|
|
Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends |
Timur Sh. ATABAEV( ) |
Department of Chemistry, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan |
|
|
Abstract In the last decade, the surface plasmon resonance-enhanced solar water splitting (SWS) has been actively investigated for improved hydrogen production. In this mini-review, we briefly introduce the mechanisms for plasmon-enhanced SWS and then review some representative studies related to these mechanisms. In addition, we also briefly discuss how metal oxide geometry affects the SWS activity in combined metal--semiconductor nanostructures. Finally, we summarize the recent discoveries and proposed a future vision for plasmon-enhanced SWS with metal oxide nanostructures.
|
Keywords
surface plasmon resonance
solar water splitting
nanostructures
noble metals
metal oxides
|
Corresponding Author(s):
Timur Sh. ATABAEV
|
Online First Date: 30 July 2018
Issue Date: 10 September 2018
|
|
1 |
Tachibana Y, Vayssieres L, Durrant J R. Artificial photosynthesis for solar water-splitting. Nature Photonics, 2012, 6(8): 511–518
https://doi.org/10.1038/nphoton.2012.175
|
2 |
Atabaev T S, Ajmal M, Hong N H, et al.. Ti-doped hematite thin films for efficient water splitting. Applied Physics A: Materials Science & Processing, 2015, 118(4): 1539–1542
https://doi.org/10.1007/s00339-014-8937-7
|
3 |
Ahmad H, Kamarudin S K, Minggu L J, et al.. Hydrogen from photo-catalytic water splitting process: A review. Renewable & Sustainable Energy Reviews, 2015, 43: 599–610
https://doi.org/10.1016/j.rser.2014.10.101
|
4 |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0
pmid: 12635268
|
5 |
Atabaev T S, Vu H H T, Ajmal M, et al.. Dual-mode spectral convertors as a simple approach for the enhancement of hematite’s solar water splitting efficiency. Applied Physics A: Materials Science & Processing, 2015, 119(4): 1373–1377
https://doi.org/10.1007/s00339-015-9108-1
|
6 |
Walter M G, Warren E L, McKone J R, et al.. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
https://doi.org/10.1021/cr1002326
pmid: 21062097
|
7 |
Tamirat A G, Rick J, Dubale A A, et al.. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horizons, 2016, 1(4): 243–267
https://doi.org/10.1039/C5NH00098J
|
8 |
Chen S, Thind S S, Chen A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63: 10–17
https://doi.org/10.1016/j.elecom.2015.12.003
|
9 |
Wolcott A, Smith W A, Kuykendall T R, et al.. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5(1): 104–111
https://doi.org/10.1002/smll.200800902
pmid: 19040214
|
10 |
Wagner F T, Somorjai G A. Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. Journal of the American Chemical Society, 1980, 102(17): 5494–5502
https://doi.org/10.1021/ja00537a013
|
11 |
Formal F L, Gratzel M, Sivula K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Advanced Functional Materials, 2010, 20(7): 1099–1107
https://doi.org/10.1002/adfm.200902060
|
12 |
Thuy T N T, Atabaev T S, Vu H H T, et al.. TiO2 thin films sensitized with upconversion phosphor for efficient solar water splitting. Journal of Nanoscience and Nanotechnology, 2017, 17(10): 7647–7650
https://doi.org/10.1166/jnn.2017.14772
|
13 |
Wang J, Du C, Peng Q, et al.. Enhanced photoelectrochemical water splitting performance of hematite nanorods by Co and Sn doping. International Journal of Hydrogen Energy, 2017, 42(49): 29140–29149
https://doi.org/10.1016/j.ijhydene.2017.10.080
|
14 |
Tsege E L, Atabaev T S, Hossain M A, et al.. Cu-doped flower-like hematite nanostructures for efficient water splitting applications. Journal of Physics and Chemistry of Solids, 2016, 98: 283–289
https://doi.org/10.1016/j.jpcs.2016.07.014
|
15 |
Atabaev T S, Lee D H, Hong N H. Fabrication of TiO2/CuO photoelectrode with enhanced solar water splitting activity. Functional Materials Letters, 2017, 10(06): 1750084
https://doi.org/10.1142/S1793604717500849
|
16 |
Yu J, Hai Y, Cheng B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. The Journal of Physical Chemistry C, 2011, 115(11): 4953–4958
https://doi.org/10.1021/jp111562d
|
17 |
Xu F, Mei J, Zheng M, et al.. Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds, 2017, 693: 1124–1132
https://doi.org/10.1016/j.jallcom.2016.09.273
|
18 |
Atabaev T S, Atabaev S. Titania coated hematite nanostructures for solar water splitting applications. Nano Life, 2016, 6(2): 1650008
https://doi.org/10.1142/S1793984416500082
|
19 |
Warren S C, Thimsen E. Plasmonic solar water splitting. Energy & Environmental Science, 2012, 5(1): 5133–5146
https://doi.org/10.1039/C1EE02875H
|
20 |
Atabaev T S, Hossain M A, Lee D, et al.. Pt-coated TiO2 nanorods for photoelectrochemical water splitting applications. Results in Physics, 2016, 6: 373–376
https://doi.org/10.1016/j.rinp.2016.07.002
|
21 |
Ye W, Long R, Huang H, et al.. Plasmonic nanostructures in solar energy conversion. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(5): 1008–1021
https://doi.org/10.1039/C6TC04847A
|
22 |
Hartland G V. Optical studies of dynamics in noble metal nanostructures. Chemical Reviews, 2011, 111(6): 3858–3887
https://doi.org/10.1021/cr1002547
pmid: 21434614
|
23 |
Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
https://doi.org/10.1038/nmat2629
pmid: 20168344
|
24 |
Link S, El-Sayed M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 1999, 103(21): 4212–4217
https://doi.org/10.1021/jp984796o
|
25 |
Huang T, Xu X H N. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. Journal of Materials Chemistry, 2010, 20(44): 9867–9876
https://doi.org/10.1039/c0jm01990a
pmid: 22707855
|
26 |
López-Lozano X, Barron H, Mottet C, et al.. Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods — an ab initio TDDFT study. Physical Chemistry Chemical Physics, 2014, 16(5): 1820–1823
https://doi.org/10.1039/C3CP53702A
pmid: 24343038
|
27 |
Zhang P, Wang T, Gong J. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Advanced Materials, 2015, 27(36): 5328–5342
https://doi.org/10.1002/adma.201500888
pmid: 26265309
|
28 |
Ingram D B, Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. Journal of the American Chemical Society, 2011, 133(14): 5202–5205
https://doi.org/10.1021/ja200086g
pmid: 21425795
|
29 |
Zhang Q, Thrithamarassery Gangadharan D, Liu Y, et al.. Recent advancements in plasmon-enhanced visible light-driven water splitting. Journal of Materiomics, 2017, 3(1): 33–50
https://doi.org/10.1016/j.jmat.2016.11.005
|
30 |
Cushing S K, Li J, Meng F, et al.. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. Journal of the American Chemical Society, 2012, 134(36): 15033–15041
https://doi.org/10.1021/ja305603t
pmid: 22891916
|
31 |
Christopher P, Ingram D B, Linic S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons. The Journal of Physical Chemistry C, 2010, 114(19): 9173–9177
https://doi.org/10.1021/jp101633u
|
32 |
Jain P K, Lee K S, El-Sayed I H, et al.. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248
https://doi.org/10.1021/jp057170o
pmid: 16599493
|
33 |
Pala R A, White J, Barnard E, et al.. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Advanced Materials, 2009, 21(34): 3504–3509
https://doi.org/10.1002/adma.200900331
|
34 |
Govorov A O, Zhang H, Demir H V, et al.. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today, 2014, 9(1): 85–101
https://doi.org/10.1016/j.nantod.2014.02.006
|
35 |
Besteiro L V, Govorov A O. Amplified generation of hot electrons and quantum surface effects in nanoparticle dimers with plasmonic hot spots. The Journal of Physical Chemistry C, 2016, 120(34): 19329–19339
https://doi.org/10.1021/acs.jpcc.6b05968
|
36 |
Zhang H, Govorov A O. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. The Journal of Physical Chemistry C, 2014, 118(14): 7606–7614
https://doi.org/10.1021/jp500009k
|
37 |
Pu Y C, Wang G, Chang K D, et al.. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Letters, 2013, 13(8): 3817–3823
https://doi.org/10.1021/nl4018385
pmid: 23899318
|
38 |
Chen K, Feng X, Hu R, et al.. Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. Journal of Alloys and Compounds, 2013, 554: 72–79
https://doi.org/10.1016/j.jallcom.2012.11.126
|
39 |
Zhang Z, Zhang L, Hedhili M N, et al.. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Letters, 2013, 13(1): 14–20
https://doi.org/10.1021/nl3029202
pmid: 23205530
|
40 |
Peng C, Wang W, Zhang W, et al.. Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination. Applied Surface Science, 2017, 420: 286–295
https://doi.org/10.1016/j.apsusc.2017.05.101
|
41 |
Hsu Y K, Fu S Y, Chen M H, et al.. Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting. Electrochimica Acta, 2014, 120: 1–5
https://doi.org/10.1016/j.electacta.2013.12.095
|
42 |
Wei Y, Ke L, Kong J, et al.. Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photo anode decorated with Ag nanoparticles. Nanotechnology, 2012, 23(23): 235401
https://doi.org/10.1088/0957-4484/23/23/235401
pmid: 22609803
|
43 |
Thomann I, Pinaud B A, Chen Z, et al.. Plasmon enhanced solar-to-fuel energy conversion. Nano Letters, 2011, 11(8): 3440–3446
https://doi.org/10.1021/nl201908s
pmid: 21749077
|
44 |
Wang L, Zhou X, Nguyen N T, et al.. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays. ChemSusChem, 2015, 8(4): 618–622
https://doi.org/10.1002/cssc.201403013
pmid: 25581403
|
45 |
Zhang X, Liu Y, Kang Z. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2014, 6(6): 4480–4489
https://doi.org/10.1021/am500234v
pmid: 24598779
|
46 |
Su F, Wang T, Lv R, et al.. Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale, 2013, 5(19): 9001–9009
https://doi.org/10.1039/c3nr02766j
pmid: 23864159
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|