Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (1) : 230630    https://doi.org/10.1007/s11706-023-0630-3
REVIEW ARTICLE
Towards safe lithiumsulfur batteries from liquid-state electrolyte to solid-state electrolyte
Zhiyuan Pang1, Hongzhou Zhang1(), Lu Wang2(), Dawei Song1, Xixi Shi1, Yue Ma1, Linglong Kong3(), Lianqi Zhang1
1. Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
2. College of Chemistry and Materials Science, Shandong Agricultural University, Taian 271018, China
3. State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, School of Forestry, Shandong Agricultural University, Taian 271018, China
 Download: PDF(23758 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lithium–sulfur (LiS) battery has been considered as one of the most promising future batteries owing to the high theoretical energy density (2600 W·h·kg−1) and the usage of the inexpensive active materials (elemental sulfur). The recent progress in fundamental research and engineering of the LiS battery, involved in electrode, electrolyte, membrane, binder, and current collector, has greatly promoted the performance of Li‒S batteries from the laboratory level to the approaching practical level. However, the safety concerns still deserve attention in the following application stage. This review focuses on the development of the electrolyte for Li‒S batteries from liquid state to solid state. Some problems and the corresponding solutions are emphasized, such as the soluble lithium polysulfides migration, ionic conductivity of electrolyte, the interface contact between electrolyte and electrode, and the reaction kinetics. Moreover, future perspectives of the safe and high-performance Li‒S batteries are also introduced.

Keywords lithium–sulfur battery      liquid electrolyte      polymer electrolyte      solid-state electrolyte      battery safety     
Corresponding Author(s): Hongzhou Zhang,Lu Wang,Linglong Kong   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Issue Date: 01 March 2023
 Cite this article:   
Zhiyuan Pang,Hongzhou Zhang,Lu Wang, et al. Towards safe lithiumsulfur batteries from liquid-state electrolyte to solid-state electrolyte[J]. Front. Mater. Sci., 2023, 17(1): 230630.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0630-3
https://academic.hep.com.cn/foms/EN/Y2023/V17/I1/230630
Fig.1  (a) The energy densities of several energy storage systems. (b) The ranking of properties of LIBs.
Fig.2  A brief roadmap containing the important development of the Li–S battery.
Fig.3  The reaction mechanism of the Li–S battery in different liquid electrolytes. (a) Schematic of the reactions in Li–S cell. Reproduced with permission from Ref. [45]. (b) The typical discharge and charge profile of the Li–S cell. Reproduced with permission from Ref. [46]. (c) Sulfur K-edge XANES upon charge and discharge. Reproduced with permission from Ref. [47]. (d) Schematic illustration of the reaction mechanism of the nanoporous carbon–sulfur composite in carbonate electrolyte. Reproduced with permission from Ref. [48]. (e) Schematic of the lithiation/delithiation processes of S chains in a Li–S battery. Reproduced with permission from Ref. [49]. (f) Overall reaction of Li/SPAN cell. Reproduced from Ref. [50]. (g)(h) A voltage profiles of cells at C/20 and the corresponding ex-situ XPS spectra of S 2p core-level at the final discharged state. Reproduced from Ref. [51]. (i) A schematic illustration of the charge/discharge mechanism of the sulfur cathode in the carbonate/ether co-solvent electrolyte with the corresponding (j) charge/discharge profiles and (k) TEM image of the cycled cathode. Reproduced with permission from Ref. [52].
Chemical name (Abbreviation)σi/(mS·cm?1)tmic/°CSolventc/(mol·L?1)
Lithium bistrifluoromethanesulfonimide (LiTFSI)9.6725DOL/DME1.0
5.125PC1.0
9.025EC/DMC1.0
Lithium trifluoromethanesulfonate (LiTf)~3.325DOL/TEGDME1.5
2.2220EC/PC1.0
7.4120EC/DME1.0
Lithium bis(fluorosulfonyl)imide (LiFSI)11.9925DOL/DME1.0
Lithium hexafluorophosphate (LiPF6)10.725EC/DMC1.0
5.825PC1.0
Lithium perchlorate (LiClO4)8.425EC/DMC1.0
Lithium tetrafluoroborate (LiBF4)4.925EC/DMC1.0
Lithium hexafluorarsenate (LiAsF6)14.5220DME/EC1.0
5.9420EC/PC1.0
Lithium dioxalate borate (LiBOB)4.1425PC0.5
8.925DME0.5
Lithium difluoroxalate borate (LiDFOB)??DOL/DME?
Lithium difluorophosphate (LiPF2O2)??DOL/DME?
Lithium nitrate (LiNO3)~5.530Tetraglyme/DMSO1.0
Tab.1  The employed lithium salts in Li–S batteries [5669]
ElectrolyteSolventtm/°Ctb/°C
EsterEthylene carbonate (EC)36.4238
Propylene carbonate (PC)?49242
Butene carbonate (BC)?53240
Dimethyl carbonate (DMC)2?490
Diethyl carbonate (DEC)?74127
Ethyl methyl carbonate (EMC)?55107
Methylpropyl carbonate (MPC)?43130
γ-Butyrolactone (BL)?43.5204
Vinylene carbonate (VC)~20165
Methyl formate (MF)?9931.75
Ethyl formate (EF)?79.654.3
Methyl acetate (MA)?98.156.3
Ethyl acetate (EA)?8477.1
Ethyl propionate (EP)?73.899
Ethyl butyrate (EB)?98121.6
Ethylene sulfite (ES)?11159
Propane sultone (PS)?1454
Dimethyl sulfite (DMS)?141126
Diethyl sulfite (DES)?112159
Ether1,3-Dioxolane (DOL)?9574
1,2-Dimethoxyethane (DME)?5885
Tetraethylene glycol dimethyl ether (TEGDME)?45216
Polyethylene glycol dimethyl ether (PEGDME)5584.5
Diethylene glycol dimethyl ether?64160
Triethylene glycol dimethyl?44249
Tetrahydrofuran (THF)?108.566
2-methyltetrahydrofuran (2Me-THF)?137.279.9
Tetrahydropyrane (THP)?45.287.9
OthersAcetonitrile (AN)?48.881.6
Dimethylsulfoxide (DMSO)18189
Sulfolane (SL)28.45287.3
Acetone?94.756.3
N,N-Dimethylformamide (DMF)?60.4153
Tab.2  Melting points and boiling points of ester and ether electrolytes [7073]
Fig.4  (a) Schematic illustration of safe Li–S battery with intrinsic flame-retardant organic electrolyte. Reproduced with permission from Ref. [80]. (b) Flame tests with the effect of TTFP, and (c) SET and conductivity of the electrolytes with different TTFP contents. Reproduced with permission from Ref. [81]. (d) 6.5 mol·L?1 LiTFSI/FEC and 1 mol·L?1 LiTFSI/FEC added in liquid-state electrolyte. Reproduced with permission from Ref. [82]. (e) Schematic illustration of Li–S batteries using standard carbonate (STD) electrolyte and TEP/TTE (IFR) electrolyte. Reproduced with permission from Ref. [80].
Fig.5  (a) [Li(G4)x][TFSA]/HFE electrolyte used in Li–S battery. Reproduced with permission from Ref. [84]. (b) Preparation route of polymer/LiTFSI/ionic liquid electrolyte. Reproduced with permission from Ref. [85]. (c) Li–S battery without ionic liquid, (d) Li–S battery with ionic liquid, (e) Li–S battery approach the flame without ionic liquid, and (f) Li–S battery approach the flame with ionic liquid. Reproduced with permission from Ref. [86].
Fig.6  (a) Schematic illustration of safe Li?S battery with 1,4-BDT additives. Reproduced with permission from Ref. [93]. (b) The schematic of reaction between SOCl2 and lithium anode, and the cycled Li (c) without and (d) with the protection by SOCl2. Reproduced with permission from Ref. [95]. (e) SEM image of lithium anode surface, (f) SEM image of lithium anode surface without protection, and (g) SEM image of lithium anode protection by TBAI. Reproduced with permission from Ref. [96].
ElectrolyteCo/(mA·h·g?1)σi/(S·cm?1)Ref.
PEO?2.3×10?4[111]
1457 a)6.89×10?4[112]
13501.11×10?4[113]
12109.5×10?6 b)[114]
1.1×10?4 c)
5621.69×10?4[115]
8334.7×10?4[116]
PVDF1160~10?4[117]
1383.16.72×10?4[118]
8437.08×10?4[119]
1245.91.45×10?4[101]
PMMA/PVDF4860.9×10?3 d)[120]
PVDF-HFP10291.1×10?3[121]
8951.3×10?3[122]
5439.64×10?4[110]
704.51.1×10?3[123]
12002.27×10?3[124]
PEGDE-polyethylenimine (PEI)7200.75×10?3 e)[125]
PEGDA-P(BA-co-[EVIm]TFSI)11795.4×10?3[108]
P(BA-co-PEGDA)10332.04×10?2[126]
Poly(epichlorohydrin) rubber~7501×10?4?2×10?4[127]
Tab.3  The Li–S battery with gel polymer-based electrolyte [101,108,110127]
Fig.7  (a) The morphologies of semi-crystalline PEO and (b) the related mechanism of ion transport. Reproduced with permission from Ref. [104].
Fig.8  (a) Schematic illustration of polymer electrolyte-based quasi-solid-state Li–S battery. Reproduced with permission from Ref. [131]. (b) The immobilization mechanism for polymer electrolyte reduces the lithium polysulfide dissolve in electrolyte. Reproduced with permission from Ref. [132]. (c) Interlayer used in polymer electrolyte-based quasi-solid-state Li–S battery. Reproduced with permission from Ref. [112].
Fig.9  (a) Principle of gel electrolyte with high ionic conductive, (b) synthesis of novel gel electrolyte, and (c) discharge/charge profiles of Li–S battery with gel electrolyte at 0.2 C. Reproduced with permission from Ref. [125]. (d) Synthesis route of multifunction gel polymer, and (e) Li+-ion transportation in gel polymer electrolyte. Reproduced with permission from Ref. [108]. (f) Possible mechanism of Li+-ion transportation. Reproduced with permission from Ref. [127].
Fig.10  (a) MOF-PVDF gel polymer electrolyte for the Li–S battery, and (b) Li+-ion transport in MOF. Reproduced with permission from Ref. [118].
Fig.11  (a) Optic photograph of GPE membrane and Cellgard 2300 separator; SEM images of the surface morphology of lithium electrodes after stripping/deposition cycles for (b) Li/LE/Li cell and (c) Li/GPE/Li cell; (d) the evolution of polarization in lithium symmetric cells along with the lithium stripping/deposition cycles. Reproduced with permission from Ref. [148]. (e) Synthesis of cross-linked polymers, and (f) Li?S battery with polymer electrolyte. Reproduced with permission from Ref. [149]. (g) The mechanisms of bare Li and polymer modified-Li during cycling. Reproduced with permission from Ref. [150].
Fig.12  (a) Historical development of solid electrolytes. Reproduced with permission from Ref. [158]. (b) Reported total ionic conductivity of solid-state lithium-ion conductors at room temperature. Reproduced with permission from Ref. [165]. (c) Electrochemical stability ranges of various electrolyte materials grouped by anion, with corresponding binary for comparison. Reproduced with permission from Ref. [166]. (d) The schematic of the solid-state Li–S battery. Reproduced with permission from Ref. [167].
ElectrolyteCo/(mA·h·g?1)σi/(S·cm?1)Ref.
Li3PS41216 a)1×10?4[178]
Li3PS412702×10?4[179]
0.67Li3PS4?0.33LiI~1600~9.3×10?4[180]
Li2S?P2S58371×10?3[181]
78Li2S?22P2S5671 b)6.3×10?4[182]
70Li2S·29P2S5·1SeS26585.28×10?3[173]
Li7P3S119951.7×10?3[183]
Li7P3S111482?[184]
Li6PS5Cl18503.15×10?3[174]
Li6PS5Cl9321×10?3[185]
Li10SnP2S121601.73.2×10?3[186]
Li7P2.9Sb0.1S10.75O0.25~13001.61×10?3[187]
Li7Ni0.2P3.1S116142.22×10?3[188]
Li10GeP2S121173.11.2×10?2[189]
Li10GeP2S129308.27×10?3[175]
Li10GeP2S1211394.33×10?3[190]
Li10GeP2S127161.2×10?2[191]
Li10GeP2S128401.2?×10?2[192]
Li10GeP2S12< 8008.27×10?3[193]
75%Li2S?24%P2S5?1%P2O58×10?4
Li10GeP2S12703.2 a)4.08×10?8[194]
75%Li2S?24%P2S5?1%P2O57.2×10?8
Tab.4  The reported solid-state electrolytes in Li–S batteries [173175,178194]
Fig.13  (a) The preparation schematic of S@BP2000 for all-solid-state Li–S battery; high-resolution TEM images of (b)(c) BP2000 and (d)(e) S@BP2000, and (f) cycle performance of S@BP2000 cathode in solid-state electrolyte-based all-solid-state Li–S battery at 3 C. Reproduced with permission from Ref. [207]. CNT and sulfur with (g) uniform and (h) nonuniform electronic pathway. Reproduced with permission from Ref. [208]. (i) Synthesis of Li2S/C nanocomposite. Reproduced with permission from Ref. [185].
Fig.14  (a)(b) SEM images and (c) XRD pattern of VS2; (d)(e) SEM images and (f) TGA curve of VS2/S composite (sulfur content ≈ 33 wt.%); (g) the proposed microstructure and discharge mechanism for the Li–S/VS2 battery; (h) electrochemical profiles of Li–S/VS2 battery at a cathode loading of 7.7 mg·cm?2 and (i) the capacity of cells with an active material loading of 15.5 mg·cm?2. Reproduced with permission from Ref. [210]. (j) Synthesis of 10% rGO-VS4@Li7P3S11 used as sulfur carrying material in all-solid-state Li–S battery. Reproduced with permission from Ref. [193]. (k) Synthesis of FeS2@S nanoparticles as cathode used in all-solid-state Li–S battery. Reproduced with permission from Ref. [211].
Fig.15  (a) The S–C|Li10SnP2S12|Li–In all-solid-state Li–S battery assembled by conventional methods. Reproduced with permission from Ref. [186]. (b) High-temperature mechanical milling synthesis sulfur cathode. Reproduced with permission from Ref. [213]. (c) Synthesis of Li2S@Li3PS4 nanoparticle; SEM images of (d) nano Li2S and (e) Li2S@Li3PS4 (LSS); (f)(g) Electrochemical characteristic of nano Li2S and LSS as the cathode used in Li–S battery. Reproduced with permission from Ref. [178].
Element or substanceElectrolyteCo/(mA·h·g?1)σi/(S·cm?1)Ref.
Sb, ILi7Sb0.05P2.95S10.5I0.5622.32.55×10?3[177]
Si, ClLi9.54Si1.74P1.44S11.7Cl0.3?2.5×10?2[219]
Si, ClLi9.54Si1.74P1.44S11.7Cl0.39691.6×10?2[171]
Sb, OLi7P2.9Sb0.1S10.75O0.251309.71.61×10?3[187]
Ce, ClLi7P2.9Ce0.2S10.9Cl0.36173.2×10?3[220]
SeLi6PS5?xSexI?2.8×10?4[221]
Nb, OLi6.988P2.994Nb0.2S10.934O0.6472.72.82×10?3[222]
Nb, OLi7P2.88Nb0.12S10.7O0.37733.59×10?3[223]
FLi9.95SnP2S11.95F0.05?6.4×10?3[224]
SiLi1.3Al0.3Ti1.7P3O12?0.05Si?1×10?3[225]
ILi9.54Si1.74P1.44S11.7I0.3570.51.35×10?3[226]
Sr, MoLi6.65La2.95Sr0.05Zr1.8Mo0.2O12909 a)6.43×10?4[227]
W, TaLi6.5La3Zr1.5Ta0.5O12?2Li2WO41012.6 b)?[228]
BrLi5.4PS4.4Cl1.2Br0.4?8.17×10?3[229]
SnLi1.3Al0.3Sn0.35Ti1.35(PO4)3?4.71×10?4[230]
ClLi7P2S8I0.5Cl0.510513.08×10-3[231]
ClLi9.9SnP2S11.9Cl0.1?2.62×10?3[232]
ZrLi2.6Er0.6Zr0.4Cl6?1.13×10?3[233]
TaLi6.4La3Zr1.4Ta0.6O12?1.4×10?4[234]
Al, TaLi6.25La3Zr1.55Al0.1Ta0.45O12?6.7×10?4[235]
Al, NbLi6.25Al0.2La3Zr1.85Nb0.15O12?3.04×10?4[236]
SeS270Li2S·29P2S5·1SeS26585.28×10?3[173]
LiFLi1.3Al0.3Ti1.7(PO4)3?0.15LiF?1.767×10?4[237]
LiNfLi6.05Ga0.25La3Zr2O11.8F0.2?5.6×10?4[238]
Tab.5  The properties of modified inorganic solid-state electrolytes [171,173,177,187,219238]
Fig.16  (a) Preparation of all-solid-state Li–S battery with the Li7P2.9Sb0.1S10.75O0.25 electrolyte, and (b) rate performance and (c) cycling stability of Li–S battery with the Li7P2.9Sb0.1S10.75O0.25 solid-state electrolyte. Reproduced with permission from Ref. [187]. (d) Li–S battery with the Li7P2.9Ce0.2S10.9Cl0.3 electrolyte, and (e) impedance spectra and (f) ionic conductivities of the solid-state electrolytes of Li7P3S11, Li7P2.9Ce0.2S11.1, and Li7P2.9Ce0.2S10.9Cl0.3. Reproduced with permission from Ref. [220].
Fig.17  (a) LLZO filled in PEO assemble of Li–S battery. Reproduced with permission from Ref. [247]. (b) Design of cathode/electrolyte (CNF/S-PEO/LLTO) bilayer structure for Li–S battery. Reproduced with permission from Ref. [248]. (c) Synthesis of LLZTO/PEGDA composite solid electrolyte, and (d) possible mechanism for LLZTO/PEGDA electrolyte suppression of shuttle effect. Reproduced with permission from Ref. [249]. (e) The difference between liquid-state solid-state and solid/polymer composite electrolyte used in Li–S battery. Reproduced with permission from Ref. [250].
Fig.18  (a) Schematic of Li?S battery with Li?Al alloy anode and its reaction mechanism; (b) practical stability window of the LGPS1 electrolyte and the chemical potential of different anode; images of (c) pristine LGPS1, and that (d) after contacting with Li0.8Al for 8 h, (e) after the Li0.8Al-LGPS-Li0.8Al cell cycling for 100 h, and (f) after contacting with Li for 8 h; (g) galvanostatic Li plating/stripping profiles of the Li-LGPS1-Li cell at 0.5 mA·h·cm?2 (blue) and 0.1 mA·h·cm?2 (gray), and the Li0.8Al-LGPS1-Li0.8Al cell at 0.5 mA·h·cm?2 (red). Reproduced from Ref. [268]. (h) Theoretical energy densities of Li?S battery with different anode materials. Reproduced from Ref. [269].
Fig.19  The Radar map of the basic properties of the electrolyte for Li–S batteries.
Fig.20  The main research directions of polymer electrolyte-based Li–S battery and all-solid-state Li–S battery.
1 J M, Tarascon M Armand . Issues and challenges facing rechargeable lithium batteries.Nature, 2001, 414: 359–367
2 P G Bruce . Energy storage beyond the horizon: rechargeable lithium batteries.Solid State Ionics, 2008, 179: 752–760
3 P G, Bruce S A, Freunberger L J, Hardwick et al.. Li–O2 and Li–S batteries with high energy storage.Nature Materials, 2012, 11: 19–29
4 B Scrosati . History of lithium batteries.Journal of Solid State Electrochemistry, 2011, 15: 1623–1630
5 M, Armand J M Tarascon . Building better batteries.Nature, 2008, 451: 652–657
6 T, Nagaura K Tazawa . Lithium ion rechargeable battery.Progress in Batteries & Solar Cells, 1990, 9: 209–217
7 K, Mizushima P C, Jones P J, Wiseman , et al.. LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Solid State Ionics, 1981, 3‒4: 171–174
8 Y Nishi . Lithium ion secondary batteries: past 10 years and the future.Journal of Power Sources, 2001, 100: 101–106
9 T, Sasaki Y, Ukyo P Novák . Memory effect in a lithium-ion battery.Nature Materials, 2013, 12: 569–575
10 L D, Lin K, Qin Q H, Zhang et al.. Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for anode-free lithium metal batteries.Angewandte Chemie International Edition, 2021, 60(15): 8289–8296
11 X P, Gao H X Yang . Multi-electron reaction materials for high energy density batteries.Energy & Environmental Science, 2010, 3: 174–189
12 L, Han M L, Lehmann J D, Zhu et al.. Recent developments and challenges in hybrid solid electrolytes for lithium-ion batteries.Frontiers in Energy Research, 2020, 8: 202
13 F, Duffner N, Kronemeyer J, Tübke et al.. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure.Nature Energy, 2021, 6: 123–134
14 J Q, Huang S T, Boles J M Tarascon . Sensing as the key to battery lifetime and sustainability.Nature Sustainability, 2022, 5: 194–204
15 F, Wu J, Maier Y Yu . Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.Chemical Society Reviews, 2020, 49(5): 1569–1614
16 D, Herbert J Ulam . Electric dry cells and storage batteries. US Patent, 3 043 896, 1962
17 M L B Rao . Organic electrolyte cells. US Patent, 3 413 154, 1968
18 J L, Wang J, Yang J Y, Xie et al.. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte.Electrochemistry Communications, 2002, 4: 499–502
19 J L, Wang J, Yang J Y, Xie et al.. A novel conductive polymer‒sulfur composite cathode material for rechargeable lithium batteries.Advanced Materials, 2002, 14: 13–14
20 Y V, Mikhaylik J R Akridge . Polysulfide shuttle study in the Li/S battery system.Journal of the Electrochemical Society, 2004, 151(11): A1969–A1976
21 Y V Mikhaylik . Electrolytes for lithium sulfur cells. US Patent, 7 354 680, 2008
22 X L, Ji K T, Lee L F Nazar . A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries.Nature Materials, 2009, 8: 500–506
23 B, Zhang X, Qin G R, Li et al.. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres.Energy & Environmental Science, 2010, 3: 1531–1537
24 X, Geng R H, Lin X X, Gu et al.. Water reducer: a highly dispersing binder for high-performance lithium–sulfur batteries.Chinese Journal of Chemistry, 2021, 39(6): 1523–1530
25 L, Huang J J, Li B, Liu et al.. Electrode design for lithium–sulfur batteries: problems and solutions.Advanced Functional Materials, 2020, 30(22): 1910375
26 B J, Lee T H, Kang H Y, Lee et al.. Revisiting the role of conductivity and polarity of host materials for long-life lithium–sulfur battery.Advanced Energy Materials, 2020, 10(22): 1903934
27 S F, Ng M Y L, Lau W J Ong . Lithium–sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion.Advanced Materials, 2021, 33(50): 2008654
28 H T, Li Y G, Li L Zhang . Designing principles of advanced sulfur cathodes toward practical lithium–sulfur batteries.SusMat, 2022, 2(1): 34–64
29 R P, Fang S Y, Zhao P X, Hou et al.. 3D Interconnected electrode materials with ultrahigh areal sulfur loading for Li‒S batteries.Advanced Materials, 2016, 28(17): 3374–3382
30 Y, Dong S, Zheng J, Qin et al.. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li‒S batteries.ACS Nano, 2018, 12(3): 2381–2388
31 Q, Sun X, Fang W, Weng et al.. An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium–sulfur batteries.Angewandte Chemie, 2015, 54(36): 10539–10544
32 S H, Chung C H, Chang A Manthiram . A core‒shell electrode for dynamically and statically stable Li‒S battery chemistry.Energy & Environmental Science, 2016, 9(10): 3188–3200
33 S Q, Chen X D, Huang B, Sun et al.. Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2: 16199–16207
34 G, Zhang Z W, Zhang H J, Peng et al.. A toolbox for lithium–sulfur battery research: methods and protocols.Small Methods, 2017, 1(7): 1700134
35 Z J, Ju H D, Yuan O W, Sheng et al.. Cryo-electron microscopy for unveiling the sensitive battery materials.Small Science, 2021, 1(11): 2100055
36 Q, He B, Yu Z H, Li et al.. Density functional theory for battery materials.Energy & Environmental Materials, 2019, 2(4): 264–279
37 C, Park M, Kanduč R, Chudoba et al.. Molecular simulations of electrolyte structure and dynamics in lithium–sulfur battery solvents.Journal of Power Sources, 2018, 373: 70–78
38 C, Li R, Liu Y, Xiao et al.. Recent progress of separators in lithium–sulfur batteries.Energy Storage Materials, 2021, 40: 439–460
39 W, Chen T Y, Lei C Y, Wu et al.. Designing safe electrolyte systems for a high-stability lithium–sulfur battery.Advanced Energy Materials, 2018, 8(10): 1702348
40 X B, Cheng C, Yan J Q, Huang et al.. The gap between long lifespan Li‒S coin and pouch cells: the importance of lithium metal anode protection.Energy Storage Materials, 2017, 6: 18–25
41 C P, Yang Y X, Yin S F, Zhang et al.. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes.Nature Communications, 2015, 6: 8058
42 H J, Zhao N P, Deng J, Yan et al.. A review on anode for lithium–sulfur batteries: progress and prospects.Chemical Engineering Journal, 2018, 347: 343–365
43 J M, Ma Y T, Li N S, Grundish et al.. The 2021 battery technology roadmap.Journal of Physics D: Applied Physics, 2021, 54: 183001
44 W K, Wang A B, Wang Z Q Jin . Challenges on practicalization of lithium sulfur batteries.Energy Storage Science and Technology, 2020, 9(2): 593–597
https://doi.org/10.19799/j.cnki.2095-4239.2019.0295
45 R S, Assary L A, Curtiss J S Moore . Toward a molecular understanding of energetics in Li‒S batteries using nonaqueous electrolytes: a high-level quantum chemical study.The Journal of Physical Chemistry C, 2014, 118: 11545–11558
46 S S Zhang . Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions.Journal of Power Sources, 2013, 231: 153–162
47 M, Cuisinier P E, Cabelguen S, Evers et al.. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy.The Journal of Physical Chemistry Letters, 2013, 4: 3227–3232
48 W H, Zhang D, Qiao J X, Pan et al.. A Li+-conductive microporous carbon–sulfur composite for Li–S batteries.Electrochimica Acta, 2013, 87: 497–502
49 C P, Yang Y X, Yin Y G, Guo et al.. Electrochemical (de)lithiation of 1D sulfur chains in Li–S batteries: a model system study.Journal of the American Chemical Society, 2015, 137: 2215–2218
50 S S Zhang . Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery.Energies, 2014, 7: 4588–4600
51 M, Helen M A, Reddy T, Diemant et al.. Single step transformation of sulphur to Li2S2/Li2S in Li–S batteries.Scientific Reports, 2015, 5: 12146
52 F, He X J, Wu J F, Qian et al.. Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6: 23396
53 C, Deng Z W, Wang S P, Wang et al.. Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7: 12381–12413
54 M A, Weret C F J, Kuo T S, Zeleke et al.. Mechanistic understanding of the sulfurized-poly(acrylonitrile) cathode for lithium–sulfur batteries.Energy Storage Materials, 2020, 26: 483–493
55 Y Z, Zhang Z Z, Wu G L, Pan et al.. Microporous carbon polyhedrons encapsulated polyacrylonitrile nanofibers as sulfur immobilizer for lithium–sulfur battery.ACS Applied Materials & Interfaces, 2017, 9(14): 12436–12444
56 J J, Hu G K, Long S, Liu et al.. A LiFSI–LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li–S battery.Chemical Communications, 2014, 50: 14647–14650
57 M, Ue S Mori . Mobility and ionic association of lithium salts in a propylene carbonate-ethyl methyl carbonate mixed solvent.Journal of the Electrochemical Society, 1995, 142: 2577–2581
58 D, Linden ed. Handbook of Batteries. 2nd ed. New York: McGraw-Hill, 1995
59 M, Schmidt U, Heider A, Kuehner , et al.. Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. Journal of Power Sources, 2001, 97‒98: 557–560
60 C W, Walker J D, Cox M Salomon . Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with lithium tris(trifluoromethanesulfonyl)methide.Journal of the Electrochemical Society, 1996, 143: L80
61 L A, Dominey V R, Koch T Blakley . Thermally stable lithium salts for polymer electrolytes.Electrochimica Acta, 1992, 37(9): 1551–1554
62 K Xu . Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.Chemical Reviews, 2004, 104(10): 4303–4418
63 L M, Suo Y S, Hu H, Li et al.. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries.Nature Communications, 2013, 4: 1481
64 M, Barghamadi M, Musameh T, Rüther et al.. Chapter 3: Electrolyte for lithium–sulfur batteries.In: Wild M, Offer G J, eds. Lithium–Sulfur Batteries. John Wiley & Sons Ltd., 2019, 71–120
65 M, Barghamadi A S, Best A I, Bhatt et al.. Lithium–sulfur batteries — the solution is in the electrolyte, but is the electrolyte a solution?.Energy & Environmental Science, 2014, 7: 3902–3920
66 W, Xu A J, Shusterman M, Videa et al.. Structures of orthoborate anions and physical properties of their lithium salt nonaqueous solutions.Journal of the Electrochemical Society, 2003, 150: E74–E80
67 Y, Hayashi S, Yamada T, Ishikawa et al.. Enhancement of bifunctional effect for LiNO3/glyme electrolyte by using dual solvent system for Li‒O2 batteries.Journal of the Electrochemical Society, 2020, 167: 020542
68 D R, Chang S H, Lee S W, Kim et al.. Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium–sulfur battery.Journal of Power Sources, 2002, 112(2): 452–460
69 J T, Dudley D P, Wilkinson G, Thomas et al.. Conductivity of electrolyte for rechargeable lithium batteries.Journal of Power Sources, 1991, 35: 59–82
70 G, Liu Q J, Sun J L, Zhang et al.. Electrolyte issues in lithium–sulfur batteries: development, prospect, and challenges.Energy & Fuels, 2021, 35(13): 10405–10427
71 Y Marcus . Ion Solvation. 4th ed. New York: John Wiley & Sons, Inc., 1985
72 J, Barthel H J Gores . Liquid nonaqueous electrolyte. In: Besenhard J O, ed. Handbook of Battery Materials. New York: Wiley-VCH, 1999
73 D, Aurbach ed. Nonaqueous Electrochemistry. New York: Marcel Dekker, Inc., 1999
74 C, Sun J, Dong X D, Lu et al.. Sol electrolyte: pathway to long-term stable lithium metal anode.Advanced Functional Materials, 2021, 31(26): 2100594
75 C B, Jin T F, Liu O W, Sheng et al.. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox.Nature Energy, 2021, 6: 378–387
76 X P, Ai Y L, Cao H X Yang . Simple analysis and possible solutions of the unusual interfacial reactions in Li‒S batteries.Journal of Electrochemistry, 2012, 18(3): 224–228
77 Y E, Hyung D R, Vissers K Amine . Flame-retardant additives for lithium-ion batteries.Journal of Power Sources, 2003, 119–121: 383–387
78 G J, Xu X, Wang D, Lu et al.. Research progress of high safety flame retardant electrolytes for lithium-ion batteries.Energy Storage Science and Technology, 2018, 7(6): 1040–1059
79 M X, He X, Li N G, Holmes et al.. Flame-retardant and polysulfide-suppressed ether-based electrolytes for high-temperature Li–S batteries.ACS Applied Materials & Interfaces, 2021, 13: 38296–38304
80 H, Yang C, Guo J, Chen et al.. An intrinsic flame-retardant organic electrolyte for safe lithium–sulfur batteries.Angewandte Chemie International Edition, 2019, 58(3): 791–795
https://doi.org/10.1002/anie.201811291
81 J, Wang F, Lin H, Jia et al.. Towards a safe lithium–sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode.Angewandte Chemie International Edition, 2014, 53(38): 10099–10104
82 Z, Yu J J, Zhang C, Wang et al.. Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries.Journal of Energy Chemistry, 2020, 51: 154–160
https://doi.org/10.1016/j.jechem.2020.03.034
83 E, Josef Y, Yan M C, Stan et al.. Ionic liquids and their polymers in lithium–sulfur batteries.Israel Journal of Chemistry, 2019, 59(9): 832–842
84 Z, Li S, Zhang S, Terada et al.. Promising cell configuration for next-generation energy storage: Li2S/graphite battery enabled by a solvate ionic liquid electrolyte.ACS Applied Materials & Interfaces, 2016, 8(25): 16053–16062
85 X M, Cai B, Ye J, Ding et al.. Dual Li-ion migration channels in an ester-rich copolymer/ionic liquid quasi-solid-state electrolyte for high-performance Li–S batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(4): 2459–2469
86 B, Sun K, Liu J, Lang et al.. Ionic liquid enabling stable interface in solid state lithium sulfur batteries working at room temperature.Electrochimica Acta, 2018, 284: 662–668
87 X G, Sun X, Wang R T, Mayes et al.. Lithium–sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.ChemSusChem, 2012, 5(10): 2079–2085
https://doi.org/10.1002/cssc.201200101
88 C, Liao B K, Guo X G, Sun et al.. Synergistic effects of mixing sulfone and ionic liquid as safe electrolytes for lithium sulfur batteries.ChemSusChem, 2015, 8(2): 353–360
https://doi.org/10.1002/cssc.201402800
89 W, Guo Q, Han J R, Jiao et al.. In situ construction of robust biphasic surface layers on lithium metal for lithium–sulfide batteries with long cycle life.Angewandte Chemie International Edition, 2021, 60(13): 7267–7274
90 W W, Wang X Y, Yue J K, Meng et al.. Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium–sulfur batteries.Energy Storage Materials, 2019, 18: 414–422
91 J Y, Wei X Q, Zhang L P, Hou et al.. Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium–sulfur batteries.Advanced Materials, 2020, 32(27): 2003012
92 X, Li R X, Zhao Y Z, Fu et al.. Nitrate additives for lithium batteries: mechanisms, applications, and prospects.eScience, 2021, 1(2): 108–123
93 J, Lian W, Guo Y Fu . Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li–S batteries.Journal of the American Chemical Society, 2021, 143(29): 11063–11071
94 S R, Chen D W, Wang Y M, Zhao et al.. Superior performance of a lithium–sulfur battery enabled by a dimethyl trisulfide containing electrolyte.Small Methods, 2018, 2(6): 1800038
95 S, Li H L, Dai Y H, Li et al.. Designing Li-protective layer via SOCl2 additive for stabilizing lithium–sulfur battery.Energy Storage Materials, 2019, 18: 222–228
96 K C, Lau N L D, Rago C Liao . Lipophilic additives for highly concentrated electrolytes in lithium–sulfur batteries.Journal of the Electrochemical Society, 2019, 166(12): A2570–A2573
97 H L, Dai K, Xi X, Liu et al.. Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms.Journal of the American Chemical Society, 2018, 140(50): 17515–17521
98 M F, Jiang Z Q, Zhang B, Tang et al.. Polymer electrolytes for Li–S batteries: polymeric fundamentals and performance optimization.Journal of Energy Chemistry, 2021, 58: 300–317
https://doi.org/10.1016/j.jechem.2020.10.009
99 S J, Chen Y X, Xiang G R, Zheng et al.. High-efficiency lithium metal anode enabled by a concentrated/fluorinated ester electrolyte.ACS Applied Materials & Interfaces, 2020, 12(24): 27794–27802
100 W, Kou J, Wang W, Li et al.. Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium–sulfur battery.Journal of Membrane Science, 2021, 634: 119432
101 Y, Shan L, Li X Yang . Solid-state polymer electrolyte solves the transfer of lithium ions between the solid–solid interface of the electrode and the electrolyte in lithium–sulfur and lithium-ion batteries.ACS Applied Energy Materials, 2021, 4(5): 5101–5112
102 Y, Cao P, Zuo S, Lou et al.. A quasi-solid-state Li–S battery with high energy density, superior stability and safety.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(11): 6533–6542
103 G G, Eshetu X, Judez C, Li et al.. Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect.Journal of the American Chemical Society, 2018, 140(31): 9921–9933
104 Z G, Xue D, He X L Xie . Poly(ethylene oxide)-based electrolytes for lithium-ion batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(38): 19218–19253
105 W, Yang W, Yang J, Feng et al.. High capacity and cycle stability rechargeable lithium–sulfur batteries by sandwiched gel polymer electrolyte.Electrochimica Acta, 2016, 210: 71–78
106 K, Jeddi K, Sarikhani N T, Qazvini et al.. Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles.Journal of Power Sources, 2014, 245: 656–662
107 A, Aishova A, Mentbayeva B, Isakhov et al.. Gel polymer electrolytes for lithium–sulfur batteries.Materials Today: Proceedings, 2018, 5(11): 22882–22888
108 X, Cai B, Cui B, Ye et al.. Poly(ionic liquid)-based quasi-solid-state copolymer electrolytes for dynamic-reversible adsorption of lithium polysulfides in lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2019, 11(41): 38136–38146
109 S S, Zhang D T Tran . How a gel polymer electrolyte affects performance of lithium/sulfur batteries.Electrochimica Acta, 2013, 114: 296–302
110 X L, Wang X J, Hao H J, Zhang et al.. 3D ultraviolet polymerized electrolyte based on PEO modified PVDF‒HFP electrospun membrane for high-performance lithium–sulfur batteries.Electrochimica Acta, 2020, 329: 135108
111 P, Zhu C Y, Yan J D, Zhu et al.. Flexible electrolyte‒cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2019, 17: 220–225
112 Y W, Zhu J, Li J Liu . A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium–sulfur battery.Journal of Power Sources, 2017, 351: 17–25
113 Y, Lin X M, Wang J, Liu et al.. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium–sulfur batteries.Nano Energy, 2017, 31: 478–485
114 X, Tao Y, Liu W, Liu et al.. Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer.Nano Letters, 2017, 17(5): 2967–2972
115 X, Li D, Wang H, Wang et al.. Poly(ethylene oxide)‒Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery.ACS Applied Materials & Interfaces, 2019, 11(25): 22745–22753
116 J, Jin Z Y, Wen X, Liang et al.. Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery.Solid State Ionics, 2012, 225: 604–607
117 C H, Long L B, Li M, Zhai et al.. Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect.Journal of Physics and Chemistry of Solids, 2019, 134: 255–261
118 D D, Han Z Y, Wang G L, Pan et al.. Metal-organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium–sulfur battery.ACS Applied Materials & Interfaces, 2019, 11(20): 18427–18435
119 Y Q, Shen F L, Zeng X Y, Zhou et al.. A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium–sulfur batteries.Journal of Energy Chemistry, 2020, 48: 267–276
https://doi.org/10.1016/j.jechem.2020.01.016
120 Y, Liu D, Yang W, Yan et al.. Synergy of sulfur/polyacrylonitrile composite and gel polymer electrolyte promises heat-resistant lithium–sulfur batteries.iScience, 2019, 19: 316–325
121 J K Kim . Hybrid gel polymer electrolyte for high-safety lithium–sulfur batteries.Materials Letters, 2017, 187: 40–43
122 P M, Shanthi P J, Hanumantha T, Albuquerque et al.. Novel composite polymer electrolytes of PVdF‒HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium–sulfur batteries.ACS Applied Energy Materials, 2018, 1(2): 483–494
123 X L, Wang X J, Hao D, Cai et al.. An ultraviolet polymerized 3D gel polymer electrolyte based on multi-walled carbon nanotubes doped double polymer matrices for lithium–sulfur batteries.Chemical Engineering Journal, 2020, 382: 122714
124 J H, Jiang A B, Wang W K, Wang et al.. P(VDF-HFP)-poly(sulfur-1,3-diisopropenylbenzene) functional polymer electrolyte for lithium–sulfur batteries.Journal of Energy Chemistry, 2020, 46: 114–122
125 J Q, Zhou H Q, Ji J, Liu et al.. A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery.Energy Storage Materials, 2019, 22: 256–264
126 L P, Sun H, Li M L, Zhao et al.. High-performance lithium–sulfur batteries based on self-supporting graphene/carbon nanotube foam@sulfur composite cathode and quasi-solid-state polymer electrolyte.Chemical Engineering Journal, 2018, 332: 8–15
127 S, Choudhury T, Saha K, Naskar et al.. A highly stretchable gel-polymer electrolyte for lithium–sulfur batteries.Polymer, 2017, 112: 447–456
128 W Y, Li Y, Pang T C, Zhu et al.. A gel polymer electrolyte based lithium–sulfur battery with low self-discharge.Solid State Ionics, 2018, 318: 82–87
129 Y, Wang H, Ji X, Zhang et al.. Cyclopropenium cationic-based covalent organic polymer-enhanced poly(ethylene oxide) composite polymer electrolyte for all-solid-state Li–S battery.ACS Applied Materials & Interfaces, 2021, 13(14): 16469–16477
130 F, Zhang Y W, Luo X, Gao et al.. Copolymerized sulfur with intrinsically ionic conductivity, superior dispersibility, and compatibility for all-solid-state lithium batteries.ACS Sustainable Chemistry & Engineering, 2020, 8(32): 12100–12109
131 Y, Liu H W, Liu Y T, Lin et al.. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery.Advanced Functional Materials, 2021, 31(41): 2104863
132 M, Liu D, Zhou Y B, He et al.. Novel gel polymer electrolyte for high-performance lithium–sulfur batteries.Nano Energy, 2016, 22: 278–289
133 X M, Cai B, Ye J L, Ding et al.. Dual Li-ion migration channels in an ester-rich copolymer/ionic liquid quasi-solid-state electrolyte for high-performance Li–S batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(4): 2459–2469
134 Q, Yang N P, Deng J Y, Chen et al.. The recent research progress and prospect of gel polymer electrolytes in lithium–sulfur batteries.Chemical Engineering Journal, 2021, 413: 127427
135 A, Santiago J, Castillo I, Garbayo et al.. Salt additives for improving cyclability of polymer-based all-solid-state lithium–sulfur batteries.ACS Applied Energy Materials, 2021, 4(5): 4459–4464
136 Y X, Song J, Wan H J, Guo et al.. Insights into evolution processes and degradation mechanisms of anion-tunable interfacial stability in all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2021, 41: 642–649
137 F, Croce G B, Appetecchi L, Persi et al.. Nanocomposite polymer electrolytes for lithium batteries.Nature, 1998, 394: 456–458
138 B, Scrosati F, Croce S Panero . Progress in lithium polymer battery R&D.Journal of Power Sources, 2001, 100(1–2): 93–100
139 H M, Xiong Z D, Wang D P, Liu et al.. Bonding polyether onto ZnO nanoparticles: an effective method for preparing polymer nanocomposites with tunable luminescence and stable conductivity.Advanced Functional Materials, 2005, 15(11): 1751–1756
140 D, Zhang H, Yan Z, Zhu et al.. Electrochemical stability of lithium bis(oxatlato) borate containing solid polymer electrolyte for lithium ion batteries.Journal of Power Sources, 2011, 196(23): 10120–10125
141 S, Panero B, Scrosati H H, Sumathipala et al.. Dual-composite polymer electrolytes with enhanced transport properties.Journal of Power Sources, 2007, 167(2): 510–514
142 M R, Johan L B Fen . Combined effect of CuO nanofillers and DBP plasticizer on ionic conductivity enhancement in the solid polymer electrolyte PEO–LiCF3SO3.Ionics, 2010, 16: 335–338
143 B, Kumar S J, Rodrigues L G Scanlon . Ionic conductivity of polymer‒ceramic composites.Journal of the Electrochemical Society, 2001, 148(10): A1191–A1195
144 S, Kim E J, Hwang Y J, Jung et al.. Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313–314: 216–219
145 Y W, Kim W, Lee B K Choi . Relation between glass transition and melting of PEO–salt complexes. Electrochimica Acta, 2000, 45(8–9): 8–9
146 K L, Mathews A M, Budgin S, Beeram et al.. Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers.Journal of Materials Chemistry, 2013, 1(4): 1108–1116
147 M A S A, Samir F, Alloin J Y, Sanchez et al.. Cellulose nanocrystals reinforced poly(oxyethylene).Polymer, 2004, 45(12): 4149–4157
148 Y, Xia Y F, Liang D, Xie et al.. A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium–sulfur batteries.Chemical Engineering Journal, 2019, 358: 1047–1053
149 T C, Kuo J C, Hsueh C Y, Chiou et al.. Ionically cross-linked polymers as asymmetric gel polymer electrolytes for enhanced cycle performance of lithium–sulfur batteries.ACS Macro Letters, 2020, 10(1): 110–115
150 J, Liu T, Qian M, Wang et al.. Use of tween polymer to enhance the compatibility of the Li/electrolyte interface for the high-performance and high-safety quasi-solid-state lithium–sulfur battery.Nano Letters, 2018, 18(7): 4598–4605
151 S, Boulineau M, Courty J M, Tarascon et al.. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application.Solid State Ionics, 2012, 221: 1–5
https://doi.org/10.1016/j.ssi.2012.06.008
152 S, Kinoshita K, Okuda N, Machida et al.. All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials.Solid State Ionics, 2014, 256: 97–102
153 S A, Pervez B P, Vinayan M A, Cambaz et al.. Electrochemical and compositional characterization of solid interphase layers in an interface-modified solid-state Li–sulfur battery.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(32): 16451–16462
154 C H, Yu C S, Cho C C Li . Well-dispersed garnet crystallites for applications in solid-state Li–S batteries.ACS Applied Materials & Interfaces, 2021, 13(10): 11995–12005
155 M, Nagao A, Hayashi M, Tatsumisago et al.. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium–sulfur batteries.Journal of Power Sources, 2015, 274: 471–476
156 T, Takahashi O Yamamoto . Conductivity of solid state electrolyte-6-AgS‒HgI2.Denki Kagaku, 1967, 35: 32
157 O Yamamoto . Solid state ionics: a Japan perspective.Science and Technology of Advanced Materials, 2017, 18(1): 504–527
158 C W, Wang K, Fu S P, Kammampata et al.. Garnet-type solid-state electrolytes: materials, interfaces, and batteries.Chemical Reviews, 2020, 120: 4257–4300
159 U V, Alpen A, Rabenau G H Talat . Ionic conductivity in Li3N single crystals.Applied Physics Letters, 1977, 30: 621
160 J B, Goodenough H Y P, Hong J A Kafalas . Fast Na+ ion transport in skeleton structures.Materials Research Bulletin, 1976, 11: 203–220
161 H Y P Hong . Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors.Materials Research Bulletin, 1978, 13: 117–124
162 R, Kanno T, Hata Y, Kawamoto et al.. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system.Solid State Ionics, 2000, 130: 97–104
163 V, Thangadurai H, Kaack W J F Weppner . Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta).Journal of the American Ceramic Society, 2003, 86: 437–440
164 Y, Zhao L L Daemen . Superionic conductivity in lithium-rich anti-perovskites.Journal of the American Chemical Society, 2012, 134: 15042–15047
165 J C, Bachman S, Muy A, Grimaud et al.. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction.Chemical Reviews, 2016, 116: 140–162
166 W D, Richards L J, Miara Y, Wang et al.. Interface stability in solid-state batteries.Chemistry of Materials, 2016, 28: 266–273
167 L E, Camacho-Forero P B Balbuena . Elucidating interfacial phenomena between solid-state electrolyte and the sulfur-cathode of lithium–sulfur batteries.Chemistry of Materials, 2020, 32: 360–373
168 M, Agostini Y, Aihara T, Yamada et al.. A lithium–sulfur battery using a solid, glass-type P2S5–Li2S electrolyte.Solid State Ionics, 2013, 244: 48–51
169 S, Ohno R, Koerver G, Dewald et al.. Observation of chemomechanical failure and the influence of cutoff potentials in all-solid-state Li–S batteries.Chemistry of Materials, 2019, 31(8): 2930–2940
170 J Y, Wu L X, Yuan W X, Zhang et al.. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries.Energy & Environmental Science, 2021, 14(1): 12–36
171 R C, Xu Z, Wu S Z, Zhang et al.. Construction of all-solid-state batteries based on a sulfur‒graphene composite and Li9.54Si1.74P1.44S11.7Cl0.3 solid electrolyte.Chemistry, 2017, 23(56): 13950–13956
172 P, Bonnick K, Niitani M, Nose et al.. A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(42): 24173–24179
173 Z J, Wu Z K, Xie A, Yoshida et al.. Novel SeS2 doped Li2S‒P2S5 solid electrolyte with high ionic conductivity for all-solid-state lithium sulfur batteries.Chemical Engineering Journal, 2020, 380: 122419
174 S, Wang Y, Zhang X, Zhang et al.. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2018, 10(49): 42279–42285
175 X Y, Yao N, Huang F D, Han et al.. High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes.Advanced Energy Materials, 2017, 7(17): 1602923
176 A A, AbdelHamid J L, Cheong J Y Ying . Li7La3Zr2O12 sheet-based framework for high-performance lithium–sulfur hybrid quasi-solid battery.Nano Energy, 2020, 71: 104633
177 M K, Tufail L, Zhou N, Ahmad et al.. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass‒ceramics electrolyte for all-solid-state lithium–sulfur batteries.Chemical Engineering Journal, 2021, 407: 127149
178 Z, Lin Z C, Liu N J, Dudney et al.. Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries.ACS Nano, 2013, 7(3): 2829–2833
179 S, Kinoshita K, Okuda N, Machida et al.. Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery.Journal of Power Sources, 2014, 269: 727–734
180 N H H, Phuc M, Takaki H, Muto et al.. Sulfur–carbon nano fiber composite solid electrolyte for all-solid-state Li–S batteries.ACS Applied Energy Materials, 2020, 3(2): 1569–1573
181 S, Choi I, Yoon W T, Nichols et al.. Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium‒sulfur battery using Li2S‒P2S5 solid electrolyte.Ceramics International, 2018, 44(7): 7450–7453
182 M, Eom S, Son C, Park et al.. High performance all-solid-state lithium–sulfur battery using a Li2S‒VGCF nanocomposite.Electrochimica Acta, 2017, 230: 279–284
183 Y C, Zhang Y, Wu Y P, Liu et al.. Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium–sulfur batteries.Chemical Engineering Journal, 2022, 428: 131040
184 D H, Wang Y Q, Wu X F, Zheng et al.. Li2S@NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries.Journal of Power Sources, 2020, 479: 228792
185 F, Han J, Yue X, Fan et al.. High-performance all-solid-state lithium‒sulfur battery enabled by a mixed-conductive Li2S nanocomposite.Nano Letters, 2016, 16(7): 4521–4527
186 J, Yi L, Chen Y, Liu et al.. High capacity and superior cyclic performances of all-solid-state lithium‒sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte.ACS Applied Materials & Interfaces, 2019, 11(40): 36774–36781
187 B S, Zhao L, Wang P, Chen et al.. Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass‒ceramic electrolytes for all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2021, 13(29): 34477–34485
188 Q, Ge L, Zhou Y M, Lian et al.. Metal-phosphide-doped Li7P3S11 glass‒ceramic electrolyte with high ionic conductivity for all-solid-state lithium–sulfur batteries.Electrochemistry Communications, 2018, 97: 100–104
189 W, Zhang Y Y, Zhang L F, Peng et al.. Elevating reactivity and cyclability of all-solid-state lithium–sulfur batteries by the combination of tellurium-doping and surface coating.Nano Energy, 2020, 76: 105083
190 M, Nagao Y, Imade H, Narisawa et al.. All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte.Journal of Power Sources, 2013, 222: 237–242
191 M, Yamamoto S, Goto R, Tang et al.. Nano-confinement of insulating sulfur in the cathode composite of all-solid-state Li–S batteries using flexible carbon materials with large pore volumes.ACS Applied Materials & Interfaces, 2021, 13(32): 38613–38622
192 Y Y, Zhang Y L, Sun L F, Peng et al.. Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium–sulfur battery.Energy Storage Materials, 2019, 21: 287–296
193 Q, Zhang H L, Wan G Z, Liu et al.. Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium–sulfur batteries.Nano Energy, 2019, 57: 771–782
194 M, Jiang G, Liu Q, Zhang et al.. Ultrasmall Li2S-carbon nanotube nanocomposites for high-rate all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2021, 13(16): 18666–18672
195 R C, Xu J, Yue S F, Liu et al.. Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density.ACS Energy Letters, 2019, 4(5): 1073–1079
196 X W, Yu Z H, Bi F, Zhao et al.. Polysulfide-shuttle control in lithium‒sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte.Advanced Energy Materials, 2016, 6(24): 1601392
197 J, Yue Y, Huang S, Liu et al.. Rational designed mixed-conductive sulfur cathodes for all-solid-state lithium batteries.ACS Applied Materials & Interfaces, 2020, 12(32): 36066–36071
198 Y B, Zhang T, Liu Q H, Zhang et al.. High-performance all-solid-state lithium–sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(46): 23345–23356
199 S, Ohno C, Rosenbach G F, Dewald et al.. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate-based composite cathode toward solid-state lithium–sulfur batteries.Advanced Functional Materials, 2021, 31(18): 2010620
200 Q, Zhang N, Huang Z, Huang et al.. CNTs@S composite as cathode for all-solid-state lithium–sulfur batteries with ultralong cycle life.Journal of Energy Chemistry, 2020, 40: 151–155
https://doi.org/10.1016/j.jechem.2019.03.006
201 H U, Choi J S, Jin J Y, Park et al.. Performance improvement of all-solid-state Li–S batteries with optimizing morphology and structure of sulfur composite electrode.Journal of Alloys and Compounds, 2017, 723: 787–794
202 Q, Wang Y, Chen J, Jin et al.. A new high-capacity cathode for all-solid-state lithium sulfur battery.Solid State Ionics, 2020, 357: 115500
203 S F, Wang Y, Ding G M, Zhou et al.. Durability of the Li1+xTi2−xAlx(PO4)3 solid electrolyte in lithium–sulfur batteries.ACS Energy Letters, 2016, 1(6): 1080–1085
204 M, Nagao K, Suzuki Y, Imade et al.. All-solid-state lithium–sulfur batteries with three-dimensional mesoporous electrode structures.Journal of Power Sources, 2016, 330: 120–126
205 J J, Yu S W, Liu G G, Duan et al.. Dense and thin coating of gel polymer electrolyte on sulfur cathode toward high performance Li–sulfur battery.Composites Communications, 2020, 19: 239–245
206 H, Yan H, Wang D, Wang et al.. In situ generated Li2S‒C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading.Nano Letters, 2019, 19(5): 3280–3287
207 Q G, Han X L, Li X X, Shi et al.. Outstanding cycle stability and rate capabilities of the all-solid-state Li–S battery with a Li7P3S11 glass‒ceramic electrolyte and a core–shell S@BP2000 nanocomposite.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(8): 3895–3902
208 L P, Hou H, Yuan C Z, Zhao et al.. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2020, 25: 436–442
209 S M, Hosseini A, Varzi S, Ito et al.. High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity.Energy Storage Materials, 2020, 27: 61–68
210 S Q, Xu C Y, Kwok L D, Zhou et al.. A high capacity all solid-state Li–sulfur battery enabled by conversion–intercalation hybrid cathode architecture.Advanced Functional Materials, 2020, 31(2): 2004239
211 J P, Mwizerwa Q, Zhang F, Han et al.. Sulfur-embedded FeS2 as a high-performance cathode for room temperature all-solid-state lithium‒sulfur batteries.ACS Applied Materials & Interfaces, 2020, 12(16): 18519–18525
212 H, El-Shinawi E J, Cussen S A Corr . A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li–S batteries.Nanoscale, 2019, 11(41): 19297–19300
213 K, Suzuki D, Kato K, Hara et al.. Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium–sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte.Electrochimica Acta, 2017, 258: 110–115
214 F, Chen Y L, Zhang Q, Hu et al.. S/MWCNt/LLZO composite electrode with e−/S/Li+ conductive network for all-solid-state lithium–sulfur batteries.Journal of Solid State Chemistry, 2021, 301: 122341
215 M, Li T, Liu Z, Shi et al.. Dense all-electrochem-active electrodes for all-solid-state lithium batteries.Advanced Materials, 2021, 33(26): 2008723
216 M, Nagao A, Hayashi M Tatsumisago . Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte.Electrochimica Acta, 2011, 56(17): 6055–6059
217 H, Nagata Y Chikusa . An all-solid-state lithium–sulfur battery using two solid electrolytes having different functions.Journal of Power Sources, 2016, 329: 268–272
218 L E, Camacho-Forero P B Balbuena . Elucidating interfacial phenomena between solid-state electrolytes and the sulfur-cathode of lithium–sulfur batteries.Chemistry of Materials, 2019, 32(1): 360–373
219 Y, Kato S, Hori T, Saito et al.. High-power all-solid-state batteries using sulfide superionic conductors.Nature Energy, 2016, 1: 16030
220 L, Zhou M K, Tufail N, Ahmad et al.. Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium‒sulfur batteries.ACS Applied Materials & Interfaces, 2021, 13(24): 28270–28280
221 R, Schlem M, Ghidiu S P, Culver et al.. Changing the static and dynamic lattice effects for the improvement of the ionic transport properties within the argyrodite Li6PS5−xSexI.ACS Applied Energy Materials, 2020, 3(1): 9–18
222 N, Ahmad L, Zhou M, Faheem et al.. Enhanced air stability and high li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass‒ceramic electrolyte for all-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2020, 12(19): 21548–21558
223 Z, Jiang T B, Liang Y, Liu et al.. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution.ACS Applied Materials & Interfaces, 2020, 12(49): 54662–54670
224 Z, Jiang Z X, Li X L, Wang et al.. Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal interface.ACS Applied Materials & Interfaces, 2021, 13(26): 30739–30745
225 J P, Zhu Y X, Xiang J, Zhao et al.. Insights into the local structure, microstructure and ionic conductivity of silicon doped NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12.Energy Storage Materials, 2022, 44: 190–196
226 Y, Bai Y B, Zhao W D, Li et al.. New insight for solid sulfide electrolytes LSiPSI by using Si/P/S as the raw materials and I doping.ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12930–12937
227 X R, Zhou L W, Huang O, Elkedim et al.. Sr2+ and Mo6+ co-doped Li7La3Zr2O12 with superior ionic conductivity.Journal of Alloys and Compounds, 2022, 891: 161906
228 C J, Zheng J M, Su Z, Song et al.. Improvement of density and electrochemical performance of garnet-type Li7La3Zr2O12 for solid-state lithium metal batteries enabled by W and Ta co-doping strategy.Materials Today: Energy, 2022, 27: 101034
229 Z C, Zhang Y T, Tian G Z, Liu et al.. Superionic lithium argyrodite electrolytes by bromine-doping for all-solid-state lithium batteries.Journal of the Electrochemical Society, 2022, 169(4): 040553
230 A H, Xu R M, Wang M Q, Yao et al.. Electrochemical properties of an Sn-doped LATP ceramic electrolyte and its derived sandwich-structured composite solid electrolyte.Nanomaterials, 2022, 12(12): 2082
231 Z K, Wu S Q, Chen C, Yu et al.. Engineering high conductive Li7P2S8I via Cl-doping for all-solid-state Li–S batteries workable at different operating temperatures.Chemical Engineering Journal, 2022, 442: 136346
232 Q T, Wang D X, Liu X F, Ma et al.. Cl-doped Li10SnP2S12 with enhanced ionic conductivity and lower Li-ion migration barrier.ACS Applied Materials & Interfaces, 2022, 14(19): 22225–22232
233 Q N, Shao C H, Yan M X, Gao et al.. New insights into the effects of Zr substitution and carbon additive on Li3−xEr1−xZrxCl6 halide solid electrolytes.ACS Applied Materials & Interfaces, 2022, 14(6): 8095–8105
234 E, Ilina E, Lyalin M, Vlasov et al.. Structural features and the Li-ion diffusion mechanism in tantalum-doped Li7La3Zr2O12 solid electrolytes.ACS Applied Energy Materials, 2022, 5(3): 2959–2967
235 M Z, Xue W Z, Lu S, Xue et al.. Enhanced Al/Ta co-doped Li7La3Zr2O12 ceramic electrolytes with the reduced Ta doping level for solid-state lithium batteries.Journal of Materials Science, 2021, 56(35): 19614–19622
236 R M, Wang F, Liu J F, Duan et al.. Enhanced electrochemical performance of Al- and Nb-codoped LLZO ceramic powder and its composite solid electrolyte.ACS Applied Energy Materials, 2021, 4(12): 13912–13921
237 C, Miao Z Y, Kou J Q, Li et al.. LiF-doped Li3Al0.3Ti1.7(PO4)3 superionic conductors with enhanced ionic conductivity for all-solid-state lithium-ion batteries.Ionics, 2022, 28(1): 73–83
238 K Z, Walle Y S, Wu S H, Wu et al.. Lithium Nafion-modified Li6.05Ga0.25La3Zr2O11.8F0.2 trilayer hybrid solid electrolyte for high-voltage cathodes in all-solid-state lithium‒metal batteries.ACS Applied Materials & Interfaces, 2022, 14(13): 15259–15274
239 P, Chiochan X, Yu M, Sawangphruk et al.. A metal organic framework derived solid electrolyte for lithium–sulfur batteries.Advanced Energy Materials, 2020, 10(27): 2001285
240 J K Kim . Hybrid gel polymer electrolyte for high-safety lithium–sulfur batteries.Materials Letters, 2017, 187: 40–43
241 X, Li D, Wang H, Wang et al.. Poly(ethylene oxide)‒Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery.ACS Applied Materials & Interfaces, 2019, 11(25): 22745–22753
242 P M, Shanthi P J, Hanumantha T, Albuquerque et al.. Novel composite polymer electrolytes of PVdF‒HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium–sulfur batteries.ACS Applied Energy Materials, 2018, 1(2): 483–494
243 I, Garbayo A, Santiago X, Judez et al.. Alumina nanofilms as active barriers for polysulfides in high-performance all-solid-state lithium–sulfur batteries.ACS Applied Energy Materials, 2021, 4(3): 2463–2470
244 X, Zhang T F, Zhang Y F, Shao et al.. Composite electrolytes based on poly(ethylene oxide) and lithium borohydrides for all-solid-state lithium–sulfur batteries.ACS Sustainable Chemistry & Engineering, 2021, 9(15): 5396–5404
245 X, Hao H, Wenren X, Wang et al.. A gel polymer electrolyte based on PVDF–HFP modified double polymer matrices via ultraviolet polymerization for lithium‒sulfur batteries.Journal of Colloid and Interface Science, 2020, 558: 145–154
246 Y, Xia X, Wang X, Xia et al.. A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride‒hexafluoropropylene) (PVDF‒HFP) for enhanced solid-state lithium–sulfur batteries.Chemistry, 2017, 23(60): 15203–15209
247 X, Tao Y, Liu W, Liu et al.. Solid-state lithium‒sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer.Nano Letters, 2017, 17(5): 2967–2972
248 P, Zhu C Y, Yan J D, Zhu et al.. Flexible electrolyte‒cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium–sulfur batteries.Energy Storage Materials, 2019, 17: 220–225
249 D S, Shao L, Yang K L, Luo et al.. Preparation and performances of the modified gel composite electrolyte for application of quasi-solid-state lithium sulfur battery.Chemical Engineering Journal, 2020, 389: 124300
250 M, Li J E, Frerichs M, Kolek et al.. Solid-state lithium–sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode.Advanced Functional Materials, 2020, 30(14): 1910123
251 H P, Li Y X, Kuai J, Yang et al.. A new flame-retardant polymer electrolyte with enhanced Li-ion conductivity for safe lithium–sulfur batteries.Journal of Energy Chemistry, 2022, 65: 616–622
https://doi.org/10.1016/j.jechem.2021.06.036
252 H, Nagata Y Chikusa . Activation of sulfur active material in an all-solid-state lithium–sulfur battery.Journal of Power Sources, 2014, 263: 141–144
253 Q P, Yu Q, Liu Z Q, Wang et al.. Anode interface in all-solid-state lithium‒metal batteries: challenges and strategies.Acta Physica Sinica, 2020, 69(22): 228805
https://doi.org/10.7498/aps.69.20201218
254 E, Rangasamy G, Sahu J K, Keum et al.. A high conductivity oxide–sulfide composite lithium superionic conductor.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2: 4111–4116
255 Z P, Wan D N, Lei W, Yang et al.. Low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder.Advanced Functional Materials, 2019, 29(1): 1805301
256 H, Buschmann S, Berendts B, Mogwitz et al.. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure.Journal of Power Sources, 2012, 206: 236–244
257 L, Cheng E J, Crumlin W, Chen et al.. The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes.Physical Chemistry Chemical Physics, 2014, 16: 18294–18300
258 X G, Han Y H, Gong K K, Fu et al.. Negating interfacial impedance in garnet-based solid-state Li metal batteries.Nature Materials, 2017, 16: 572–579
259 C W, Wang Y H, Gong B Y, Liu et al.. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes.Nano Letters, 2017, 17(1): 565–571
260 K K, Fu Y H, Gong B Y, Liu et al.. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.Science Advances, 2017, 3(4): e1601659
261 W, Luo Y H, Gong Y Z, Zhu et al.. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer.Advanced Materials, 2017, 29(22): 1606042
262 W, Luo Y H, Gong Y Z, Zhu et al.. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte.Journal of the American Chemical Society, 2016, 138(37): 12258–12262
263 J M, Fu P F, Yu N, Zhang et al.. In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte.Energy & Environmental Science, 2019, 12: 1404–1412
264 Y J, Shao H C, Wang Z L, Gong et al.. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries.ACS Energy Letters, 2018, 3(6): 1212–1218
265 Y, Wei F, Hu Y Y, Li et al.. Constructing stable anodic interphase for quasi-solid-state lithium–sulfur batteries.ACS Applied Materials & Interfaces, 2020, 12(35): 39335–39341
266 S, Hasegawa N, Imanishi T, Zhang et al.. Study on lithium/air secondary batteries — stability of NASICON-type lithium ion conducting glass–ceramics with water.Journal of Power Sources, 2009, 189(1): 371–377
267 X Y, Zhang Q, Xiang S, Tang et al.. Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface.Nano Letters, 2020, 20(4): 2871–2878
268 H, Pan M H, Zhang Z, Cheng et al.. Carbon-free and binder-free Li‒Al alloy anode enabling an all-solid-state Li–S battery with high energy and stability.Science Advances, 2022, 8(15): eabn4372
269 C X, Bi M, Zhao L P, Hou et al.. Anode material options toward 500 Wh·kg−1 lithium–sulfur batteries.Advancement of Science, 2022, 9(2): 2103910
[1] Ram Sevak SINGH, Anurag GAUTAM, Varun RAI. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells[J]. Front. Mater. Sci., 2019, 13(3): 217-241.
[2] Tan WINIE,Nur Syuhada MOHD SHAHRIL. Conductivity enhancement by controlled percolation of inorganic salt in multiphase hexanoyl chitosan/polystyrene polymer blends[J]. Front. Mater. Sci., 2015, 9(2): 132-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed