Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (2) : 230646    https://doi.org/10.1007/s11706-023-0646-8
RESEARCH ARTICLE
Revealing component synergy of Ni‒Fe/black phosphorous composites synthesized by self-designed electrochemical method for enhancing photoelectrocatalytic oxygen evolution reaction
He Xiao1, Shoufeng Xue1, Zimei Fu1, Man Zhao1(), Li Zhang1, Junming Zhang1, Haishun Wu1, Jianfeng Jia1(), Nianjun Yang2()
1. Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
2. Department of Chemistry, Hasselt University, 3590 Diepenbeek, Belgium
 Download: PDF(8959 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Developing high-activity and low-cost catalysts is the key to eliminate the limitation of sluggish anodic oxygen evolution reaction (OER) during electrocatalytic overall water splitting. Herein, Ni‒Fe/black phosphorous (BP) composites are synthesized using a simple three-electrode system, where exfoliation of bulky BP and synthesis of NiFe composites are simultaneously achieved. Under light illumination, the optimized Ni‒Fe/BP composite exhibits excellent photoelectrocatalytic OER performance (e.g., the overpotential is 58 mV lower than a commercial RuO2 electrocatalyst at a current density of 10 mA·cm−2). The electron transfer on this composite is proved to follow a Ni‒BP‒Fe pathway. The electronic structure of this Ni‒Fe/BP composite is effectively regulated, leading to optimized adsorption strength of the intermediate OH* and improved intrinsic activity for the OER. Together with active sites on the support, this Ni‒Fe/BP composite possesses abundant electrochemical active sites and a bug surface area for the OER. The introduction of light further accelerates the electrocatalytic OER. This work provides a novel and facile method to synthesize high-performance metal/BP composites as well as the approaches to reveal their OER mechanisms.

Keywords black phosphorous      (photo-)electrocatalysis      oxygen evolution reaction     
Corresponding Author(s): Man Zhao,Jianfeng Jia,Nianjun Yang   
About author:

*These authors equally shared correspondence to this manuscript.

Issue Date: 28 April 2023
 Cite this article:   
He Xiao,Shoufeng Xue,Zimei Fu, et al. Revealing component synergy of Ni‒Fe/black phosphorous composites synthesized by self-designed electrochemical method for enhancing photoelectrocatalytic oxygen evolution reaction[J]. Front. Mater. Sci., 2023, 17(2): 230646.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0646-8
https://academic.hep.com.cn/foms/EN/Y2023/V17/I2/230646
Fig.1  Schematic plot of electrochemically synthesizing the Ni?Fe/BP composites.
Fig.2  (a) XRD patterns and (b) XPS survey spectra of BP nanosheets, Ni/BP, Fe/BP, and Ni?Fe/BP catalysts. (c) Ni 2p XPS spectra of the Ni/BP and Ni?Fe/BP catalysts. (d) Fe 2p XPS spectra of the Fe/BP and Ni?Fe/BP catalysts. (e) P 2p and (f) O 1s XPS spectra of BP nanosheets, Ni/BP, Fe/BP, and Ni?Fe/BP catalysts.
Fig.3  (a) SEM image, (b) TEM image, (c)(d)(e) HRTEM images, (f) HAADF-STEM image, and (g)(h)(i)(j) corresponding EDS mapping images of the Ni?Fe/BP catalyst.
Fig.4  (a) LSV results, (b) overpotential comparison, (c) Tafel plots, (d) Nyquist plots, and (e) Cdl values of BP nanosheets as well as the Ni?Fe/BP, Ni/BP, and Fe/BP catalysts. (f) Chronoamperometric curve of the Ni?Fe/BP catalyst at a constant potential of 1.57 V.
Fig.5  LSVs of oxygen intermediates during the MOR on (a) BP nanosheets as well as (b) Fe/BP, (c) Ni/BP, and (d) Ni?Fe/BP catalysts in 1 mol·L?1 KOH (black) and 1 mol·L?1 KOH + CH3OH (purple) at a scan rate of 50 mV·s?1. These filled areas are the current difference that is caused by the MOR.
Fig.6  (a) Schematic illustration of as-proposed reaction mechanism. (b) Composition effect of the Ni?Fe/BP catalyst for the promoted OER.
1 L, Francàs S, Corby S, Selim et al.. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts.Nature Communications, 2019, 10(1): 5208
https://doi.org/10.1038/s41467-019-13061-0 pmid: 31729380
2 N T, Suen S F, Hung Q, Quan et al.. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives.Chemical Society Reviews, 2017, 46(2): 337–365
https://doi.org/10.1039/C6CS00328A pmid: 28083578
3 L, Dai Z N, Chen L, Li et al.. Ultrathin Ni0-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting.Advanced Materials, 2020, 32(8): 1906915
https://doi.org/10.1002/adma.201906915
4 K, Zhu X, Zhu W Yang . Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts.Angewandte Chemie International Edition, 2019, 58(5): 1252–1265
https://doi.org/10.1002/anie.201802923 pmid: 29665168
5 V, Maruthapandian S, Kumaraguru S, Mohan et al.. An insight on the electrocatalytic mechanistic study of pristine Ni MOF (BTC) in alkaline medium for enhanced OER and UOR.ChemElectroChem, 2018, 5(19): 2795–2807
https://doi.org/10.1002/celc.201800802
6 O, Diaz-Morales D, Ferrus-Suspedra M T M Koper . The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation.Chemical Science, 2016, 7(4): 2639–2645
https://doi.org/10.1039/C5SC04486C pmid: 28660036
7 L, Trotochaud S L, Young J K, Ranney et al.. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation.Journal of the American Chemical Society, 2014, 136(18): 6744–6753
https://doi.org/10.1021/ja502379c pmid: 24779732
8 B J, Trześniewski O, Diaz-Morales D A, Vermaas et al.. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: the effect of pH on electrochemical activity.Journal of the American Chemical Society, 2015, 137(48): 15112–15121
https://doi.org/10.1021/jacs.5b06814 pmid: 26544169
9 Z, Xue K, Liu Q, Liu et al.. Missing-linker metal-organic frameworks for oxygen evolution reaction.Nature Communications, 2019, 10(1): 5048
https://doi.org/10.1038/s41467-019-13051-2 pmid: 31695122
10 J, Tuček K, Holá A B, Bourlinos et al.. Room temperature organic magnets derived from sp3 functionalized graphene.Nature Communications, 2017, 8(1): 14525
https://doi.org/10.1038/ncomms14525 pmid: 28216636
11 Q, Shi C, Zhu D, Du et al.. Robust noble metal-based electrocatalysts for oxygen evolution reaction.Chemical Society Reviews, 2019, 48(12): 3181–3192
https://doi.org/10.1039/C8CS00671G pmid: 31112142
12 Y, Zhou S, Sun C, Wei et al.. Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides.Advanced Materials, 2019, 31(41): 1902509
https://doi.org/10.1002/adma.201902509 pmid: 31361056
13 L, Zeng L, Yang J, Lu et al.. One-step synthesis of Fe–Ni hydroxide nanosheets derived from bimetallic foam for efficient electrocatalytic oxygen evolution and overall water splitting.Chinese Chemical Letters, 2018, 29(12): 1875–1878
https://doi.org/10.1016/j.cclet.2018.10.026
14 G, Chen Y, Zhu H M, Chen et al.. An amorphous nickel–iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction.Advanced Materials, 2019, 31(28): 1900883
https://doi.org/10.1002/adma.201900883 pmid: 31099042
15 C, Kuai Y, Zhang D, Wu et al.. Fully oxidized Ni–Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction.ACS Catalysis, 2019, 9(7): 6027–6032
https://doi.org/10.1021/acscatal.9b01935
16 H, Chen J, Chen P, Ning et al.. 2D heterostructure of amorphous CoFeB coating black phosphorus nanosheets with optimal oxygen intermediate absorption for improved electrocatalytic water oxidation.ACS Nano, 2021, 15(7): 12418–12428
https://doi.org/10.1021/acsnano.1c04715 pmid: 34259511
17 J, Wang D, Liu H, Huang et al.. In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis.Angewandte Chemie International Edition, 2018, 57(10): 2600–2604
https://doi.org/10.1002/anie.201710859 pmid: 29265714
18 F, Shi Z, Geng K, Huang et al.. Cobalt nanoparticles/black phosphorus nanosheets: an efficient catalyst for electrochemical oxygen evolution.Advanced Science, 2018, 5(8): 1800575
https://doi.org/10.1002/advs.201800575 pmid: 30128261
19 X, Li L, Xiao L, Zhou et al.. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting.Angewandte Chemie International Edition, 2020, 59(47): 21106–21113
https://doi.org/10.1002/anie.202008514 pmid: 32767438
20 L, Bai X, Wang S, Tang et al.. Black phosphorus/platinum heterostructure: a highly efficient photocatalyst for solar-driven chemical reactions.Advanced Materials, 2018, 30(40): 1803641
https://doi.org/10.1002/adma.201803641 pmid: 30175521
21 N, Wang N, Mao Z, Wang et al.. Electrochemical delamination of ultralarge few-layer black phosphorus with a hydrogen-free intercalation mechanism.Advanced Materials, 2021, 33(1): 2005815
https://doi.org/10.1002/adma.202005815 pmid: 33244822
22 X, Wang R K M, Raghupathy C J, Querebillo et al.. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions.Advanced Materials, 2021, 33(20): 2008752
https://doi.org/10.1002/adma.202008752 pmid: 33939200
23 T, Liang Y, Liu Y, Cheng et al.. Scalable synthesis of a MoS2/black phosphorus heterostructure for pH-universal hydrogen evolution catalysis.ChemCatChem, 2020, 12(10): 2840–2848
https://doi.org/10.1002/cctc.202000139
24 B, Zou S, Qiu X, Ren et al.. Combination of black phosphorus nanosheets and MCNTs via phosphoruscarbon bonds for reducing the flammability of air stable epoxy resin nanocomposites.Journal of Hazardous Materials, 2020, 383: 121069
https://doi.org/10.1016/j.jhazmat.2019.121069 pmid: 31522066
25 Y, Zhang L, Wang H, Xu et al.. 3D chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries.Advanced Functional Materials, 2020, 30(12): 1909372
https://doi.org/10.1002/adfm.201909372
26 H, Xiao X, Du M, Zhao et al.. Structural dependence of electrosynthesized cobalt phosphide/black phosphorus pre-catalyst for oxygen evolution in alkaline media.Nanoscale, 2021, 13(15): 7381–7388
https://doi.org/10.1039/D1NR00062D pmid: 33889884
27 H, Xiao J, Zhang M, Zhao et al.. Electric field-assisted synthesis of Pt, carbon quantum dots-coloaded graphene hybrid for hydrogen evolution reaction.Journal of Power Sources, 2020, 451: 227770
https://doi.org/10.1016/j.jpowsour.2020.227770
28 H, Xiao S, Xue J, Zhang et al.. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation.Chemical Engineering Journal, 2021, 408: 127271
https://doi.org/10.1016/j.cej.2020.127271
29 M, Zhao S, Xue H, Xiao et al.. Facile in-situ electrochemical fabrication of highly efficient nickel hydroxide–iron hydroxide/graphene hybrid for oxygen evolution reaction.International Journal of Hydrogen Energy, 2022, 47(25): 12547–12558
https://doi.org/10.1016/j.ijhydene.2022.01.244
30 H, Xiao B, Li M, Zhao et al.. Electrosynthesized CuOx/graphene by a four-electrode electrolysis system for the oxygen reduction reaction to hydrogen peroxide.Chemical Communications, 2021, 57(34): 4118–4121
https://doi.org/10.1039/D1CC00386K pmid: 33908453
31 S, Li Y, Zhang H Huang . Black phosphorus-based heterostructures for photocatalysis and photoelectrochemical water splitting.Journal of Energy Chemistry, 2022, 67: 745–779
https://doi.org/10.1016/j.jechem.2021.11.023
32 L, Liardet J E, Katz J, Luo et al.. An ultrathin cobalt–iron oxide catalyst for water oxidation on nanostructured hematite photoanodes.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(11): 6012–6020
https://doi.org/10.1039/C8TA12295D
33 S A, Asif S B, Khan A M Asiri . Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants.Nanoscale Research Letters, 2014, 9(1): 510
https://doi.org/10.1186/1556-276X-9-510 pmid: 25246877
34 C, Tomon S, Sarawutanukul N, Phattharasupakun et al.. Insight into photoelectrocatalytic mechanisms of bifunctional cobaltite hollow-nanofibers towards oxygen evolution and oxygen reduction reactions for high-energy zinc–air batteries.Electrochimica Acta, 2021, 392: 139022
https://doi.org/10.1016/j.electacta.2021.139022
35 R, Xu D, Zhu K, Du et al.. Role of surface wettability in photoelectrocatalytic oxygen evolution reactions.Materials Today Energy, 2022, 25: 100961
https://doi.org/10.1016/j.mtener.2022.100961
36 M, Athar M, Fiaz M A, Farid et al.. Iron and manganese codoped cobalt tungstates Co1−(x+y)FexMnyWO4 as efficient photoelectrocatalysts for oxygen evolution reaction.ACS Omega, 2021, 6(11): 7334–7341
https://doi.org/10.1021/acsomega.0c05412 pmid: 33778246
37 L, Li S, Xiao R, Li et al.. Nanotube array-like WO3 photoanode with dual-layer oxygen-evolution cocatalysts for photoelectrocatalytic overall water splitting.ACS Applied Energy Materials, 2018, 1(12): 6871–6880
https://doi.org/10.1021/acsaem.8b01215
38 H, Zhang P, Li H, Zhou et al.. Unravelling the synergy of oxygen vacancies and gold nanostars in hematite for the electrochemical and photoelectrochemical oxygen evolution reaction.Nano Energy, 2022, 94: 106968
https://doi.org/10.1016/j.nanoen.2022.106968
39 M, Zhao X, Cheng H, Xiao , et al.. Cobalt‒iron oxide/black phosphorus nanosheet heterostructure: electrosynthesis and performance of (photo-)electrocatalytic oxygen evolution. Nano Resaerch, 2023, in press
40 D, Liu J, Wang J, Lu et al.. Direct synthesis of metal-doped phosphorene with enhanced electrocatalytic hydrogen evolution.Small Methods, 2019, 3(7): 1900083
https://doi.org/10.1002/smtd.201900083
41 Y, Zhang Y, Wang H, Jiang et al.. Multifunctional nickel sulfide nanosheet arrays for solar-intensified oxygen evolution reaction.Small, 2020, 16(33): 2002550
https://doi.org/10.1002/smll.202002550 pmid: 32705807
42 H B, Tao Y, Xu X, Huang et al.. A general method to probe oxygen evolution intermediates at operating conditions.Joule, 2019, 3(6): 1498–1509
https://doi.org/10.1016/j.joule.2019.03.012
43 D, Friebel M W, Louie M, Bajdich et al.. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting.Journal of the American Chemical Society, 2015, 137(3): 1305–1313
https://doi.org/10.1021/ja511559d pmid: 25562406
44 Q, Jiang L, Xu N, Chen et al.. Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction.Angewandte Chemie International Edition, 2016, 55(44): 13849–13853
https://doi.org/10.1002/anie.201607393 pmid: 27682470
45 X, Han Y, Yu Y, Huang et al.. Photogenerated carriers boost water splitting activity over transition-metal/semiconducting metal oxide bifunctional electrocatalysts.ACS Catalysis, 2017, 7(10): 6464–6470
https://doi.org/10.1021/acscatal.7b01823
[1] FMS-23646-OF-Xh_suppl_1 Download
[1] Nabi ULLAH, Rizwan ULLAH, Saraf KHAN, Yuanguo XU. Boron nitride-based electrocatalysts for HER, OER, and ORR: A mini-review[J]. Front. Mater. Sci., 2021, 15(4): 543-552.
[2] Wenqing ZHENG, Han SUN, Xinping LI, Shu ZHANG, Zhuoxun YIN, Wei CHEN, Yang ZHOU. Fe-doped NiCo2O4 hollow hierarchical sphere as an efficient electrocatalyst for oxygen evolution reaction[J]. Front. Mater. Sci., 2021, 15(4): 577-588.
[3] Jingze ZHANG, Sheng ZHU, Yulin MIN, Qunjie XU. Mn-doped perovskite-type oxide LaFeO3 as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions[J]. Front. Mater. Sci., 2020, 14(4): 459-468.
[4] Pengzhang LI, Chuanjin TIAN, Wei YANG, Wenyan ZHAO, Zhe LÜ. LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc--air batteries[J]. Front. Mater. Sci., 2019, 13(3): 277-287.
[5] Hong LIN, Ye ZHANG, Gang WANG, Jian-Bao LI. Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral eletrolyte[J]. Front Mater Sci, 2012, 6(2): 142-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed