|
|
Towards safe lithium‒sulfur batteries from liquid-state electrolyte to solid-state electrolyte |
Zhiyuan Pang1, Hongzhou Zhang1( ), Lu Wang2( ), Dawei Song1, Xixi Shi1, Yue Ma1, Linglong Kong3( ), Lianqi Zhang1 |
1. Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China 2. College of Chemistry and Materials Science, Shandong Agricultural University, Taian 271018, China 3. State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, School of Forestry, Shandong Agricultural University, Taian 271018, China |
|
|
Abstract Lithium–sulfur (Li‒S) battery has been considered as one of the most promising future batteries owing to the high theoretical energy density (2600 W·h·kg−1) and the usage of the inexpensive active materials (elemental sulfur). The recent progress in fundamental research and engineering of the Li‒S battery, involved in electrode, electrolyte, membrane, binder, and current collector, has greatly promoted the performance of Li‒S batteries from the laboratory level to the approaching practical level. However, the safety concerns still deserve attention in the following application stage. This review focuses on the development of the electrolyte for Li‒S batteries from liquid state to solid state. Some problems and the corresponding solutions are emphasized, such as the soluble lithium polysulfides migration, ionic conductivity of electrolyte, the interface contact between electrolyte and electrode, and the reaction kinetics. Moreover, future perspectives of the safe and high-performance Li‒S batteries are also introduced.
|
Keywords
lithium–sulfur battery
liquid electrolyte
polymer electrolyte
solid-state electrolyte
battery safety
|
Corresponding Author(s):
Hongzhou Zhang,Lu Wang,Linglong Kong
|
About author: Changjian Wang and Zhiying Yang contributed equally to this work. |
Issue Date: 01 March 2023
|
|
1 |
J M, Tarascon M Armand . Issues and challenges facing rechargeable lithium batteries.Nature, 2001, 414: 359–367
|
2 |
P G Bruce . Energy storage beyond the horizon: rechargeable lithium batteries.Solid State Ionics, 2008, 179: 752–760
|
3 |
P G, Bruce S A, Freunberger L J, Hardwick et al.. Li–O2 and Li–S batteries with high energy storage.Nature Materials, 2012, 11: 19–29
|
4 |
B Scrosati . History of lithium batteries.Journal of Solid State Electrochemistry, 2011, 15: 1623–1630
|
5 |
M, Armand J M Tarascon . Building better batteries.Nature, 2008, 451: 652–657
|
6 |
T, Nagaura K Tazawa . Lithium ion rechargeable battery.Progress in Batteries & Solar Cells, 1990, 9: 209–217
|
7 |
K, Mizushima P C, Jones P J, Wiseman , et al.. LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Solid State Ionics, 1981, 3‒4: 171–174
|
8 |
Y Nishi . Lithium ion secondary batteries: past 10 years and the future.Journal of Power Sources, 2001, 100: 101–106
|
9 |
T, Sasaki Y, Ukyo P Novák . Memory effect in a lithium-ion battery.Nature Materials, 2013, 12: 569–575
|
10 |
L D, Lin K, Qin Q H, Zhang et al.. Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for anode-free lithium metal batteries.Angewandte Chemie International Edition, 2021, 60(15): 8289–8296
|
11 |
X P, Gao H X Yang . Multi-electron reaction materials for high energy density batteries.Energy & Environmental Science, 2010, 3: 174–189
|
12 |
L, Han M L, Lehmann J D, Zhu et al.. Recent developments and challenges in hybrid solid electrolytes for lithium-ion batteries.Frontiers in Energy Research, 2020, 8: 202
|
13 |
F, Duffner N, Kronemeyer J, Tübke et al.. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure.Nature Energy, 2021, 6: 123–134
|
14 |
J Q, Huang S T, Boles J M Tarascon . Sensing as the key to battery lifetime and sustainability.Nature Sustainability, 2022, 5: 194–204
|
15 |
F, Wu J, Maier Y Yu . Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.Chemical Society Reviews, 2020, 49(5): 1569–1614
|
16 |
D, Herbert J Ulam . Electric dry cells and storage batteries. US Patent, 3 043 896, 1962
|
17 |
M L B Rao . Organic electrolyte cells. US Patent, 3 413 154, 1968
|
18 |
J L, Wang J, Yang J Y, Xie et al.. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte.Electrochemistry Communications, 2002, 4: 499–502
|
19 |
J L, Wang J, Yang J Y, Xie et al.. A novel conductive polymer‒sulfur composite cathode material for rechargeable lithium batteries.Advanced Materials, 2002, 14: 13–14
|
20 |
Y V, Mikhaylik J R Akridge . Polysulfide shuttle study in the Li/S battery system.Journal of the Electrochemical Society, 2004, 151(11): A1969–A1976
|
21 |
Y V Mikhaylik . Electrolytes for lithium sulfur cells. US Patent, 7 354 680, 2008
|
22 |
X L, Ji K T, Lee L F Nazar . A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries.Nature Materials, 2009, 8: 500–506
|
23 |
B, Zhang X, Qin G R, Li et al.. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres.Energy & Environmental Science, 2010, 3: 1531–1537
|
24 |
X, Geng R H, Lin X X, Gu et al.. Water reducer: a highly dispersing binder for high-performance lithium–sulfur batteries.Chinese Journal of Chemistry, 2021, 39(6): 1523–1530
|
25 |
L, Huang J J, Li B, Liu et al.. Electrode design for lithium–sulfur batteries: problems and solutions.Advanced Functional Materials, 2020, 30(22): 1910375
|
26 |
B J, Lee T H, Kang H Y, Lee et al.. Revisiting the role of conductivity and polarity of host materials for long-life lithium–sulfur battery.Advanced Energy Materials, 2020, 10(22): 1903934
|
27 |
S F, Ng M Y L, Lau W J Ong . Lithium–sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion.Advanced Materials, 2021, 33(50): 2008654
|
28 |
H T, Li Y G, Li L Zhang . Designing principles of advanced sulfur cathodes toward practical lithium–sulfur batteries.SusMat, 2022, 2(1): 34–64
|
29 |
R P, Fang S Y, Zhao P X, Hou et al.. 3D Interconnected electrode materials with ultrahigh areal sulfur loading for Li‒S batteries.Advanced Materials, 2016, 28(17): 3374–3382
|
30 |
Y, Dong S, Zheng J, Qin et al.. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li‒S batteries.ACS Nano, 2018, 12(3): 2381–2388
|
31 |
Q, Sun X, Fang W, Weng et al.. An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium–sulfur batteries.Angewandte Chemie, 2015, 54(36): 10539–10544
|
32 |
S H, Chung C H, Chang A Manthiram . A core‒shell electrode for dynamically and statically stable Li‒S battery chemistry.Energy & Environmental Science, 2016, 9(10): 3188–3200
|
33 |
S Q, Chen X D, Huang B, Sun et al.. Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2: 16199–16207
|
34 |
G, Zhang Z W, Zhang H J, Peng et al.. A toolbox for lithium–sulfur battery research: methods and protocols.Small Methods, 2017, 1(7): 1700134
|
35 |
Z J, Ju H D, Yuan O W, Sheng et al.. Cryo-electron microscopy for unveiling the sensitive battery materials.Small Science, 2021, 1(11): 2100055
|
36 |
Q, He B, Yu Z H, Li et al.. Density functional theory for battery materials.Energy & Environmental Materials, 2019, 2(4): 264–279
|
37 |
C, Park M, Kanduč R, Chudoba et al.. Molecular simulations of electrolyte structure and dynamics in lithium–sulfur battery solvents.Journal of Power Sources, 2018, 373: 70–78
|
38 |
C, Li R, Liu Y, Xiao et al.. Recent progress of separators in lithium–sulfur batteries.Energy Storage Materials, 2021, 40: 439–460
|
39 |
W, Chen T Y, Lei C Y, Wu et al.. Designing safe electrolyte systems for a high-stability lithium–sulfur battery.Advanced Energy Materials, 2018, 8(10): 1702348
|
40 |
X B, Cheng C, Yan J Q, Huang et al.. The gap between long lifespan Li‒S coin and pouch cells: the importance of lithium metal anode protection.Energy Storage Materials, 2017, 6: 18–25
|
41 |
C P, Yang Y X, Yin S F, Zhang et al.. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes.Nature Communications, 2015, 6: 8058
|
42 |
H J, Zhao N P, Deng J, Yan et al.. A review on anode for lithium–sulfur batteries: progress and prospects.Chemical Engineering Journal, 2018, 347: 343–365
|
43 |
J M, Ma Y T, Li N S, Grundish et al.. The 2021 battery technology roadmap.Journal of Physics D: Applied Physics, 2021, 54: 183001
|
44 |
W K, Wang A B, Wang Z Q Jin . Challenges on practicalization of lithium sulfur batteries.Energy Storage Science and Technology, 2020, 9(2): 593–597
https://doi.org/10.19799/j.cnki.2095-4239.2019.0295
|
45 |
R S, Assary L A, Curtiss J S Moore . Toward a molecular understanding of energetics in Li‒S batteries using nonaqueous electrolytes: a high-level quantum chemical study.The Journal of Physical Chemistry C, 2014, 118: 11545–11558
|
46 |
S S Zhang . Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions.Journal of Power Sources, 2013, 231: 153–162
|
47 |
M, Cuisinier P E, Cabelguen S, Evers et al.. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy.The Journal of Physical Chemistry Letters, 2013, 4: 3227–3232
|
48 |
W H, Zhang D, Qiao J X, Pan et al.. A Li+-conductive microporous carbon–sulfur composite for Li–S batteries.Electrochimica Acta, 2013, 87: 497–502
|
49 |
C P, Yang Y X, Yin Y G, Guo et al.. Electrochemical (de)lithiation of 1D sulfur chains in Li–S batteries: a model system study.Journal of the American Chemical Society, 2015, 137: 2215–2218
|
50 |
S S Zhang . Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery.Energies, 2014, 7: 4588–4600
|
51 |
M, Helen M A, Reddy T, Diemant et al.. Single step transformation of sulphur to Li2S2/Li2S in Li–S batteries.Scientific Reports, 2015, 5: 12146
|
52 |
F, He X J, Wu J F, Qian et al.. Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6: 23396
|
53 |
C, Deng Z W, Wang S P, Wang et al.. Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7: 12381–12413
|
54 |
M A, Weret C F J, Kuo T S, Zeleke et al.. Mechanistic understanding of the sulfurized-poly(acrylonitrile) cathode for lithium–sulfur batteries.Energy Storage Materials, 2020, 26: 483–493
|
55 |
Y Z, Zhang Z Z, Wu G L, Pan et al.. Microporous carbon polyhedrons encapsulated polyacrylonitrile nanofibers as sulfur immobilizer for lithium–sulfur battery.ACS Applied Materials & Interfaces, 2017, 9(14): 12436–12444
|
56 |
J J, Hu G K, Long S, Liu et al.. A LiFSI–LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li–S battery.Chemical Communications, 2014, 50: 14647–14650
|
57 |
M, Ue S Mori . Mobility and ionic association of lithium salts in a propylene carbonate-ethyl methyl carbonate mixed solvent.Journal of the Electrochemical Society, 1995, 142: 2577–2581
|
58 |
D, Linden ed. Handbook of Batteries. 2nd ed. New York: McGraw-Hill, 1995
|
59 |
M, Schmidt U, Heider A, Kuehner , et al.. Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. Journal of Power Sources, 2001, 97‒98: 557–560
|
60 |
C W, Walker J D, Cox M Salomon . Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with lithium tris(trifluoromethanesulfonyl)methide.Journal of the Electrochemical Society, 1996, 143: L80
|
61 |
L A, Dominey V R, Koch T Blakley . Thermally stable lithium salts for polymer electrolytes.Electrochimica Acta, 1992, 37(9): 1551–1554
|
62 |
K Xu . Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.Chemical Reviews, 2004, 104(10): 4303–4418
|
63 |
L M, Suo Y S, Hu H, Li et al.. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries.Nature Communications, 2013, 4: 1481
|
64 |
M, Barghamadi M, Musameh T, Rüther et al.. Chapter 3: Electrolyte for lithium–sulfur batteries.In: Wild M, Offer G J, eds. Lithium–Sulfur Batteries. John Wiley & Sons Ltd., 2019, 71–120
|
65 |
M, Barghamadi A S, Best A I, Bhatt et al.. Lithium–sulfur batteries — the solution is in the electrolyte, but is the electrolyte a solution?.Energy & Environmental Science, 2014, 7: 3902–3920
|
66 |
W, Xu A J, Shusterman M, Videa et al.. Structures of orthoborate anions and physical properties of their lithium salt nonaqueous solutions.Journal of the Electrochemical Society, 2003, 150: E74–E80
|
67 |
Y, Hayashi S, Yamada T, Ishikawa et al.. Enhancement of bifunctional effect for LiNO3/glyme electrolyte by using dual solvent system for Li‒O2 batteries.Journal of the Electrochemical Society, 2020, 167: 020542
|
68 |
D R, Chang S H, Lee S W, Kim et al.. Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium–sulfur battery.Journal of Power Sources, 2002, 112(2): 452–460
|
69 |
J T, Dudley D P, Wilkinson G, Thomas et al.. Conductivity of electrolyte for rechargeable lithium batteries.Journal of Power Sources, 1991, 35: 59–82
|
70 |
G, Liu Q J, Sun J L, Zhang et al.. Electrolyte issues in lithium–sulfur batteries: development, prospect, and challenges.Energy & Fuels, 2021, 35(13): 10405–10427
|
71 |
Y Marcus . Ion Solvation. 4th ed. New York: John Wiley & Sons, Inc., 1985
|
72 |
J, Barthel H J Gores . Liquid nonaqueous electrolyte. In: Besenhard J O, ed. Handbook of Battery Materials. New York: Wiley-VCH, 1999
|
73 |
D, Aurbach ed. Nonaqueous Electrochemistry. New York: Marcel Dekker, Inc., 1999
|
74 |
C, Sun J, Dong X D, Lu et al.. Sol electrolyte: pathway to long-term stable lithium metal anode.Advanced Functional Materials, 2021, 31(26): 2100594
|
75 |
C B, Jin T F, Liu O W, Sheng et al.. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox.Nature Energy, 2021, 6: 378–387
|
76 |
X P, Ai Y L, Cao H X Yang . Simple analysis and possible solutions of the unusual interfacial reactions in Li‒S batteries.Journal of Electrochemistry, 2012, 18(3): 224–228
|
77 |
Y E, Hyung D R, Vissers K Amine . Flame-retardant additives for lithium-ion batteries.Journal of Power Sources, 2003, 119–121: 383–387
|
78 |
G J, Xu X, Wang D, Lu et al.. Research progress of high safety flame retardant electrolytes for lithium-ion batteries.Energy Storage Science and Technology, 2018, 7(6): 1040–1059
|
79 |
M X, He X, Li N G, Holmes et al.. Flame-retardant and polysulfide-suppressed ether-based electrolytes for high-temperature Li–S batteries.ACS Applied Materials & Interfaces, 2021, 13: 38296–38304
|
80 |
H, Yang C, Guo J, Chen et al.. An intrinsic flame-retardant organic electrolyte for safe lithium–sulfur batteries.Angewandte Chemie International Edition, 2019, 58(3): 791–795
https://doi.org/10.1002/anie.201811291
|
81 |
J, Wang F, Lin H, Jia et al.. Towards a safe lithium–sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode.Angewandte Chemie International Edition, 2014, 53(38): 10099–10104
|
82 |
Z, Yu J J, Zhang C, Wang et al.. Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries.Journal of Energy Chemistry, 2020, 51: 154–160
https://doi.org/10.1016/j.jechem.2020.03.034
|
83 |
E, Josef Y, Yan M C, Stan et al.. Ionic liquids and their polymers in lithium–sulfur batteries.Israel Journal of Chemistry, 2019, 59(9): 832–842
|
84 |
Z, Li S, Zhang S, Terada et al.. Promising cell configuration for next-generation energy storage: Li2S/graphite battery enabled by a solvate ionic liquid electrolyte.ACS Applied Materials & Interfaces, 2016, 8(25): 16053–16062
|
85 |
X M, Cai B, Ye J, Ding et al.. Dual Li-ion migration channels in an ester-rich copolymer/ionic liquid quasi-solid-state electrolyte for high-performance Li–S batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(4): 2459–2469
|
86 |
B, Sun K, Liu J, Lang et al.. Ionic liquid enabling stable interface in solid state lithium sulfur batteries working at room temperature.Electrochimica Acta, 2018, 284: 662–668
|
87 |
X G, Sun X, Wang R T, Mayes et al.. Lithium–sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.ChemSusChem, 2012, 5(10): 2079–2085
https://doi.org/10.1002/cssc.201200101
|
88 |
C, Liao B K, Guo X G, Sun et al.. Synergistic effects of mixing sulfone and ionic liquid as safe electrolytes for lithium sulfur batteries.ChemSusChem, 2015, 8(2): 353–360
https://doi.org/10.1002/cssc.201402800
|
89 |
W, Guo Q, Han J R, Jiao et al.. In situ construction of robust biphasic surface layers on lithium metal for lithium–sulfide batteries with long cycle life.Angewandte Chemie International Edition, 2021, 60(13): 7267–7274
|
90 |
W W, Wang X Y, Yue J K, Meng et al.. Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium–sulfur batteries.Energy Storage Materials, 2019, 18: 414–422
|
91 |
J Y, Wei X Q, Zhang L P, Hou et al.. Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium–sulfur batteries.Advanced Materials, 2020, 32(27): 2003012
|
92 |
X, Li R X, Zhao Y Z, Fu et al.. Nitrate additives for lithium batteries: mechanisms, applications, and prospects.eScience, 2021, 1(2): 108–123
|
93 |
J, Lian W, Guo Y Fu . Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li–S batteries.Journal of the American Chemical Society, 2021, 143(29): 11063–11071
|
94 |
S R, Chen D W, Wang Y M, Zhao et al.. Superior performance of a lithium–sulfur battery enabled by a dimethyl trisulfide containing electrolyte.Small Methods, 2018, 2(6): 1800038
|
95 |
S, Li H L, Dai Y H, Li et al.. Designing Li-protective layer via SOCl2 additive for stabilizing lithium–sulfur battery.Energy Storage Materials, 2019, 18: 222–228
|
96 |
K C, Lau N L D, Rago C Liao . Lipophilic additives for highly concentrated electrolytes in lithium–sulfur batteries.Journal of the Electrochemical Society, 2019, 166(12): A2570–A2573
|
97 |
H L, Dai K, Xi X, Liu et al.. Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms.Journal of the American Chemical Society, 2018, 140(50): 17515–17521
|
98 |
M F, Jiang Z Q, Zhang B, Tang et al.. Polymer electrolytes for Li–S batteries: polymeric fundamentals and performance optimization.Journal of Energy Chemistry, 2021, 58: 300–317
https://doi.org/10.1016/j.jechem.2020.10.009
|
99 |
S J, Chen Y X, Xiang G R, Zheng et al.. High-efficiency lithium metal anode enabled by a concentrated/fluorinated ester electrolyte.ACS Applied Materials & Interfaces, 2020, 12(24): 27794–27802
|
100 |
W, Kou J, Wang W, Li et al.. Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium–sulfur battery.Journal of Membrane Science, 2021, 634: 119432
|
101 |
Y, Shan L, Li X Yang . Solid-state polymer electrolyte solves the transfer of lithium ions between the solid–solid interface of the electrode and the electrolyte in lithium–sulfur and lithium-ion batteries.ACS Applied Energy Materials, 2021, 4(5): 5101–5112
|
102 |
Y, Cao P, Zuo S, Lou et al.. A quasi-solid-state Li–S battery with high energy density, superior stability and safety.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(11): 6533–6542
|
103 |
G G, Eshetu X, Judez C, Li et al.. Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect.Journal of the American Chemical Society, 2018, 140(31): 9921–9933
|
104 |
Z G, Xue D, He X L Xie . Poly(ethylene oxide)-based electrolytes for lithium-ion batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(38): 19218–19253
|
105 |
W, Yang W, Yang J, Feng et al.. High capacity and cycle stability rechargeable lithium–sulfur batteries by sandwiched gel polymer electrolyte.Electrochimica Acta, 2016, 210: 71–78
|
106 |
K, Jeddi K, Sarikhani N T, Qazvini et al.. Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles.Journal of Power Sources, 2014, 245: 656–662
|
107 |
A, Aishova A, Mentbayeva B, Isakhov et al.. Gel polymer electrolytes for lithium–sulfur batteries.Materials Today: Proceedings, 2018, 5(11): 22882–22888
|
108 |
X, Cai B, Cui B, Ye et al.. Poly(ionic liquid)-based quasi-solid-state copolymer electrolytes for dynamic-reversible adsorption of lithium polysulfides in lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2019, 11(41): 38136–38146
|
109 |
S S, Zhang D T Tran . How a gel polymer electrolyte affects performance of lithium/sulfur batteries.Electrochimica Acta, 2013, 114: 296–302
|
110 |
X L, Wang X J, Hao H J, Zhang et al.. 3D ultraviolet polymerized electrolyte based on PEO modified PVDF‒HFP electrospun membrane for high-performance lithium–sulfur batteries.Electrochimica Acta, 2020, 329: 135108
|
111 |
P, Zhu C Y, Yan J D, Zhu et al.. Flexible electrolyte‒cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2019, 17: 220–225
|
112 |
Y W, Zhu J, Li J Liu . A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium–sulfur battery.Journal of Power Sources, 2017, 351: 17–25
|
113 |
Y, Lin X M, Wang J, Liu et al.. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium–sulfur batteries.Nano Energy, 2017, 31: 478–485
|
114 |
X, Tao Y, Liu W, Liu et al.. Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer.Nano Letters, 2017, 17(5): 2967–2972
|
115 |
X, Li D, Wang H, Wang et al.. Poly(ethylene oxide)‒Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery.ACS Applied Materials & Interfaces, 2019, 11(25): 22745–22753
|
116 |
J, Jin Z Y, Wen X, Liang et al.. Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery.Solid State Ionics, 2012, 225: 604–607
|
117 |
C H, Long L B, Li M, Zhai et al.. Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect.Journal of Physics and Chemistry of Solids, 2019, 134: 255–261
|
118 |
D D, Han Z Y, Wang G L, Pan et al.. Metal-organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium–sulfur battery.ACS Applied Materials & Interfaces, 2019, 11(20): 18427–18435
|
119 |
Y Q, Shen F L, Zeng X Y, Zhou et al.. A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium–sulfur batteries.Journal of Energy Chemistry, 2020, 48: 267–276
https://doi.org/10.1016/j.jechem.2020.01.016
|
120 |
Y, Liu D, Yang W, Yan et al.. Synergy of sulfur/polyacrylonitrile composite and gel polymer electrolyte promises heat-resistant lithium–sulfur batteries.iScience, 2019, 19: 316–325
|
121 |
J K Kim . Hybrid gel polymer electrolyte for high-safety lithium–sulfur batteries.Materials Letters, 2017, 187: 40–43
|
122 |
P M, Shanthi P J, Hanumantha T, Albuquerque et al.. Novel composite polymer electrolytes of PVdF‒HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium–sulfur batteries.ACS Applied Energy Materials, 2018, 1(2): 483–494
|
123 |
X L, Wang X J, Hao D, Cai et al.. An ultraviolet polymerized 3D gel polymer electrolyte based on multi-walled carbon nanotubes doped double polymer matrices for lithium–sulfur batteries.Chemical Engineering Journal, 2020, 382: 122714
|
124 |
J H, Jiang A B, Wang W K, Wang et al.. P(VDF-HFP)-poly(sulfur-1,3-diisopropenylbenzene) functional polymer electrolyte for lithium–sulfur batteries.Journal of Energy Chemistry, 2020, 46: 114–122
|
125 |
J Q, Zhou H Q, Ji J, Liu et al.. A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery.Energy Storage Materials, 2019, 22: 256–264
|
126 |
L P, Sun H, Li M L, Zhao et al.. High-performance lithium–sulfur batteries based on self-supporting graphene/carbon nanotube foam@sulfur composite cathode and quasi-solid-state polymer electrolyte.Chemical Engineering Journal, 2018, 332: 8–15
|
127 |
S, Choudhury T, Saha K, Naskar et al.. A highly stretchable gel-polymer electrolyte for lithium–sulfur batteries.Polymer, 2017, 112: 447–456
|
128 |
W Y, Li Y, Pang T C, Zhu et al.. A gel polymer electrolyte based lithium–sulfur battery with low self-discharge.Solid State Ionics, 2018, 318: 82–87
|
129 |
Y, Wang H, Ji X, Zhang et al.. Cyclopropenium cationic-based covalent organic polymer-enhanced poly(ethylene oxide) composite polymer electrolyte for all-solid-state Li–S battery.ACS Applied Materials & Interfaces, 2021, 13(14): 16469–16477
|
130 |
F, Zhang Y W, Luo X, Gao et al.. Copolymerized sulfur with intrinsically ionic conductivity, superior dispersibility, and compatibility for all-solid-state lithium batteries.ACS Sustainable Chemistry & Engineering, 2020, 8(32): 12100–12109
|
131 |
Y, Liu H W, Liu Y T, Lin et al.. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery.Advanced Functional Materials, 2021, 31(41): 2104863
|
132 |
M, Liu D, Zhou Y B, He et al.. Novel gel polymer electrolyte for high-performance lithium–sulfur batteries.Nano Energy, 2016, 22: 278–289
|
133 |
X M, Cai B, Ye J L, Ding et al.. Dual Li-ion migration channels in an ester-rich copolymer/ionic liquid quasi-solid-state electrolyte for high-performance Li–S batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(4): 2459–2469
|
134 |
Q, Yang N P, Deng J Y, Chen et al.. The recent research progress and prospect of gel polymer electrolytes in lithium–sulfur batteries.Chemical Engineering Journal, 2021, 413: 127427
|
135 |
A, Santiago J, Castillo I, Garbayo et al.. Salt additives for improving cyclability of polymer-based all-solid-state lithium–sulfur batteries.ACS Applied Energy Materials, 2021, 4(5): 4459–4464
|
136 |
Y X, Song J, Wan H J, Guo et al.. Insights into evolution processes and degradation mechanisms of anion-tunable interfacial stability in all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2021, 41: 642–649
|
137 |
F, Croce G B, Appetecchi L, Persi et al.. Nanocomposite polymer electrolytes for lithium batteries.Nature, 1998, 394: 456–458
|
138 |
B, Scrosati F, Croce S Panero . Progress in lithium polymer battery R&D.Journal of Power Sources, 2001, 100(1–2): 93–100
|
139 |
H M, Xiong Z D, Wang D P, Liu et al.. Bonding polyether onto ZnO nanoparticles: an effective method for preparing polymer nanocomposites with tunable luminescence and stable conductivity.Advanced Functional Materials, 2005, 15(11): 1751–1756
|
140 |
D, Zhang H, Yan Z, Zhu et al.. Electrochemical stability of lithium bis(oxatlato) borate containing solid polymer electrolyte for lithium ion batteries.Journal of Power Sources, 2011, 196(23): 10120–10125
|
141 |
S, Panero B, Scrosati H H, Sumathipala et al.. Dual-composite polymer electrolytes with enhanced transport properties.Journal of Power Sources, 2007, 167(2): 510–514
|
142 |
M R, Johan L B Fen . Combined effect of CuO nanofillers and DBP plasticizer on ionic conductivity enhancement in the solid polymer electrolyte PEO–LiCF3SO3.Ionics, 2010, 16: 335–338
|
143 |
B, Kumar S J, Rodrigues L G Scanlon . Ionic conductivity of polymer‒ceramic composites.Journal of the Electrochemical Society, 2001, 148(10): A1191–A1195
|
144 |
S, Kim E J, Hwang Y J, Jung et al.. Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313–314: 216–219
|
145 |
Y W, Kim W, Lee B K Choi . Relation between glass transition and melting of PEO–salt complexes. Electrochimica Acta, 2000, 45(8–9): 8–9
|
146 |
K L, Mathews A M, Budgin S, Beeram et al.. Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers.Journal of Materials Chemistry, 2013, 1(4): 1108–1116
|
147 |
M A S A, Samir F, Alloin J Y, Sanchez et al.. Cellulose nanocrystals reinforced poly(oxyethylene).Polymer, 2004, 45(12): 4149–4157
|
148 |
Y, Xia Y F, Liang D, Xie et al.. A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium–sulfur batteries.Chemical Engineering Journal, 2019, 358: 1047–1053
|
149 |
T C, Kuo J C, Hsueh C Y, Chiou et al.. Ionically cross-linked polymers as asymmetric gel polymer electrolytes for enhanced cycle performance of lithium–sulfur batteries.ACS Macro Letters, 2020, 10(1): 110–115
|
150 |
J, Liu T, Qian M, Wang et al.. Use of tween polymer to enhance the compatibility of the Li/electrolyte interface for the high-performance and high-safety quasi-solid-state lithium–sulfur battery.Nano Letters, 2018, 18(7): 4598–4605
|
151 |
S, Boulineau M, Courty J M, Tarascon et al.. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application.Solid State Ionics, 2012, 221: 1–5
https://doi.org/10.1016/j.ssi.2012.06.008
|
152 |
S, Kinoshita K, Okuda N, Machida et al.. All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials.Solid State Ionics, 2014, 256: 97–102
|
153 |
S A, Pervez B P, Vinayan M A, Cambaz et al.. Electrochemical and compositional characterization of solid interphase layers in an interface-modified solid-state Li–sulfur battery.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(32): 16451–16462
|
154 |
C H, Yu C S, Cho C C Li . Well-dispersed garnet crystallites for applications in solid-state Li–S batteries.ACS Applied Materials & Interfaces, 2021, 13(10): 11995–12005
|
155 |
M, Nagao A, Hayashi M, Tatsumisago et al.. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium–sulfur batteries.Journal of Power Sources, 2015, 274: 471–476
|
156 |
T, Takahashi O Yamamoto . Conductivity of solid state electrolyte-6-AgS‒HgI2.Denki Kagaku, 1967, 35: 32
|
157 |
O Yamamoto . Solid state ionics: a Japan perspective.Science and Technology of Advanced Materials, 2017, 18(1): 504–527
|
158 |
C W, Wang K, Fu S P, Kammampata et al.. Garnet-type solid-state electrolytes: materials, interfaces, and batteries.Chemical Reviews, 2020, 120: 4257–4300
|
159 |
U V, Alpen A, Rabenau G H Talat . Ionic conductivity in Li3N single crystals.Applied Physics Letters, 1977, 30: 621
|
160 |
J B, Goodenough H Y P, Hong J A Kafalas . Fast Na+ ion transport in skeleton structures.Materials Research Bulletin, 1976, 11: 203–220
|
161 |
H Y P Hong . Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors.Materials Research Bulletin, 1978, 13: 117–124
|
162 |
R, Kanno T, Hata Y, Kawamoto et al.. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system.Solid State Ionics, 2000, 130: 97–104
|
163 |
V, Thangadurai H, Kaack W J F Weppner . Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta).Journal of the American Ceramic Society, 2003, 86: 437–440
|
164 |
Y, Zhao L L Daemen . Superionic conductivity in lithium-rich anti-perovskites.Journal of the American Chemical Society, 2012, 134: 15042–15047
|
165 |
J C, Bachman S, Muy A, Grimaud et al.. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction.Chemical Reviews, 2016, 116: 140–162
|
166 |
W D, Richards L J, Miara Y, Wang et al.. Interface stability in solid-state batteries.Chemistry of Materials, 2016, 28: 266–273
|
167 |
L E, Camacho-Forero P B Balbuena . Elucidating interfacial phenomena between solid-state electrolyte and the sulfur-cathode of lithium–sulfur batteries.Chemistry of Materials, 2020, 32: 360–373
|
168 |
M, Agostini Y, Aihara T, Yamada et al.. A lithium–sulfur battery using a solid, glass-type P2S5–Li2S electrolyte.Solid State Ionics, 2013, 244: 48–51
|
169 |
S, Ohno R, Koerver G, Dewald et al.. Observation of chemomechanical failure and the influence of cutoff potentials in all-solid-state Li–S batteries.Chemistry of Materials, 2019, 31(8): 2930–2940
|
170 |
J Y, Wu L X, Yuan W X, Zhang et al.. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries.Energy & Environmental Science, 2021, 14(1): 12–36
|
171 |
R C, Xu Z, Wu S Z, Zhang et al.. Construction of all-solid-state batteries based on a sulfur‒graphene composite and Li9.54Si1.74P1.44S11.7Cl0.3 solid electrolyte.Chemistry, 2017, 23(56): 13950–13956
|
172 |
P, Bonnick K, Niitani M, Nose et al.. A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(42): 24173–24179
|
173 |
Z J, Wu Z K, Xie A, Yoshida et al.. Novel SeS2 doped Li2S‒P2S5 solid electrolyte with high ionic conductivity for all-solid-state lithium sulfur batteries.Chemical Engineering Journal, 2020, 380: 122419
|
174 |
S, Wang Y, Zhang X, Zhang et al.. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2018, 10(49): 42279–42285
|
175 |
X Y, Yao N, Huang F D, Han et al.. High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes.Advanced Energy Materials, 2017, 7(17): 1602923
|
176 |
A A, AbdelHamid J L, Cheong J Y Ying . Li7La3Zr2O12 sheet-based framework for high-performance lithium–sulfur hybrid quasi-solid battery.Nano Energy, 2020, 71: 104633
|
177 |
M K, Tufail L, Zhou N, Ahmad et al.. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass‒ceramics electrolyte for all-solid-state lithium–sulfur batteries.Chemical Engineering Journal, 2021, 407: 127149
|
178 |
Z, Lin Z C, Liu N J, Dudney et al.. Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries.ACS Nano, 2013, 7(3): 2829–2833
|
179 |
S, Kinoshita K, Okuda N, Machida et al.. Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery.Journal of Power Sources, 2014, 269: 727–734
|
180 |
N H H, Phuc M, Takaki H, Muto et al.. Sulfur–carbon nano fiber composite solid electrolyte for all-solid-state Li–S batteries.ACS Applied Energy Materials, 2020, 3(2): 1569–1573
|
181 |
S, Choi I, Yoon W T, Nichols et al.. Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium‒sulfur battery using Li2S‒P2S5 solid electrolyte.Ceramics International, 2018, 44(7): 7450–7453
|
182 |
M, Eom S, Son C, Park et al.. High performance all-solid-state lithium–sulfur battery using a Li2S‒VGCF nanocomposite.Electrochimica Acta, 2017, 230: 279–284
|
183 |
Y C, Zhang Y, Wu Y P, Liu et al.. Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium–sulfur batteries.Chemical Engineering Journal, 2022, 428: 131040
|
184 |
D H, Wang Y Q, Wu X F, Zheng et al.. Li2S@NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries.Journal of Power Sources, 2020, 479: 228792
|
185 |
F, Han J, Yue X, Fan et al.. High-performance all-solid-state lithium‒sulfur battery enabled by a mixed-conductive Li2S nanocomposite.Nano Letters, 2016, 16(7): 4521–4527
|
186 |
J, Yi L, Chen Y, Liu et al.. High capacity and superior cyclic performances of all-solid-state lithium‒sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte.ACS Applied Materials & Interfaces, 2019, 11(40): 36774–36781
|
187 |
B S, Zhao L, Wang P, Chen et al.. Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass‒ceramic electrolytes for all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2021, 13(29): 34477–34485
|
188 |
Q, Ge L, Zhou Y M, Lian et al.. Metal-phosphide-doped Li7P3S11 glass‒ceramic electrolyte with high ionic conductivity for all-solid-state lithium–sulfur batteries.Electrochemistry Communications, 2018, 97: 100–104
|
189 |
W, Zhang Y Y, Zhang L F, Peng et al.. Elevating reactivity and cyclability of all-solid-state lithium–sulfur batteries by the combination of tellurium-doping and surface coating.Nano Energy, 2020, 76: 105083
|
190 |
M, Nagao Y, Imade H, Narisawa et al.. All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte.Journal of Power Sources, 2013, 222: 237–242
|
191 |
M, Yamamoto S, Goto R, Tang et al.. Nano-confinement of insulating sulfur in the cathode composite of all-solid-state Li–S batteries using flexible carbon materials with large pore volumes.ACS Applied Materials & Interfaces, 2021, 13(32): 38613–38622
|
192 |
Y Y, Zhang Y L, Sun L F, Peng et al.. Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium–sulfur battery.Energy Storage Materials, 2019, 21: 287–296
|
193 |
Q, Zhang H L, Wan G Z, Liu et al.. Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium–sulfur batteries.Nano Energy, 2019, 57: 771–782
|
194 |
M, Jiang G, Liu Q, Zhang et al.. Ultrasmall Li2S-carbon nanotube nanocomposites for high-rate all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2021, 13(16): 18666–18672
|
195 |
R C, Xu J, Yue S F, Liu et al.. Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density.ACS Energy Letters, 2019, 4(5): 1073–1079
|
196 |
X W, Yu Z H, Bi F, Zhao et al.. Polysulfide-shuttle control in lithium‒sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte.Advanced Energy Materials, 2016, 6(24): 1601392
|
197 |
J, Yue Y, Huang S, Liu et al.. Rational designed mixed-conductive sulfur cathodes for all-solid-state lithium batteries.ACS Applied Materials & Interfaces, 2020, 12(32): 36066–36071
|
198 |
Y B, Zhang T, Liu Q H, Zhang et al.. High-performance all-solid-state lithium–sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(46): 23345–23356
|
199 |
S, Ohno C, Rosenbach G F, Dewald et al.. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate-based composite cathode toward solid-state lithium–sulfur batteries.Advanced Functional Materials, 2021, 31(18): 2010620
|
200 |
Q, Zhang N, Huang Z, Huang et al.. CNTs@S composite as cathode for all-solid-state lithium–sulfur batteries with ultralong cycle life.Journal of Energy Chemistry, 2020, 40: 151–155
https://doi.org/10.1016/j.jechem.2019.03.006
|
201 |
H U, Choi J S, Jin J Y, Park et al.. Performance improvement of all-solid-state Li–S batteries with optimizing morphology and structure of sulfur composite electrode.Journal of Alloys and Compounds, 2017, 723: 787–794
|
202 |
Q, Wang Y, Chen J, Jin et al.. A new high-capacity cathode for all-solid-state lithium sulfur battery.Solid State Ionics, 2020, 357: 115500
|
203 |
S F, Wang Y, Ding G M, Zhou et al.. Durability of the Li1+xTi2−xAlx(PO4)3 solid electrolyte in lithium–sulfur batteries.ACS Energy Letters, 2016, 1(6): 1080–1085
|
204 |
M, Nagao K, Suzuki Y, Imade et al.. All-solid-state lithium–sulfur batteries with three-dimensional mesoporous electrode structures.Journal of Power Sources, 2016, 330: 120–126
|
205 |
J J, Yu S W, Liu G G, Duan et al.. Dense and thin coating of gel polymer electrolyte on sulfur cathode toward high performance Li–sulfur battery.Composites Communications, 2020, 19: 239–245
|
206 |
H, Yan H, Wang D, Wang et al.. In situ generated Li2S‒C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading.Nano Letters, 2019, 19(5): 3280–3287
|
207 |
Q G, Han X L, Li X X, Shi et al.. Outstanding cycle stability and rate capabilities of the all-solid-state Li–S battery with a Li7P3S11 glass‒ceramic electrolyte and a core–shell S@BP2000 nanocomposite.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(8): 3895–3902
|
208 |
L P, Hou H, Yuan C Z, Zhao et al.. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2020, 25: 436–442
|
209 |
S M, Hosseini A, Varzi S, Ito et al.. High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity.Energy Storage Materials, 2020, 27: 61–68
|
210 |
S Q, Xu C Y, Kwok L D, Zhou et al.. A high capacity all solid-state Li–sulfur battery enabled by conversion–intercalation hybrid cathode architecture.Advanced Functional Materials, 2020, 31(2): 2004239
|
211 |
J P, Mwizerwa Q, Zhang F, Han et al.. Sulfur-embedded FeS2 as a high-performance cathode for room temperature all-solid-state lithium‒sulfur batteries.ACS Applied Materials & Interfaces, 2020, 12(16): 18519–18525
|
212 |
H, El-Shinawi E J, Cussen S A Corr . A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li–S batteries.Nanoscale, 2019, 11(41): 19297–19300
|
213 |
K, Suzuki D, Kato K, Hara et al.. Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium–sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte.Electrochimica Acta, 2017, 258: 110–115
|
214 |
F, Chen Y L, Zhang Q, Hu et al.. S/MWCNt/LLZO composite electrode with e−/S/Li+ conductive network for all-solid-state lithium–sulfur batteries.Journal of Solid State Chemistry, 2021, 301: 122341
|
215 |
M, Li T, Liu Z, Shi et al.. Dense all-electrochem-active electrodes for all-solid-state lithium batteries.Advanced Materials, 2021, 33(26): 2008723
|
216 |
M, Nagao A, Hayashi M Tatsumisago . Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte.Electrochimica Acta, 2011, 56(17): 6055–6059
|
217 |
H, Nagata Y Chikusa . An all-solid-state lithium–sulfur battery using two solid electrolytes having different functions.Journal of Power Sources, 2016, 329: 268–272
|
218 |
L E, Camacho-Forero P B Balbuena . Elucidating interfacial phenomena between solid-state electrolytes and the sulfur-cathode of lithium–sulfur batteries.Chemistry of Materials, 2019, 32(1): 360–373
|
219 |
Y, Kato S, Hori T, Saito et al.. High-power all-solid-state batteries using sulfide superionic conductors.Nature Energy, 2016, 1: 16030
|
220 |
L, Zhou M K, Tufail N, Ahmad et al.. Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium‒sulfur batteries.ACS Applied Materials & Interfaces, 2021, 13(24): 28270–28280
|
221 |
R, Schlem M, Ghidiu S P, Culver et al.. Changing the static and dynamic lattice effects for the improvement of the ionic transport properties within the argyrodite Li6PS5−xSexI.ACS Applied Energy Materials, 2020, 3(1): 9–18
|
222 |
N, Ahmad L, Zhou M, Faheem et al.. Enhanced air stability and high li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass‒ceramic electrolyte for all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2020, 12(19): 21548–21558
|
223 |
Z, Jiang T B, Liang Y, Liu et al.. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution.ACS Applied Materials & Interfaces, 2020, 12(49): 54662–54670
|
224 |
Z, Jiang Z X, Li X L, Wang et al.. Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal interface.ACS Applied Materials & Interfaces, 2021, 13(26): 30739–30745
|
225 |
J P, Zhu Y X, Xiang J, Zhao et al.. Insights into the local structure, microstructure and ionic conductivity of silicon doped NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12.Energy Storage Materials, 2022, 44: 190–196
|
226 |
Y, Bai Y B, Zhao W D, Li et al.. New insight for solid sulfide electrolytes LSiPSI by using Si/P/S as the raw materials and I doping.ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12930–12937
|
227 |
X R, Zhou L W, Huang O, Elkedim et al.. Sr2+ and Mo6+ co-doped Li7La3Zr2O12 with superior ionic conductivity.Journal of Alloys and Compounds, 2022, 891: 161906
|
228 |
C J, Zheng J M, Su Z, Song et al.. Improvement of density and electrochemical performance of garnet-type Li7La3Zr2O12 for solid-state lithium metal batteries enabled by W and Ta co-doping strategy.Materials Today: Energy, 2022, 27: 101034
|
229 |
Z C, Zhang Y T, Tian G Z, Liu et al.. Superionic lithium argyrodite electrolytes by bromine-doping for all-solid-state lithium batteries.Journal of the Electrochemical Society, 2022, 169(4): 040553
|
230 |
A H, Xu R M, Wang M Q, Yao et al.. Electrochemical properties of an Sn-doped LATP ceramic electrolyte and its derived sandwich-structured composite solid electrolyte.Nanomaterials, 2022, 12(12): 2082
|
231 |
Z K, Wu S Q, Chen C, Yu et al.. Engineering high conductive Li7P2S8I via Cl-doping for all-solid-state Li–S batteries workable at different operating temperatures.Chemical Engineering Journal, 2022, 442: 136346
|
232 |
Q T, Wang D X, Liu X F, Ma et al.. Cl-doped Li10SnP2S12 with enhanced ionic conductivity and lower Li-ion migration barrier.ACS Applied Materials & Interfaces, 2022, 14(19): 22225–22232
|
233 |
Q N, Shao C H, Yan M X, Gao et al.. New insights into the effects of Zr substitution and carbon additive on Li3−xEr1−xZrxCl6 halide solid electrolytes.ACS Applied Materials & Interfaces, 2022, 14(6): 8095–8105
|
234 |
E, Ilina E, Lyalin M, Vlasov et al.. Structural features and the Li-ion diffusion mechanism in tantalum-doped Li7La3Zr2O12 solid electrolytes.ACS Applied Energy Materials, 2022, 5(3): 2959–2967
|
235 |
M Z, Xue W Z, Lu S, Xue et al.. Enhanced Al/Ta co-doped Li7La3Zr2O12 ceramic electrolytes with the reduced Ta doping level for solid-state lithium batteries.Journal of Materials Science, 2021, 56(35): 19614–19622
|
236 |
R M, Wang F, Liu J F, Duan et al.. Enhanced electrochemical performance of Al- and Nb-codoped LLZO ceramic powder and its composite solid electrolyte.ACS Applied Energy Materials, 2021, 4(12): 13912–13921
|
237 |
C, Miao Z Y, Kou J Q, Li et al.. LiF-doped Li3Al0.3Ti1.7(PO4)3 superionic conductors with enhanced ionic conductivity for all-solid-state lithium-ion batteries.Ionics, 2022, 28(1): 73–83
|
238 |
K Z, Walle Y S, Wu S H, Wu et al.. Lithium Nafion-modified Li6.05Ga0.25La3Zr2O11.8F0.2 trilayer hybrid solid electrolyte for high-voltage cathodes in all-solid-state lithium‒metal batteries.ACS Applied Materials & Interfaces, 2022, 14(13): 15259–15274
|
239 |
P, Chiochan X, Yu M, Sawangphruk et al.. A metal organic framework derived solid electrolyte for lithium–sulfur batteries.Advanced Energy Materials, 2020, 10(27): 2001285
|
240 |
J K Kim . Hybrid gel polymer electrolyte for high-safety lithium–sulfur batteries.Materials Letters, 2017, 187: 40–43
|
241 |
X, Li D, Wang H, Wang et al.. Poly(ethylene oxide)‒Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery.ACS Applied Materials & Interfaces, 2019, 11(25): 22745–22753
|
242 |
P M, Shanthi P J, Hanumantha T, Albuquerque et al.. Novel composite polymer electrolytes of PVdF‒HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium–sulfur batteries.ACS Applied Energy Materials, 2018, 1(2): 483–494
|
243 |
I, Garbayo A, Santiago X, Judez et al.. Alumina nanofilms as active barriers for polysulfides in high-performance all-solid-state lithium–sulfur batteries.ACS Applied Energy Materials, 2021, 4(3): 2463–2470
|
244 |
X, Zhang T F, Zhang Y F, Shao et al.. Composite electrolytes based on poly(ethylene oxide) and lithium borohydrides for all-solid-state lithium–sulfur batteries.ACS Sustainable Chemistry & Engineering, 2021, 9(15): 5396–5404
|
245 |
X, Hao H, Wenren X, Wang et al.. A gel polymer electrolyte based on PVDF–HFP modified double polymer matrices via ultraviolet polymerization for lithium‒sulfur batteries.Journal of Colloid and Interface Science, 2020, 558: 145–154
|
246 |
Y, Xia X, Wang X, Xia et al.. A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride‒hexafluoropropylene) (PVDF‒HFP) for enhanced solid-state lithium–sulfur batteries.Chemistry, 2017, 23(60): 15203–15209
|
247 |
X, Tao Y, Liu W, Liu et al.. Solid-state lithium‒sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer.Nano Letters, 2017, 17(5): 2967–2972
|
248 |
P, Zhu C Y, Yan J D, Zhu et al.. Flexible electrolyte‒cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2019, 17: 220–225
|
249 |
D S, Shao L, Yang K L, Luo et al.. Preparation and performances of the modified gel composite electrolyte for application of quasi-solid-state lithium sulfur battery.Chemical Engineering Journal, 2020, 389: 124300
|
250 |
M, Li J E, Frerichs M, Kolek et al.. Solid-state lithium–sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode.Advanced Functional Materials, 2020, 30(14): 1910123
|
251 |
H P, Li Y X, Kuai J, Yang et al.. A new flame-retardant polymer electrolyte with enhanced Li-ion conductivity for safe lithium–sulfur batteries.Journal of Energy Chemistry, 2022, 65: 616–622
https://doi.org/10.1016/j.jechem.2021.06.036
|
252 |
H, Nagata Y Chikusa . Activation of sulfur active material in an all-solid-state lithium–sulfur battery.Journal of Power Sources, 2014, 263: 141–144
|
253 |
Q P, Yu Q, Liu Z Q, Wang et al.. Anode interface in all-solid-state lithium‒metal batteries: challenges and strategies.Acta Physica Sinica, 2020, 69(22): 228805
https://doi.org/10.7498/aps.69.20201218
|
254 |
E, Rangasamy G, Sahu J K, Keum et al.. A high conductivity oxide–sulfide composite lithium superionic conductor.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2: 4111–4116
|
255 |
Z P, Wan D N, Lei W, Yang et al.. Low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder.Advanced Functional Materials, 2019, 29(1): 1805301
|
256 |
H, Buschmann S, Berendts B, Mogwitz et al.. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure.Journal of Power Sources, 2012, 206: 236–244
|
257 |
L, Cheng E J, Crumlin W, Chen et al.. The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes.Physical Chemistry Chemical Physics, 2014, 16: 18294–18300
|
258 |
X G, Han Y H, Gong K K, Fu et al.. Negating interfacial impedance in garnet-based solid-state Li metal batteries.Nature Materials, 2017, 16: 572–579
|
259 |
C W, Wang Y H, Gong B Y, Liu et al.. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes.Nano Letters, 2017, 17(1): 565–571
|
260 |
K K, Fu Y H, Gong B Y, Liu et al.. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.Science Advances, 2017, 3(4): e1601659
|
261 |
W, Luo Y H, Gong Y Z, Zhu et al.. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer.Advanced Materials, 2017, 29(22): 1606042
|
262 |
W, Luo Y H, Gong Y Z, Zhu et al.. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte.Journal of the American Chemical Society, 2016, 138(37): 12258–12262
|
263 |
J M, Fu P F, Yu N, Zhang et al.. In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte.Energy & Environmental Science, 2019, 12: 1404–1412
|
264 |
Y J, Shao H C, Wang Z L, Gong et al.. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries.ACS Energy Letters, 2018, 3(6): 1212–1218
|
265 |
Y, Wei F, Hu Y Y, Li et al.. Constructing stable anodic interphase for quasi-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2020, 12(35): 39335–39341
|
266 |
S, Hasegawa N, Imanishi T, Zhang et al.. Study on lithium/air secondary batteries — stability of NASICON-type lithium ion conducting glass–ceramics with water.Journal of Power Sources, 2009, 189(1): 371–377
|
267 |
X Y, Zhang Q, Xiang S, Tang et al.. Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface.Nano Letters, 2020, 20(4): 2871–2878
|
268 |
H, Pan M H, Zhang Z, Cheng et al.. Carbon-free and binder-free Li‒Al alloy anode enabling an all-solid-state Li–S battery with high energy and stability.Science Advances, 2022, 8(15): eabn4372
|
269 |
C X, Bi M, Zhao L P, Hou et al.. Anode material options toward 500 Wh·kg−1 lithium–sulfur batteries.Advancement of Science, 2022, 9(2): 2103910
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|