Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (3) : 207-213    https://doi.org/10.1007/s11706-018-0413-4
MINI-REVIEW
Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends
Timur Sh. ATABAEV()
Department of Chemistry, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan
 Download: PDF(258 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the last decade, the surface plasmon resonance-enhanced solar water splitting (SWS) has been actively investigated for improved hydrogen production. In this mini-review, we briefly introduce the mechanisms for plasmon-enhanced SWS and then review some representative studies related to these mechanisms. In addition, we also briefly discuss how metal oxide geometry affects the SWS activity in combined metal--semiconductor nanostructures. Finally, we summarize the recent discoveries and proposed a future vision for plasmon-enhanced SWS with metal oxide nanostructures.

Keywords surface plasmon resonance      solar water splitting      nanostructures      noble metals      metal oxides     
Corresponding Author(s): Timur Sh. ATABAEV   
Online First Date: 30 July 2018    Issue Date: 10 September 2018
 Cite this article:   
Timur Sh. ATABAEV. Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends[J]. Front. Mater. Sci., 2018, 12(3): 207-213.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0413-4
https://academic.hep.com.cn/foms/EN/Y2018/V12/I3/207
Fig.1  Number of published papers according to the Scopus search (topic “solar water splitting”).
Fig.2  Schematic diagram of a photoelectrochemical cell. Reproduced with permission from Ref. [3].
Fig.3  Schematic band edge positions of some semiconductors relative to NHE and the vacuum level. Reproduced with permission from Ref. [7].
Fig.4  Localized surface plasmon of a spherical metallic nanoparticle. Reproduced with permission from Ref. [21].
Fig.5  Absorption spectra of different sized gold nanoparticles. Reproduced with permission from Ref. [24].
Fig.6  Simulated electric field intensity plot for bare TiO2 photoelectrode, TiO2 with Au nanoparticles, and TiO2 with Au nanorods. Reproduced with permission from Ref. [37].
Fig.7  Structure of 3D dendritic TiO2 arrays decorated with Au nanoparticles and hot electron injection mechanism from Au to TiO2. Reproduced with permission from Ref. [46].
1 Tachibana Y, Vayssieres L, Durrant J R. Artificial photosynthesis for solar water-splitting. Nature Photonics, 2012, 6(8): 511–518
https://doi.org/10.1038/nphoton.2012.175
2 Atabaev T S, Ajmal M, Hong N H, et al.. Ti-doped hematite thin films for efficient water splitting. Applied Physics A: Materials Science & Processing, 2015, 118(4): 1539–1542
https://doi.org/10.1007/s00339-014-8937-7
3 Ahmad H, Kamarudin S K, Minggu L J, et al.. Hydrogen from photo-catalytic water splitting process: A review. Renewable & Sustainable Energy Reviews, 2015, 43: 599–610
https://doi.org/10.1016/j.rser.2014.10.101
4 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0 pmid: 12635268
5 Atabaev T S, Vu H H T, Ajmal M, et al.. Dual-mode spectral convertors as a simple approach for the enhancement of hematite’s solar water splitting efficiency. Applied Physics A: Materials Science & Processing, 2015, 119(4): 1373–1377
https://doi.org/10.1007/s00339-015-9108-1
6 Walter M G, Warren E L, McKone J R, et al.. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
https://doi.org/10.1021/cr1002326 pmid: 21062097
7 Tamirat A G, Rick J, Dubale A A, et al.. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horizons, 2016, 1(4): 243–267
https://doi.org/10.1039/C5NH00098J
8 Chen S, Thind S S, Chen A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63: 10–17
https://doi.org/10.1016/j.elecom.2015.12.003
9 Wolcott A, Smith W A, Kuykendall T R, et al.. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5(1): 104–111
https://doi.org/10.1002/smll.200800902 pmid: 19040214
10 Wagner F T, Somorjai G A. Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. Journal of the American Chemical Society, 1980, 102(17): 5494–5502
https://doi.org/10.1021/ja00537a013
11 Formal F L, Gratzel M, Sivula K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Advanced Functional Materials, 2010, 20(7): 1099–1107
https://doi.org/10.1002/adfm.200902060
12 Thuy T N T, Atabaev T S, Vu H H T, et al.. TiO2 thin films sensitized with upconversion phosphor for efficient solar water splitting. Journal of Nanoscience and Nanotechnology, 2017, 17(10): 7647–7650
https://doi.org/10.1166/jnn.2017.14772
13 Wang J, Du C, Peng Q, et al.. Enhanced photoelectrochemical water splitting performance of hematite nanorods by Co and Sn doping. International Journal of Hydrogen Energy, 2017, 42(49): 29140–29149
https://doi.org/10.1016/j.ijhydene.2017.10.080
14 Tsege E L, Atabaev T S, Hossain M A, et al.. Cu-doped flower-like hematite nanostructures for efficient water splitting applications. Journal of Physics and Chemistry of Solids, 2016, 98: 283–289
https://doi.org/10.1016/j.jpcs.2016.07.014
15 Atabaev T S, Lee D H, Hong N H. Fabrication of TiO2/CuO photoelectrode with enhanced solar water splitting activity. Functional Materials Letters, 2017, 10(06): 1750084
https://doi.org/10.1142/S1793604717500849
16 Yu J, Hai Y, Cheng B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. The Journal of Physical Chemistry C, 2011, 115(11): 4953–4958
https://doi.org/10.1021/jp111562d
17 Xu F, Mei J, Zheng M, et al.. Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds, 2017, 693: 1124–1132
https://doi.org/10.1016/j.jallcom.2016.09.273
18 Atabaev T S, Atabaev S. Titania coated hematite nanostructures for solar water splitting applications. Nano Life, 2016, 6(2): 1650008
https://doi.org/10.1142/S1793984416500082
19 Warren S C, Thimsen E. Plasmonic solar water splitting. Energy & Environmental Science, 2012, 5(1): 5133–5146
https://doi.org/10.1039/C1EE02875H
20 Atabaev T S, Hossain M A, Lee D, et al.. Pt-coated TiO2 nanorods for photoelectrochemical water splitting applications. Results in Physics, 2016, 6: 373–376
https://doi.org/10.1016/j.rinp.2016.07.002
21 Ye W, Long R, Huang H, et al.. Plasmonic nanostructures in solar energy conversion. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(5): 1008–1021
https://doi.org/10.1039/C6TC04847A
22 Hartland G V. Optical studies of dynamics in noble metal nanostructures. Chemical Reviews, 2011, 111(6): 3858–3887
https://doi.org/10.1021/cr1002547 pmid: 21434614
23 Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
https://doi.org/10.1038/nmat2629 pmid: 20168344
24 Link S, El-Sayed M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 1999, 103(21): 4212–4217
https://doi.org/10.1021/jp984796o
25 Huang T, Xu X H N. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. Journal of Materials Chemistry, 2010, 20(44): 9867–9876
https://doi.org/10.1039/c0jm01990a pmid: 22707855
26 López-Lozano X, Barron H, Mottet C, et al.. Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods — an ab initio TDDFT study. Physical Chemistry Chemical Physics, 2014, 16(5): 1820–1823
https://doi.org/10.1039/C3CP53702A pmid: 24343038
27 Zhang P, Wang T, Gong J. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Advanced Materials, 2015, 27(36): 5328–5342
https://doi.org/10.1002/adma.201500888 pmid: 26265309
28 Ingram D B, Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. Journal of the American Chemical Society, 2011, 133(14): 5202–5205
https://doi.org/10.1021/ja200086g pmid: 21425795
29 Zhang Q, Thrithamarassery Gangadharan D, Liu Y, et al.. Recent advancements in plasmon-enhanced visible light-driven water splitting. Journal of Materiomics, 2017, 3(1): 33–50
https://doi.org/10.1016/j.jmat.2016.11.005
30 Cushing S K, Li J, Meng F, et al.. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. Journal of the American Chemical Society, 2012, 134(36): 15033–15041
https://doi.org/10.1021/ja305603t pmid: 22891916
31 Christopher P, Ingram D B, Linic S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons. The Journal of Physical Chemistry C, 2010, 114(19): 9173–9177
https://doi.org/10.1021/jp101633u
32 Jain P K, Lee K S, El-Sayed I H, et al.. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248
https://doi.org/10.1021/jp057170o pmid: 16599493
33 Pala R A, White J, Barnard E, et al.. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Advanced Materials, 2009, 21(34): 3504–3509
https://doi.org/10.1002/adma.200900331
34 Govorov A O, Zhang H, Demir H V, et al.. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today, 2014, 9(1): 85–101
https://doi.org/10.1016/j.nantod.2014.02.006
35 Besteiro L V, Govorov A O. Amplified generation of hot electrons and quantum surface effects in nanoparticle dimers with plasmonic hot spots. The Journal of Physical Chemistry C, 2016, 120(34): 19329–19339
https://doi.org/10.1021/acs.jpcc.6b05968
36 Zhang H, Govorov A O. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. The Journal of Physical Chemistry C, 2014, 118(14): 7606–7614
https://doi.org/10.1021/jp500009k
37 Pu Y C, Wang G, Chang K D, et al.. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Letters, 2013, 13(8): 3817–3823
https://doi.org/10.1021/nl4018385 pmid: 23899318
38 Chen K, Feng X, Hu R, et al.. Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. Journal of Alloys and Compounds, 2013, 554: 72–79
https://doi.org/10.1016/j.jallcom.2012.11.126
39 Zhang Z, Zhang L, Hedhili M N, et al.. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Letters, 2013, 13(1): 14–20
https://doi.org/10.1021/nl3029202 pmid: 23205530
40 Peng C, Wang W, Zhang W, et al.. Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination. Applied Surface Science, 2017, 420: 286–295
https://doi.org/10.1016/j.apsusc.2017.05.101
41 Hsu Y K, Fu S Y, Chen M H, et al.. Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting. Electrochimica Acta, 2014, 120: 1–5
https://doi.org/10.1016/j.electacta.2013.12.095
42 Wei Y, Ke L, Kong J, et al.. Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photo anode decorated with Ag nanoparticles. Nanotechnology, 2012, 23(23): 235401
https://doi.org/10.1088/0957-4484/23/23/235401 pmid: 22609803
43 Thomann I, Pinaud B A, Chen Z, et al.. Plasmon enhanced solar-to-fuel energy conversion. Nano Letters, 2011, 11(8): 3440–3446
https://doi.org/10.1021/nl201908s pmid: 21749077
44 Wang L, Zhou X, Nguyen N T, et al.. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays. ChemSusChem, 2015, 8(4): 618–622
https://doi.org/10.1002/cssc.201403013 pmid: 25581403
45 Zhang X, Liu Y, Kang Z. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2014, 6(6): 4480–4489
https://doi.org/10.1021/am500234v pmid: 24598779
46 Su F, Wang T, Lv R, et al.. Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale, 2013, 5(19): 9001–9009
https://doi.org/10.1039/c3nr02766j pmid: 23864159
[1] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
[2] Hao WANG, Yuhan WU, Pengcheng WU, Shanshan CHEN, Xuhong GUO, Guihua MENG, Banghua PENG, Jianning WU, Zhiyong LIU. Environmentally benign chitosan as reductant and supporter for synthesis of Ag/AgCl/chitosan composites by one-step and their photocatalytic degradation performance under visible-light irradiation[J]. Front. Mater. Sci., 2017, 11(2): 130-138.
[3] Thomas MAURER,Joseph MARAE-DJOUDA,Ugo CATALDI,Arthur GONTIER,Guillaume MONTAY,Yazid MADI,Benoît PANICAUD,Demetrio MACIAS,Pierre-Michel ADAM,Gaëtan LÉVÊQUE,Thomas BÜRGI,Roberto CAPUTO. The beginnings of plasmomechanics: towards plasmonic strain sensors[J]. Front. Mater. Sci., 2015, 9(2): 170-177.
[4] Selvaraj KUNJIAPPAN,Ranjana CHOWDHURY,Chiranjib BHATTACHARJEE. A green chemistry approach for the synthesis and characterization of bioactive gold nanoparticles using Azolla microphylla methanol extract[J]. Front. Mater. Sci., 2014, 8(2): 123-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed