Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (4) : 392-404    https://doi.org/10.1007/s11706-018-0438-8
RESEARCH ARTICLE
Nitrogen ion irradiation effect on enhancing photocatalytic performance of CdTe/ZnO heterostructures
Yazi WANG1, Wei LI1, Yimeng FENG1, Shasha LV1, Mingyang LI1,3, Zhengcao LI2()
1. State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2. Key Lab of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
3. Department of Engineering Physics, Tsinghua University, Beijing 100084, China
 Download: PDF(680 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To deal with the increasingly deteriorating environment problems, more and more harsh requirements are put forward for photocatalysis application. Building semiconductor heterostructures has been proven to be an efficient way to enhance photocatalytic performance. A kind of CdTe/ZnO heterostructures were synthesized by a hydrothermal and successive ionic layer absorption and reaction (SILAR) method and achieved obviously efficient photocatalytic performance. Moreover, after the N ion irradiation treatment, the photocatalytic activity was further enhanced, which can be ascribed to the introduction of oxygen vacancy defects. The photocatalytic performance enhancement mechanism by coupling constructing heterostructures and ion irradiation are further studied to give us an overall understanding on ZnO nanowires.

Keywords N ion irradiation      CdTe/ZnO heterostructures      photocatalytic performance     
Corresponding Author(s): Zhengcao LI   
Online First Date: 22 October 2018    Issue Date: 10 December 2018
 Cite this article:   
Yazi WANG,Wei LI,Yimeng FENG, et al. Nitrogen ion irradiation effect on enhancing photocatalytic performance of CdTe/ZnO heterostructures[J]. Front. Mater. Sci., 2018, 12(4): 392-404.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0438-8
https://academic.hep.com.cn/foms/EN/Y2018/V12/I4/392
Fig.1  SEM images of the cross-section of ZnO–CdTe-20-cycle samples with different N ion irradiation doses: (a) 1×1013 ions/cm2; (b) 5×1013 ions/cm2; (c) 1×1014 ions/cm2; (d) 5×1014 ions/cm2.
Fig.2  TEM images: (a) ZnO–CdTe-20-cycle heterostructure; (b) ZnO–CdTe-20-cycle heterostructure under N ion irradiation at 1×1014 ions/cm2 dose. HRTEM images of unirradiated nanostructures: (c) CdTe/ZnO; (e) ZnO; (f) CdTe. HRTEM images of irradiated nanostructures: (d) CdTe/ZnO; (g) ZnO; (h) CdTe.
Fig.3  XRD patterns of (a) ZnO–CdTe-20-cycle sample and (b) ZnO-CdTe-20-cycle samples under different ion doses.
Fig.4  XPS spectra of as-grown ZnO NWs, CdTe/ZnO heterostructures, and ZnO–CdTe-20-cycle samples irradiated with 1×1014 ions/cm2 dose: (a) Zn 2p; (b) O 1s; (c) Cd 3d; (d) Te 3d.
Fig.5  PL spectra: (a) as-grown ZnO NWs and CdTe/ZnO heterostructures prepared through various cycles; (b) ZnO–CdTe-20-cycle heterostructures with different N ion doses.
Fig.6  UV-vis absorption spectra: (a) ZnO–CdTe-20-cycle sample with different N ion doses; (b) band energy calculation diagram from the (αhv)2Eg plot.
Sample N ion dose/(ions·cm−2) Eg/eV
ZnO NWs 3.232
ZnO–CdTe-20-cycle heterostructures 0 3.220
1×1013 3.172
5×1013 3.103
1×1014 3.063
5×1014 2.975
Tab.1  Bandgap energy values of as-grown ZnO NWs and N ion irradiated CdTe/ZnO heterostructures with different N ion doses
Fig.7  (a) Photocatalytic activity, (b) MO degradation kinetic curves, and (c) MO degradation rate–time curves using the Lambert–Beer law under the visible-light irradiation at 460 nm of ZnO–CdTe-20-cycle irradiated with different N ion doses.
Sample N ion dose/(ions·cm−2) k/min−1
ZnO NWs 0.00265
ZnO–CdTe-20-cycle heterostructures 0 0.00554
1×1013 0.00622
5×1013 0.00658
1×1014 0.00837
5×1014 0.00761
Tab.2  First-order reaction rate constants k for as-grown ZnO NWs and ZnO–CdTe-20-cycle heterostructures with different N ion doses
Fig.8  Schematic diagram of photocatalytic process of CdTe/ZnO heterostructures.
  Fig. S1 SEM images of the top and the cross-section: (a)(b) as-grown ZnO NWs; and CdTe/ZnO heterostructures with the SILAR cycles of (c)(d) 15 cycles, (e)(f) 20 cycles, (g)(h) 25 cycles, (i)(j) 30 cycles, and (k)(l) 35 cycles. (m) EDS pattern of CdTe/ZnO heterostructures.
  Fig. S2 UV-vis absorption spectra of CdTe/ZnO heterostructures synthesized through various cycles.
  Fig. S3 (a) Photocatalytic activity and (b) MO degradation rate–time curves using the Lambert–Beer law under visible-light irradiation at 460 nm of CdTe/ZnO heterostructures synthesized through various cycles.
  Fig. S4 Cycling performance: (a) unirradiated ZnO–CdTe-20-cycle heterostructures; (b) irradiated ZnO–CdTe-20-cycle heterostructures with the N ion irradiation dose of 1×1014 ions/cm2.
  Fig. S5 XPS spectrum of irradiated ZnO–CdTe-20-cycle sample: N 1s.
Item Parameters
System pressure/Pa Working pressure/Pa RF power/W Ar2 flow rate/sccm O2 flow rate/sccm
Value 2.0×10−4 0.6 80 30 10
  Table S1 The main parameters of RF magnetron sputtering
Cycle number Element content/%
Zn O Cd Te
15 53.48 43.92 1.27 1.33
20 55.47 41.05 1.64 1.84
25 54.64 40.84 2.17 2.35
30 50.79 43.06 2.98 3.17
35 50.83 41.67 3.76 3.74
  Table S2 Atomic percentages of different elements in CdTe/ZnO heterostructures calculated from EDS patterns
Sample Cycle number k/min−1
ZnO NWs 0.00265
CdTe/ZnO heterostructures 15 0.00491
20 0.00554
25 0.00532
30 0.00432
35 0.00411
  Table S3 The first-order reaction rate constant k for CdTe/ZnO heterostructures with various cycles
1 Hoffmann M R, Martin S T, Choi W, et al.. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96
https://doi.org/10.1021/cr00033a004
2 Chen X, Liu L, Yu P Y, et al.. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750
https://doi.org/10.1126/science.1200448 pmid: 21252313
3 Kim K J, Kreider P B, Chang C H, et al.. Visible-light-sensitive nanoscale Au–ZnO photocatalysts. Journal of Nanoparticle Research, 2013, 15(5): 1606 (11 pages)
https://doi.org/10.1007/s11051-013-1606-5
4 Litter M I, Navío J A. Photocatalytic properties of iron-doped titania semiconductors. Journal of Photochemistry and Photobio-logy A: Chemistry, 1996, 98(3): 171–181
https://doi.org/10.1016/1010-6030(96)04343-2
5 Look D C. Recent advances in ZnO materials and devices. Materials Science and Engineering B, 2001, 80(1–3): 383–387
https://doi.org/10.1016/S0921-5107(00)00604-8
6 Liu R, Wang X, Zhou H, et al.. Sequential synthesis and improved photoelectrochemical properties of ZnO/CdTe/CdS nanocable arrays photoanode. International Journal of Hydrogen Energy, 2013, 38(36): 16755–16760
https://doi.org/10.1016/j.ijhydene.2013.05.009
7 He H, Gan L, Sun L, et al.. Tunable band offset and recombination in ZnO nanowire–CdTe quantum dot heterostructures. Applied Physics A: Materials Science & Processing, 2017, 123(10): 613
https://doi.org/10.1007/s00339-017-1223-8
8 Jin M J, Chen X Y, Gao Z M, et al.. Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating. Nanotechnology, 2012, 23(48): 485401
https://doi.org/10.1088/0957-4484/23/48/485401 pmid: 23124384
9 Wang X, Zhu H, Xu Y, et al.. Aligned ZnO/CdTe core–shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties. ACS Nano, 2010, 4(6): 3302–3308
https://doi.org/10.1021/nn1001547 pmid: 20446665
10 Liu Z Q, Xie X H, Xu Q Z, et al.. Electrochemical synthesis of ZnO/CdTe core–shell nanotube arrays for enhanced photoelectrochemical properties. Electrochimica Acta, 2013, 98: 268–273
https://doi.org/10.1016/j.electacta.2013.03.050
11 Eley C, Li T, Liao F, et al.. Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals. Angewandte Chemie International Edition in English, 2014, 53(30): 7838–7842
https://doi.org/10.1002/anie.201404481 pmid: 24962739
12 Liu D, Zheng Z, Wang C, et al.. CdTe quantum dots encapsulated ZnO nanorods for highly efficient photoelectrochemical degradation of phenols. The Journal of Physical Chemistry C, 2013, 117(50): 26529–26537
https://doi.org/10.1021/jp410692y
13 Li W, Wang G, Chen C, et al.. Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials, 2017, 7(1): 20
https://doi.org/10.3390/nano7010020 pmid: 28336854
14 Yu Q, Li J, Li H, et al.. Fabrication, structure, and photocatalytic activities of boron-doped ZnO nanorods hydrothermally grown on CVD diamond film. Chemical Physics Letters, 2012, 539–540: 74–78
https://doi.org/10.1016/j.cplett.2012.04.051
15 Hsu M H, Chang C J. Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability. Journal of Hazardous Materials, 2014, 278: 444–453
https://doi.org/10.1016/j.jhazmat.2014.06.038 pmid: 24997260
16 Jia T, Wang W, Long F, et al.. Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires. Journal of Alloys and Compounds, 2009, 484(1–2): 410–415
https://doi.org/10.1016/j.jallcom.2009.04.153
17 Xie Z, Liu X, Wang W, et al.. Enhanced photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays/CdS quantum dots by coating TiO2 through atomic layer deposition. Nano Energy, 2015, 11: 400–408
https://doi.org/10.1016/j.nanoen.2014.11.024
18 Chen C, Li Z, Lin H, et al.. Enhanced visible light photocatalytic performance of ZnO nanowires integrated with CdS and Ag2S. Dalton Transactions, 2016, 45(9): 3750–3758
https://doi.org/10.1039/C5DT04533A pmid: 26815888
19 Xie Z, Liu X, Wang W, et al.. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles. Science and Technology of Advanced Materials, 2014, 15(5): 055006
https://doi.org/10.1088/1468-6996/15/5/055006 pmid: 27877718
20 Wang G, Li Z, Li M, et al.. Synthesizing vertical porous ZnO nanowires arrays on Si/ITO substrate for enhanced photocatalysis. Ceramics International, 2018, 44(2): 1291–1295
https://doi.org/10.1016/j.ceramint.2017.08.035
21 Li Z, Teng Y, Xing L, et al.. Enhancement of the photocatalytic property of TiO2 columnar nanostructured films by changing deposition angle. Materials Research Bulletin, 2014, 50: 68–72
https://doi.org/10.1016/j.materresbull.2013.10.021
22 Yu K Y, Chen Y, Li J, et al.. Measurement of heavy ion irradiation induced in-plane strain in patterned face-centered-cubic metal films: an in situ study. Nano Letters, 2016, 16(12): 7481–7489
https://doi.org/10.1021/acs.nanolett.6b03195 pmid: 27960484
23 Kumar N A P K, Li C, Leonard K J, et al.. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Materialia, 2016, 113: 230–244
https://doi.org/10.1016/j.actamat.2016.05.007
24 Krone P, Brombacher C, Makarov D, et al.. Nanocap arrays of granular CoCrPt:SiO2 films on silica particles: tailoring of the magnetic properties by Co+ irradiation. Nanotechnology, 2010, 21(38): 385703
https://doi.org/10.1088/0957-4484/21/38/385703 pmid: 20798462
25 Wawro A, Kurant Z, Jakubowski M, et al.. Magnetic properties of coupled Co/Mo/Co structures tailored by ion irradiation. Physical Review Applied, 2018, 9(1): 014029
https://doi.org/10.1103/PhysRevApplied.9.014029
26 Borisov A M, Kazakov V A, Mashkova E S, et al.. Optical and electrical properties of synthetic single-crystal diamond under high-fluence ion irradiation. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2017, 11(3): 619–624
https://doi.org/10.1134/S1027451017030211
27 Jayalakshmi G, Saravanan K, Panigrahi B K, et al.. Tunable electronic, electrical and optical properties of graphene oxide sheets by ion irradiation. Nanotechnology, 2018, 29(18): 185701
https://doi.org/10.1088/1361-6528/aab011 pmid: 29451500
28 Li Z, Teng Y, Chen C, et al.. Effect of Xe ion irradiation on photocatalytic performance of oblique TiO2 nanowire arrays. Applied Surface Science, 2015, 327: 478–482
https://doi.org/10.1016/j.apsusc.2014.12.009
29 Okada M, Yamada Y, Jin P, et al.. Two-step nitridation of photocatalytic TiO2 films by low energy ion irradiation. Applied Surface Science, 2007, 254(1): 156–159
https://doi.org/10.1016/j.apsusc.2007.07.011
30 Matsunami N, Uebayashi M, Hirooka K, et al.. N ion irradiation enhancement of photocatalytic activity of TiO2. Nuclear Instruments and Methods in Physics Research, 2009, 267(8–9): 1654–1657
https://doi.org/10.1016/j.nimb.2009.01.097
31 Rajbongshi B M, Ramchiary A, Samdarshi S K. Influence of N-doping on photocatalytic activity of ZnO nanoparticles under visible light irradiation. Materials Letters, 2014, 134: 111–114
https://doi.org/10.1016/j.matlet.2014.07.073
32 Wang X, Zhu H, Xu Y, et al.. Aligned ZnO/CdTe core–shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties. ACS Nano, 2010, 4(6): 3302–3308
https://doi.org/10.1021/nn1001547 pmid: 20446665
33 Cao X, Chen P, Guo Y. Decoration of textured ZnO nanowires array with CdTe quantum dots: enhanced light-trapping effect and photogenerated charge separation. The Journal of Physical Chemistry C, 2008, 112(51): 20560–20566
https://doi.org/10.1021/jp806645c
34 Procop M, Wandel K. Photoelectron spectroscopic and ellipsometric investigation of In0.53Ga0.47 As surfaces after wet chemical etching. Fresenius Journal of Analytical Chemistry, 1993, 346(1–3): 23–28
https://doi.org/10.1007/BF00321376
35 Chen M, Wang X, Yu Y H, et al.. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Applied Surface Science, 2000, 158(1–2): 134–140
https://doi.org/10.1016/S0169-4332(99)00601-7
36 Ramgir N S, Late D J, Bhise A B, et al.. ZnO multipods, submicron wires, and spherical structures and their unique field emission behavior. The Journal of Physical Chemistry B, 2006, 110(37): 18236–18242
https://doi.org/10.1021/jp0628131
37 Li C C, Du Z F, Li L M, et al.. Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature. Applied Physics Letters, 200 7, 91(3): 032101 (3 pages)
https://doi.org/10.1063/1.2752541
38 Yang L L, Zhao Q X, Willander M, et al.. Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy. Applied Surface Science, 2010, 256(11): 3592–3597
https://doi.org/10.1016/j.apsusc.2009.12.160
39 Lupan O, Chow L, Ono L K, et al.. Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route. The Journal of Physical Chemistry C, 2010, 114(29): 12401–12408
https://doi.org/10.1021/jp910263n
40 Rajbongshi B M, Samdarshi S K. ZnO and Co–ZnO nanorods — Complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux. Materials Science and Engineering B, 2014, 182: 21–28
https://doi.org/10.1016/j.mseb.2013.11.013
41 Bose D N, Hedge M S, Basu S, et al.. XPS investigation of CdTe surfaces: effect of Ru modification. Semiconductor Science and Technology, 1989, 4(10): 866–870
https://doi.org/10.1088/0268-1242/4/10/006
42 Han J F, Liu X, Cha L M, et al.. Investigation of oxide layer on CdTe film surface and its effect on the device performance. Materials Science in Semiconductor Processing, 2015, 40: 402–406
https://doi.org/10.1016/j.mssp.2015.06.086
43 Han J, Krishnakumar V, Schimper H J, et al.. Investigation of structural, chemical, and electrical properties of CdTe/back contact interface by TEM and XPS. Journal of Electronic Materials, 2015, 44(10): 3327–3333
https://doi.org/10.1007/s11664-015-3816-3
44 Vanheusden K, Warren W L, Seager C H, et al.. Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 1996, 79(10): 7983–7990
https://doi.org/10.1063/1.362349
45 Duan J, Huang X, Wang E, et al.. Synthesis of hollow ZnO microspheres by an integrated autoclave and pyrolysis process. Nanotechnology, 2006, 17(6): 1786–1790
https://doi.org/10.1088/0957-4484/17/6/040 pmid: 26558594
46 Prabhakar R R, Pramana S S, Karthik K R G, et al.. Ultra-thin conformal deposition of CuInS2 on ZnO nanowires by chemical spray pyrolysis. Journal of Materials Chemistry, 2012, 22(28): 13965–13968
https://doi.org/10.1039/c2jm31270k
47 Pan H. Bandgap engineering of oxygen-rich TiO2+x for photocatalyst with enhanced visible-light photocatalytic ability. Journal of Materials Science, 2015, 50(12): 4324–4329
https://doi.org/10.1007/s10853-015-8984-2
48 Lin Z, Orlov A, Lambert R M, et al.. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. The Journal of Physical Chemistry B, 2005, 109(44): 20948–20952
https://doi.org/10.1021/jp053547e pmid: 16853715
49 Serpone N, Lawless D, Khairutdinov R, et al.. Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes Rp = 1.0–13.4 nm). Relevance to Heterogeneous Photocatalysis. The Journal of Physical Chemistry, 1995, 99(45): 16655–16661
https://doi.org/10.1021/j100045a027
50 Kuriakose S, Avasthi D K, Mohapatra S. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method. Beilstein Journal of Nanotechnology, 2015, 6(1): 928–937
https://doi.org/10.3762/bjnano.6.96 pmid: 25977864
51 Chang J H, Lin H N. Investigation of the photocatalytic activity of ZnO nanowires: Substrate effect and kinetics analysis. Journal of Nanomaterials, 2014, 2014: 426457 (6 pages)
https://doi.org/10.1155/2014/426457
52 Travlos A, Boukos N, Chandrinou C, et al.. Zinc and oxygen vacancies in ZnO nanorods. Journal of Applied Physics, 2009, 106(10): 245708
https://doi.org/10.1063/1.3259413
53 Zhang Q, Xu M, You B, et al.. Oxygen vacancy-mediated ZnO nanoparticle photocatalyst for degradation of methylene blue. Applied Sciences, 2018, 8(3): 353
https://doi.org/10.3390/app8030353
54 Kuriakose S, Bhardwaj N, Singh J, et al.. Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method. Beilstein Journal of Nanotechnology, 2013, 4: 763–770
https://doi.org/10.3762/bjnano.4.87 pmid: 24367745
55 Zhang N, Zhang Y, Xu Y J. Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 2012, 4(19): 5792–5813
https://doi.org/10.1039/c2nr31480k pmid: 22907128
[1] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[2] Zhihong JING, Xiue LIU, Yan DU, Yuanchun HE, Tingjiang YAN, Wenliang WANG, Wenjuan LI. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites[J]. Front. Mater. Sci., 2020, 14(1): 1-13.
[3] Hassan Rayat AZIMI,Mahmood GHORANNEVISS,Seyed Mohammad ELAHI,Mohammad Reza MAHMOUDIAN,Farid JAMALI-SHEINI,Ramin YOUSEFI. Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method[J]. Front. Mater. Sci., 2016, 10(4): 385-393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed