Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (1) : 230638    https://doi.org/10.1007/s11706-023-0638-8
RESEARCH ARTICLE
Double-layered TiO2 cavity/nanoparticle photoelectrodes for efficient dye-sensitized solar cells
Zhen Li1,2, Libo Yu1,2()
1. College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, China
2. Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China
 Download: PDF(3768 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

TiO2 nanoparticles (NPs) in the size of ~25 nm, namely P25, are very common material as the electron collecting layer in dye-sensitized solar cells (DSSCs). However, the light-scattering improvement of TiO2 NP photoelectrodes is still a challenge. Here, we built TiO2 cavities on the top of the TiO2 NP layer by using carbonaceous microspheres as the template, forming the TiO2 cavity/nanoparticle (C/NP) photoelectrode for the application in DSSCs. The cavity amount in the TiO2 C/NP photoelectrode was controlled by adjusting the weight ratio of carbonaceous microspheres. SEM results confirm the successful formation of the double-layered TiO2 C/NP electrode. JV tests show that the optimized TiO2 C/NP electrode prepared with 25 wt.% carbonaceous microspheres contributes to remarkable improvement of the short-circuit current density (Jsc) and the power conversion efficiency (PCE). The best photovoltaic performance solar cell with the PCE of 9.08% is achieved with the optimized TiO2 C/NP photoelectrode, which is over 98% higher than that of the TiO2 NP photoelectrode. Further investigations of UV-vis DRS, IPCE, OCVD, and EIS demonstrate that the competition between light scattering effect and charges recombination in this TiO2 C/NP photoelectrode is responsible for the PCE enhancement.

Keywords titanium dioxide      dye sensitized solar cell      cavity      light scattering     
Corresponding Author(s): Libo Yu   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Issue Date: 01 March 2023
 Cite this article:   
Zhen Li,Libo Yu. Double-layered TiO2 cavity/nanoparticle photoelectrodes for efficient dye-sensitized solar cells[J]. Front. Mater. Sci., 2023, 17(1): 230638.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0638-8
https://academic.hep.com.cn/foms/EN/Y2023/V17/I1/230638
Fig.1  Morphology of carbonaceous microspheres: (a) SEM image; (b) TEM image.
Fig.2  (a)(b)(c) Top surface morphologies of TiO2 C/NP photoelectrodes prepared by 12.5, 25, and 37.5 wt.% carbonaceous microspheres (from left to right). (d) The cross-section view of the TiO2 C/NP photoelectrode. (e) Magnified SEM image of the selected local zone from panel (d).
Fig.3  The formation mechanism of the TiO2 C/NP photoelectrode using carbonaceous microspheres as the hard template.
PhotoelectrodeDSSC performance
Jsc/(mA·cm?2)Voc/VFFPCE/%
TiO2 NP10.730.710.604.57
TiO2 C/NP (12.5 wt.%)15.200.720.556.02
TiO2 C/NP (25 wt.%)20.350.720.629.08
TiO2 C/NP (37.5 wt.%)18.310.700.587.43
Tab.1  J?V parameters of DSSCs assembled with different photoelectrodes of TiO2 NP and three types of TiO2 C/NP
Fig.4  J?V curves of DSSCs based on TiO2 NP, TiO2 C/NP (12.5 wt.%), TiO2 C/NP (25 wt.%), and TiO2 C/NP (37.5 wt.%).
Fig.5  Configuration of the DSSC based on the TiO2 C/NP photoelectrode.
Fig.6  N2 adsorption?desorption curves of TiO2 C/NP (25 wt.%).
Fig.7  (a) Diffused reflectance spectra of TiO2 NP and TiO2 C/NP (25 wt.%). (b) IPCE of DSSCs assembled with TiO2 NP and TiO2 C/NP (25 wt.%).
Fig.8  (a) OCVD curves of DSSCs assembled with TiO2 NP, TiO2 C/NP (25 wt.%), and TiO2 C/NP (37.5 wt.%). (b) Electron lifetime of DSSCs assembled with TiO2 NP, TiO2 C/NP (25 wt.%), and TiO2 C/NP (37.5 wt.%).
PhotoelectrodeEIS fitting results of the DSSC
RCERrecCμ/μFτn/ms
TiO2 NP275164832
TiO2 C/NP (25 wt.%)214960230
TiO2 C/NP (37.5 wt.%)214650523
Tab.2  EIS fitting data of DSSCs assembled with different photoelectrodes of TiO2 NP, TiO2 C/NP (25 wt.%), and TiO2 C/NP (37.5 wt.%)
Fig.9  EIS results of DSSCs assembled with TiO2 NP, TiO2 C/NP (25 wt.%), and TiO2 C/NP (37.5 wt.%). The inset is equivalent circuit of DSSC.
1 D, Devadiga M, Selvakumar P, Shetty et al.. Recent progress in dye sensitized solar cell materials and photo-supercapacitors: a review.Journal of Power Sources, 2021, 493: 229698
https://doi.org/10.1016/j.jpowsour.2021.229698
2 M S, Ahmad A K, Pandey N A Rahim . Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications: a review.Renewable & Sustainable Energy Reviews, 2017, 77: 89–108
https://doi.org/10.1016/j.rser.2017.03.129
3 M Grätzel . Photoelectrochemical cells.Nature, 2001, 414(6861): 338–344
https://doi.org/10.1038/35104607 pmid: 11713540
4 S, Yun N, Vlachopoulos A, Qurashi et al.. Dye sensitized photoelectrolysis cells.Chemical Society Reviews, 2019, 48(14): 3705–3722
https://doi.org/10.1039/C8CS00987B pmid: 31120048
5 A B, Muñoz-García I, Benesperi G, Boschloo et al.. Dye-sensitized solar cells strike back.Chemical Society Reviews, 2021, 50(22): 12450–12550
https://doi.org/10.1039/D0CS01336F pmid: 34590638
6 M Ismael . A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles.Solar Energy, 2020, 211: 522–546
https://doi.org/10.1016/j.solener.2020.09.073
7 S, Daneshvar A E, Saed S K Sadrnezhaad . Hierarchical rutile/anatase TiO2 nanorod/nanoflower thin film: synthesis and characterizations.Materials Science in Semiconductor Processing, 2019, 93: 252–259
https://doi.org/10.1016/j.mssp.2019.01.012
8 C, Bu Y, Liu Z, Yu et al.. Highly transparent carbon counter electrode prepared via an in situ carbonization method for bifacial dye-sensitized solar cells.ACS Applied Materials & Interfaces, 2013, 5(15): 7432–7438
https://doi.org/10.1021/am4017472 pmid: 23806279
9 X, Wang B, Zhao W, Kan et al.. Review on low-cost counter electrode materials for dye-sensitized solar cells: effective strategy to improve photovoltaic performance.Advanced Materials Interfaces, 2022, 9(2): 2101229
https://doi.org/10.1002/admi.202101229
10 H, Song Z, Pan H, Rao et al.. TiO2 hierarchical nanowire-P25 particulate composite photoanodes in combination with N-doped mesoporous carbon/Ti counter electrodes for high performance quantum dot-sensitized solar cells.Solar Energy, 2019, 191: 459–467
https://doi.org/10.1016/j.solener.2019.09.014
11 Y, Gao W, Nie Q, Zhu et al.. The polarization effect in surface-plasmon-induced photocatalysis on Au/TiO2 nanoparticles.Angewandte Chemie International Edition, 2020, 59(41): 18218–18223
https://doi.org/10.1002/anie.202007706
12 M, Marandi F A, Farahani M Davoudi . Fabrication of submicron/micron size cavities included TiO2 photoelectrodes and optimization of light scattering to improve the photovoltaic performance of CdS quantum dot sensitized solar cells.Journal of Electroanalytical Chemistry, 2017, 799: 167–174
https://doi.org/10.1016/j.jelechem.2017.06.001
13 T G, Deepak G S, Anjusree S, Thomas et al.. A review on materials for light scattering in dye-sensitized solar cells.RSC Advances, 2014, 4(34): 17615–17638
https://doi.org/10.1039/C4RA01308E
14 F, Huang D, Chen X L, Zhang et al.. Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells.Advanced Functional Materials, 2010, 20(8): 1301–1305
https://doi.org/10.1002/adfm.200902218
15 D, Chen F, Huang Y B, Cheng et al.. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells.Advanced Materials, 2009, 21(21): 2206–2210
https://doi.org/10.1002/adma.200802603
16 F, Sauvage D, Chen P, Comte et al.. Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%.ACS Nano, 2010, 4(8): 4420–4425
https://doi.org/10.1021/nn1010396 pmid: 20731428
17 K, Guo M, Li X, Fang et al.. Improved properties of dye-sensitized solar cells by multifunctional scattering layer of yolk–shell-like TiO2 microspheres.Journal of Power Sources, 2014, 264: 35–41
https://doi.org/10.1016/j.jpowsour.2014.04.061
18 J, Sheng L, Hu W, Li et al.. Formation of single-crystalline rutile TiO2 splitting microspheres for dye-sensitized solar cells.Solar Energy, 2011, 85(11): 2697–2703
https://doi.org/10.1016/j.solener.2011.08.009
19 Y, Huang H, Wu Q, Yu et al.. A single-layer TiO2 film composed of mesoporous spheres for high-efficiency and stable dye-sensitized solar cells.ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3411–3418
https://doi.org/10.1021/acssuschemeng.7b03626
20 J, Sun H, Guo L, Zhao et al.. Co-sensitized efficient dye-sensitized solar cells with TiO2 hollow sphere/nanoparticle double-layer film electrodes by Bi2S3 quantum dots and N719.International Journal of Electrochemical Science, 2017, 12: 7941–7955
https://doi.org/10.20964/2017.09.01
21 H, Hu H, Shen C, Cui et al.. Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells.Journal of Alloys and Compounds, 2013, 560: 1–5
https://doi.org/10.1016/j.jallcom.2013.01.106
22 Y, Liu K, Lan A A, Bagabas et al.. Ordered macro/mesoporous TiO2 hollow microspheres with highly crystalline thin shells for high-efficiency photoconversion.Small, 2016, 12(7): 860–867
https://doi.org/10.1002/smll.201503420 pmid: 26708310
23 K, Zhu N R, Neale A, Miedaner et al.. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays.Nano Letters, 2007, 7(1): 69–74
https://doi.org/10.1021/nl062000o pmid: 17212442
24 K S, Lee J, Kwon J H, Im et al.. Size-tunable, fast, and facile synthesis of titanium oxide nanotube powders for dye-sensitized solar cells.ACS Applied Materials & Interfaces, 2012, 4(8): 4164–4168
https://doi.org/10.1021/am300892j pmid: 22780434
25 Y, Rui Y, Li Q, Zhang et al.. Size-tunable TiO2 nanorod microspheres synthesised via a one-pot solvothermal method and used as the scattering layer for dye-sensitized solar cells.Nanoscale, 2013, 5(24): 12574–12581
https://doi.org/10.1039/c3nr04462a pmid: 24173030
26 Gharavi P S, Musavi M R Mohammadi . The improvement of light scattering of dye-sensitized solar cells aided by a new dandelion-like TiO2 nanostructures.Solar Energy Materials and Solar Cells, 2015, 137: 113–123
https://doi.org/10.1016/j.solmat.2015.01.035
27 G, Yang J, Zhang P, Wang et al.. Light scattering enhanced photoanodes for dye-sensitized solar cells prepared by carbon spheres/TiO2 nanoparticle composites.Current Applied Physics, 2011, 11(3): 376–381
https://doi.org/10.1016/j.cap.2010.08.008
28 X, Du L, Zhao X, He et al.. TiO2 hierarchical pores/nanorod arrays composite film as photoanode for quantum dot-sensitized solar cells.Journal of Energy Chemistry, 2019, 30: 1–7
https://doi.org/10.1016/j.jechem.2018.01.005
29 H, Ren R, Yu J, Wang et al.. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries.Nano Letters, 2014, 14(11): 6679–6684
https://doi.org/10.1021/nl503378a pmid: 25317725
30 M Grätzel . Solar energy conversion by dye-sensitized photovoltaic cells.Inorganic Chemistry, 2005, 44(20): 6841–6851
https://doi.org/10.1021/ic0508371 pmid: 16180840
31 Q, Zhang T P, Chou B, Russo et al.. Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells.Advanced Functional Materials, 2008, 18(11): 1654–1660
https://doi.org/10.1002/adfm.200701073
32 F, Huang H, Tang Y, Wang et al.. Hierarchical ZnO microspheres photoelectrodes assembled with Zn chalcogenide passivation layer for high efficiency quantum dot sensitized solar cells.Journal of Power Sources, 2018, 401: 255–262
https://doi.org/10.1016/j.jpowsour.2018.08.095
33 H, Zhao Q, Wu J, Hou et al.. Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO2 passivation on ZnO nanorod arrays.Science China Materials, 2017, 60(3): 239–250
https://doi.org/10.1007/s40843-016-9008-2
34 X, Dang J, Qi M T, Klug et al.. Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells.Nano Letters, 2013, 13(2): 637–642
https://doi.org/10.1021/nl3043823 pmid: 23339821
35 D, Jiang Y, Hao R, Shen et al.. Effective blockage of the interfacial recombination process at TiO2 nanowire array electrodes in dye-sensitized solar cells.ACS Applied Materials & Interfaces, 2013, 5(22): 11906–11912
https://doi.org/10.1021/am4036042 pmid: 24191693
36 I, Mora-Seró S, Giménez F, Fabregat-Santiago et al.. Recombination in quantum dot sensitized solar cells.Accounts of Chemical Research, 2009, 42(11): 1848–1857
https://doi.org/10.1021/ar900134d pmid: 19722527
37 H, Song Y, Lin Z, Zhang et al.. Improving the efficiency of quantum dot sensitized solar cells beyond 15% via secondary deposition.Journal of the American Chemical Society, 2021, 143(12): 4790–4800
https://doi.org/10.1021/jacs.1c01214 pmid: 33734670
38 W, Wang J, Du Z, Ren et al.. Improving loading amount and performance of quantum dot-sensitized solar cells through metal salt solutions treatment on photoanode.ACS Applied Materials & Interfaces, 2016, 8(45): 31006–31015
https://doi.org/10.1021/acsami.6b11122 pmid: 27797169
[1] FMS-23638-OF-Lz_suppl_1 Download
[1] Ahmed EL-FIQI. Solgel synthesis, properties and protein loading/delivery capacity of hollow bioactive glass nanospheres with large hollow cavity and mesoporous shell[J]. Front. Mater. Sci., 2022, 16(3): 220608-.
[2] Hong LIN, Wen-li WANG, Yi-zhu LIU, Xin LI, Jian-bao LI. New trends for solar cell development and recent progress of dye sensitized solar cells[J]. Front. Mater. Sci., 2009, 3(4): 345-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed