAO, Chang-An WANG. MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials[J]. Front. Mater. Sci., 2018, 12(4): 354-360.
[13] Wang YANG, Wu YANG, Lina KONG, Shuanlong DI, Xiujuan QIN. Nitrogen--oxygen co-doped corrugation-like porous carbon for high performance supercapacitor[J]. Front. Mater. Sci., 2018, 12(3): 283-291.
[14] Ke ZHAN, Tong YIN, Yuan XUE, Yinwen TAN, Yihao ZHOU, Ya YAN, Bin ZHAO. A two-step approach to synthesis of Co(OH)2/γ-NiOOH/reduced graphene oxide nanocomposite for high performance supercapacitors[J]. Front. Mater. Sci., 2018, 12(3): 273-282.
[15] Jiangli XUE, Maosong MO, Zhuming LIU, Dapeng YE, Zhihua CHENG, Tong XU, Liangti QU. A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets[J]. Front. Mater. Sci., 2018, 12(2): 105-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed