Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (2) : 217-224    https://doi.org/10.1007/s11706-010-0028-x
Research articles
Numerical study of resin transfer molding (RTM) curing process
Fei SHI,Xiang-Huai DONG,
Department of Plasticity Technology, Shanghai Jiao Tong University, Shanghai 200030, China;
 Download: PDF(543 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is a very important phase in resin transfer molding (RTM) process that resin is cured. The result of the curing process determines the quality of a part, including mechanical properties, lifecycle of the part under high temperature and chemical properties. Therefore, it is very meaningful to discuss the curing process. In our work, the code is prepared based on unstructured mesh using divergence theorem. A case is used to verify properness of the code and the results are in good agreement with the published experiment data. In the paper, some factors of materials and numerical calculation, e.g., time step, reaction heat, the whole heat conductivity of fiber and resin and fiber initial temperature, which affect result of simulation, are emphatically investigated and carefully revealed. The conclusion shows that time step, the reaction heat and heat conductivity have an important effect on the curing process, while fiber initial temperature has very little impact. These are helpful to understand and adopt the curing process in order to produce good products.
Keywords resin transfer molding (RTM)      cure      simulation      finite volume      unstructured mesh      
Issue Date: 05 June 2010
 Cite this article:   
Fei SHI,Xiang-Huai DONG. Numerical study of resin transfer molding (RTM) curing process[J]. Front. Mater. Sci., 2010, 4(2): 217-224.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0028-x
https://academic.hep.com.cn/foms/EN/Y2010/V4/I2/217
Loos A C, Springer G S. Curing of epoxy matrix composites. Journalof Composite Materials, 1983, 17(2): 135―169

doi: 10.1177/002199838301700204
Bogetti T A, Gillespie Jr J W. Two-dimensional cure simulation of thick thermosetting composites. Journal of Composite Materials, 1991, 25(3): 239―273
Yan X Q. Finite element simulation of cure of thick composite:formulations and validation verification. Journal of Reinforced Plastics and Composites, 2007, 27(4): 339―355
Cheung A, Yu Y, Pochiraju K. Three-dimensional finite element simulationof curing of polymer composites. FiniteElements in Analysis and Design, 2004, 40(8): 895―912

doi: 10.1016/S0168-874X(03)00119-7
Abbassi A, Shahnazari M R. Numerical modeling of mold filling and curing in non-isothermal RTMprocess. Applied Thermal Engineering, 2004, 24(16): 2453―2465

doi: 10.1016/j.applthermaleng.2004.03.005
Lam Y C, Joshi S C, Liu X L. Numerical simulation of the mould-fillingprocess in resin-transfer moulding. CompositesScience and Technology, 2000, 60(6): 845―855

doi: 10.1016/S0266-3538(99)00192-X
Antonelli D, Farina A. Resintransfer moulding: mathematical modelling and numerical simulations. Composites Part A: Applied Science and Manufacturing, 1999, 30(12): 1367―1385

doi: 10.1016/S1359-835X(99)00044-5
Giordano M, Antonucci V, Nicolais L, et al. A simulation ofthe non-isothermal resin transfer molding process. Polymer Engineering and Science, 2000, 40(12): 2471―2481

doi: 10.1002/pen.11378
Dupret F, Mal O, Couniot A. Non-isothermal simulation of the resintransfer moulding process. Composites PartA: Applied Science and Manufacturing, 1998, 29A(1―2): 189―198
Chow P, Cross M, Pericleous K. A natural extension of theconventional finite volume method into polygonal unstructured meshesfor CFD application. Applied MathematicalModelling, 1996, 20(2): 170―183

doi: 10.1016/0307-904X(95)00156-E
Lim S T, Lee W I. An analysisof the three-dimensional resin-transfer mold filling process. Composites Science and Technology, 2000, 60(7): 961―975

doi: 10.1016/S0266-3538(99)00160-8
Halley P J, Mackay M E. Chemorheology of thermosets ― an overview. Polymer Engineering and Science, 1996, 36(5): 593―609

doi: 10.1002/pen.10447
Hsiao K T, Little R, Restrepo O, et al. A study of directcure kinetics characterization during liquid composite molding. Composites Part A: Applied Science and Manufacturing, 2006, 36(6): 925―933

doi: 10.1016/j.compositesa.2005.01.019
Rouison D, Sain M, Couturier M. Resin transfer molding of natural fiberreinforced composites: cure simulation. Composites Science and Technology, 2004, 64(5): 629―644

doi: 10.1016/j.compscitech.2003.06.001
Tucker C L. Heat transfer and reaction issues in liquid compositemolding. Polymer Composites, 1996, 17(1): 60―72

doi: 10.1002/pc.10591
Advani S G, Bruschke M V, Parnas R S. Resin transfer molding flowphenomena in polymeric composites. In: Advani S G, ed. Flow and Rheology in PolymerComposites Manufacturing. Amsterdam: Elsevier, 1994, Chapter12
Rudd C D, Long A C, Kendall K N, et al. Liquid Moulding Technologies. UK: WoodheadPublishing Ltd., 1997
Antonucci V, Giordano M, Nicolais L, et al. A simulation ofthe non-isothermal resin transfer molding process. Polymer Engineering and Science, 2000, 40(12): 2471―2481

doi: 10.1002/pen.11378
[1] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic investigation by a simplified approach on the demagnetization field of permanent magnets with nonmagnetic phase inside[J]. Front. Mater. Sci., 2019, 13(3): 323-333.
[2] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic simulation on magnetic properties of Nd2Fe14B/α-Fe nanocomposites with Fe nanowires as the soft phase[J]. Front. Mater. Sci., 2018, 12(4): 348-353.
[3] Dirk ZAHN. Multi-scale simulations of apatite–collagen composites: from molecules to materials[J]. Front. Mater. Sci., 2017, 11(1): 1-12.
[4] Weimin MAO. On the Taylor principles for plastic deformation of polycrystalline metals[J]. Front. Mater. Sci., 2016, 10(4): 335-345.
[5] M. SCHNICK, U. FUESSEL, M. HERTEL, A. SPILLE-KOHOFF, A. B. MURPHY. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX[J]. Front Mater Sci, 2011, 5(2): 98-108.
[6] Shao-Qing GUO, Xiao-Hong LI. Numerical simulation of solidification and liquation behavior during welding of low-expansion superalloys[J]. Front Mater Sci, 2011, 5(2): 146-159.
[7] V. PLOSHIKHIN, A. PRIHODOVSKY, A. ILIN. Experimental investigation of the hot cracking mechanism in welds on the microscopic scale[J]. Front Mater Sci, 2011, 5(2): 135-145.
[8] Ji CHEN, Chuan-Song WU. Numerical simulation of humping phenomenon in high speed gas metal arc welding[J]. Front Mater Sci, 2011, 5(2): 90-97.
[9] Uwe REISGEN, Markus SCHLESER, Oleg MOKROV, Alexander ZABIROV. Virtual welding equipment for simulation of GMAW processes with integration of power source regulation[J]. Front Mater Sci, 2011, 5(2): 79-89.
[10] Dieter SIEGELE. Welding mechanics for advanced component safety assessment[J]. Front Mater Sci, 2011, 5(2): 224-235.
[11] Jing-Qing CHEN, Hao LU, Wei CUI. Study on Ductility Dip Cracking susceptibility in Filler Metal 82 during welding[J]. Front Mater Sci, 2011, 5(2): 203-208.
[12] Rui-Hua ZHANG, Ji-Luan PAN, Seiji KATAYAMA. The mechanism of penetration increase in A-TIG welding[J]. Front Mater Sci, 2011, 5(2): 109-118.
[13] M. URNER, K. DILGER. Welding simulation of complex structures – possibilities and limits[J]. Front Mater Sci, 2011, 5(2): 196-202.
[14] C. HEINZE, C. SCHWENK, M. RETHMEIER, J. CARON. Numerical sensitivity analysis of welding-induced residual stress depending on variations in continuous cooling transformation behavior[J]. Front Mater Sci, 2011, 5(2): 168-178.
[15] Jian-Qiang ZHANG, Bing-Yin YAO, Tai-Jiang LI, Fu-Guang LIU, Ying-Lin ZHANG, . Numerical simulation of mechanical controlling parameters for Type IV cracking on the welding joints of martensitic heat-resistant steel[J]. Front. Mater. Sci., 2010, 4(2): 210-216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed