Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (3) : 230651    https://doi.org/10.1007/s11706-023-0651-y
RESEARCH ARTICLE
Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries
Chong Xu, Guang Ma, Wang Yang(), Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li()
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
 Download: PDF(7842 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sn-based materials are considered as a kind of potential anode materials for lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, their use is limited by large volume expansion deriving from the lithiation/delithiation process. In this work, amorphous Sn modified nitrogen-doped porous carbon nanosheets (ASn-NPCNs) are obtained. The synergistic effect of amorphous Sn and high edge-nitrogen-doped level porous carbon nanosheets provides ASn-NPCNs with multiple advantages containing abundant defect sites, high specific surface area (214.9 m2·g−1), and rich hierarchical pores, which can promote the lithium-ion storage. Serving as the LIB anode, the as-prepared ASn-NPCNs-750 electrode exhibits an ultrahigh capacity of 1643 mAh·g−1 at 0.1 A·g−1, ultrafast rate performance of 490 mAh·g−1 at 10 A·g−1, and superior long-term cycling performance of 988 mAh·g−1 at 1 A·g−1 after 2000 cycles with a capacity retention of 98.9%. Furthermore, the in-depth electrochemical kinetic test confirms that the ultrahigh-capacity and fast-charging performance of the ASn-NPCNs-750 electrode is ascribed to the rapid capacitive mechanism. These impressive results indicate that ASn-NPCNs-750 can be a potential anode material for high-capacity and fast-charging LIBs.

Keywords amorphous Sn      rapid capacitive mechanism      lithium-ion storage      nitrogen-doped carbon      fast charging     
Corresponding Author(s): Wang Yang,Yongfeng Li   
About author:

* These authors contributed equally to this work.

Issue Date: 19 June 2023
 Cite this article:   
Chong Xu,Guang Ma,Wang Yang, et al. Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries[J]. Front. Mater. Sci., 2023, 17(3): 230651.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0651-y
https://academic.hep.com.cn/foms/EN/Y2023/V17/I3/230651
Fig.1  Schematic illustration of the synthesis of ASn-NPCNs-T.
Fig.2  Morphology characterizations: SEM images of (a)(d) ASn-NPCNs-650, (b)(e) ASn-NPCNs-750, and (c)(f) ASn-NPCNs-850; (g)(h) TEM images and (i) HRTEM image of ASn-NPCNs-750; (j) SAED pattern of ASn-NPCNs-750; (k) EDX mapping images of ASn-NPCNs-750.
Fig.3  Structural characterization: (a) XRD patterns of ASn-NPCNs-T; (b) TG curves of ASn-NPCNs-T; (c) Raman spectra of ASn-NPCNs-T; (d) N2 adsorption/desorption isotherms and pore size distributions of ASn-NPCNs-T.
Fig.4  Structural characterization: (a) XPS spectra of ASn-NPCNs-T; (b) C 1s high-resolution XPS spectra of ASn-NPCNs-750; (c) Sn 3d high-resolution XPS spectra of ASn-NPCNs-750; N 1s high-resolution XPS spectra of (d) ASn-NPCNs-650, (e) ASn-NPCNs-750, and (f) ASn-NPCNs-850.
Fig.5  Electrochemical performances of ASn-NPCNs-T in LIBs: (a) CV curves at 0.1 mV·s?1 and (b) discharge/charge profiles of ASn-NPCNs-750. (c) Rate performance of ASn-NPCNs-T half-cells at 25 °C in the voltage range of 0–3 V. (d) Comparison of the rate performance of ASn-NPCNs-750 with reported Sn/C materials for LIBs. (e) Long-term cycling stability of ASn-NPCNs-750 at 1 A·g?1 for 2000 cycles.
Fig.6  Quantitative analysis of the lithium-ion storage mechanism: CV curves of (a) ASn-NPCNs-650, (b) ASn-NPCNs-750, and (c) ASn-NPCNs-850 at different scan rates of 0.3–1.3 mV·s?1; capacitive-controlled contribution in (d) ASn-NPCNs-650, (e) ASn-NPCNs-750, and (f) ASn-NPCNs-850 at a scan rate of 1.0 mV·s?1; (g) contribution ratios of the capacitive process for ASn-NPCNs-T at different scan rates; (h) Nyquist plots for ASn-NPCNs-T; (i) the liner relation of Z? versus ω?0.5 for ASn-NPCNs-T.
1 J, Xiao Q, Li Y, Bi et al.. Understanding and applying coulombic efficiency in lithium metal batteries.Nature Energy, 2020, 5(8): 561–568
https://doi.org/10.1038/s41560-020-0648-z
2 S, Chae M, Ko K, Kim et al.. Confronting issues of the practical implementation of Si Anode in high-energy lithium-ion batteries.Joule, 2017, 1(1): 47–60
https://doi.org/10.1016/j.joule.2017.07.006
3 J, Zhou Z, Jiang S, Niu et al.. Self-standing hierarchical P/CNTs@rGO with unprecedented capacity and stability for lithium and sodium storage.Chem, 2018, 4(2): 372–385
https://doi.org/10.1016/j.chempr.2018.01.006
4 L, Liang X, Sun J, Zhang et al.. In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries.Advanced Energy Materials, 2019, 9: 1–15
5 Z, Xu Y, Zeng L, Wang et al.. Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries.Journal of Power Sources, 2017, 356: 18–26
https://doi.org/10.1016/j.jpowsour.2017.04.064
6 Y, Xia S, Han Y, Zhu et al.. Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries.Energy Storage Materials, 2019, 18: 125–132
https://doi.org/10.1016/j.ensm.2019.01.021
7 C, Subramaniyam Z, Tai N, Mahmood et al.. Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(5): 1925–1929
https://doi.org/10.1039/C6TA08432J
8 X, Zhang X, Cheng Q Zhang . Nanostructured energy materials for electrochemical energy conversion and storage: a review.Journal of Energy Chemistry, 2016, 25(6): 967–984
https://doi.org/10.1016/j.jechem.2016.11.003
9 X, Zhou Q, Liu C, Jiang et al.. Strategies towards low-cost dual-ion batteries with high performance.Angewandte Chemie International Edition, 2020, 59(10): 3802–3832
https://doi.org/10.1002/anie.201814294 pmid: 30865353
10 Y, Sun N, Liu Y Cui . Promises and challenges of nanomaterials for lithium-based rechargeable batteries.Nature Energy, 2016, 1: 16071
https://doi.org/10.1038/nenergy.2016.71
11 J, Deng X, Yu X, Qin et al.. Carbon sphere-templated synthesis of porous yolk–shell ZnCo2O4 spheres for high-performance lithium storage.Journal of Alloys and Compounds, 2019, 780: 65–71
https://doi.org/10.1016/j.jallcom.2018.11.331
12 F, Niu Z, Shao H, Gao et al.. Si-doped graphene nanosheets for NOx gas sensing.Sensors and Actuators B: Chemical, 2021, 328: 129005
https://doi.org/10.1016/j.snb.2020.129005
13 X, Li G, Chen Z, Le et al.. Well-dispersed phosphorus nanocrystals within carbon via high-energy mechanical milling for high performance lithium storage.Nano Energy, 2019, 59: 464–471
https://doi.org/10.1016/j.nanoen.2019.02.061
14 Y, Sun L, Wang Y, Li et al.. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density.JOULE, 2019, 3(4): 1080–1093
https://doi.org/10.1016/j.joule.2019.01.017
15 Y, Wang L, Tian Z, Yao et al.. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries.Electrochimica Acta, 2015, 163: 71–76
https://doi.org/10.1016/j.electacta.2015.02.151
16 B, Huang Z, Pan X, Su et al.. Tin-based materials as versatile anodes for alkali (earth)-ion batteries.Journal of Power Sources, 2018, 395: 41–59
https://doi.org/10.1016/j.jpowsour.2018.05.063
17 J H, Shin J Y Song . Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery.Nano Convergence, 2016, 3(1): 9
https://doi.org/10.1186/s40580-016-0070-1 pmid: 28191419
18 J, Wang W, Li F, Wang et al.. Controllable synthesis of SnO2@C yolk–shell nanospheres as a high-performance anode material for lithium ion batteries.Nanoscale, 2014, 6(6): 3217–3222
https://doi.org/10.1039/C3NR06452B pmid: 24500178
19 L, Yang T, Dai Y, Wang et al.. Chestnut-like SnO2/C nanocomposites with enhanced lithium ion storage properties.Nano Energy, 2016, 30: 885–891
https://doi.org/10.1016/j.nanoen.2016.08.060
20 J W, Park C M Park . Electrochemical Li topotactic reaction in layered SnP3 for superior Li-ion batteries.Scientific Reports, 2016, 6(1): 35980
https://doi.org/10.1038/srep35980 pmid: 27775090
21 C, Miao M, Liu Y, He et al.. Monodispersed SnO2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries.Energy Storage Materials, 2016, 3: 98–105
https://doi.org/10.1016/j.ensm.2016.01.006
22 B, Zhang J, Huang J Kim . Ultrafine amorphous SnOx embedded in carbon nanofiber/carbon nanotube composites for Li-ion and Na-ion batteries.Advanced Functional Materials, 2015, 25(32): 5222–5228
https://doi.org/10.1002/adfm.201501498
23 Z, Yi X, Tian Q, Han et al.. Synthesis of polygonal Co3Sn2 nanostructure with enhanced magnetic properties.RSC Advances, 2016, 6(46): 39818–39822
https://doi.org/10.1039/C6RA05077H
24 M G, Kim S, Sim J Cho . Novel core–shell Sn–Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction.Advanced Materials, 2010, 22(45): 5154–5158
https://doi.org/10.1002/adma.201002480 pmid: 20941795
25 Z, Yi X, Tian Q, Han et al.. One-step synthesis of Ni3Sn2@reduced graphene oxide composite with enhanced electrochemical lithium storage properties.Electrochimica Acta, 2016, 192: 188–195
https://doi.org/10.1016/j.electacta.2016.01.204
26 Y L, Ding Y, Wen Aken P A, van et al.. Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage.Nanoscale, 2014, 6(19): 11411–11418
https://doi.org/10.1039/C4NR03395G pmid: 25148613
27 L, Xu C, Kim A K, Shukla et al.. Monodisperse Sn nanocrystals as a platform for the study of mechanical damage during electrochemical reactions with Li.Nano Letters, 2013, 13(4): 1800–1805
https://doi.org/10.1021/nl400418c pmid: 23477483
28 C, Zhu X, Xia J, Liu et al.. TiO2 nanotube@SnO2 nanoflake core–branch arrays for lithium-ion battery anode.Nano Energy, 2014, 4: 105–112
https://doi.org/10.1016/j.nanoen.2013.12.018
29 Y, Duan S, Du H, Tao et al.. Sn@C composite for lithium ion batteries: amorphous vs.crystalline structures. Ionics, 2021, 27(4): 1403–1412
https://doi.org/10.1007/s11581-021-03906-4
30 Y, Xu Q, Liu Y, Zhu et al.. Uniform nano-Sn/C composite anodes for lithium ion batteries.Nano Letters, 2013, 13(2): 470–474
https://doi.org/10.1021/nl303823k pmid: 23282084
31 D, Nam J, Kim J, Lee et al.. Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(20): 11021–11030
https://doi.org/10.1039/C5TA00884K
32 L, Sun X, Wang R, Susantyoko et al.. High performance binder-free Sn coated carbon nanotube array anode.Carbon, 2015, 82: 282–287
https://doi.org/10.1016/j.carbon.2014.10.072
33 B, Luo T, Qiu D, Ye et al.. Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage.Nano Energy, 2016, 22: 232–240
https://doi.org/10.1016/j.nanoen.2016.02.024
34 G, Ma W, Yang C, Xu et al.. Nitrogen-doped porous carbon embedded Sn/SnO nanoparticles as high-performance lithium-ion battery anode.Electrochimica Acta, 2022, 428: 140898
https://doi.org/10.1016/j.electacta.2022.140898
35 Z, Zhu S, Wang J, Du et al.. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries.Nano Letters, 2014, 14(1): 153–157
https://doi.org/10.1021/nl403631h pmid: 24328829
36 S, Kang X, Li C, Yin et al.. Three-dimensional mesoporous sandwich-like g-C3N4-interconnected CuCo2O4 nanowires arrays as ultrastable anode for fast lithium storage.Journal of Colloid and Interface Science, 2019, 554: 269–277
https://doi.org/10.1016/j.jcis.2019.06.091 pmid: 31301527
37 Y, Zuo X, Xu C, Zhang et al.. SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution.Electrochimica Acta, 2020, 349: 136369
https://doi.org/10.1016/j.electacta.2020.136369
38 D, Adekoya M, Li M, Hankel et al.. Design of a 1D/2D C3N4/rGO composite as an anode material for stable and effective potassium storage.Energy Storage Materials, 2020, 25: 495–501
https://doi.org/10.1016/j.ensm.2019.09.033
39 W, Zou B, Deng X, Hu et al.. Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution.Applied Catalysis B: Environmental, 2018, 238: 111–118
https://doi.org/10.1016/j.apcatb.2018.07.022
40 H, Jin X, Liu Y, Jiao et al.. Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution.Nano Energy, 2018, 53: 690–697
https://doi.org/10.1016/j.nanoen.2018.09.046
41 R, Kennedy K, Marr O Ezekoye . Gas release rates and properties from lithium cobalt oxide lithium ion battery arrays.Journal of Power Sources, 2021, 487: 229388
https://doi.org/10.1016/j.jpowsour.2020.229388
42 G, Zeng Y, Deng X, Yu et al.. Ultrathin g-C3N4 as a hole extraction layer to boost sunlight-driven water oxidation of BiVO4-based photoanode.Journal of Power Sources, 2021, 494: 229701
https://doi.org/10.1016/j.jpowsour.2021.229701
43 W, Zhao J, Wang R, Yin et al.. Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries.Journal of Colloid and Interface Science, 2020, 564: 28–36
https://doi.org/10.1016/j.jcis.2019.12.102 pmid: 31896425
44 S, Vinoth K, Subramani W J, Ong et al.. CoS2 engulfed ultra-thin S-doped g-C3N4 and its enhanced electrochemical performance in hybrid asymmetric supercapacitor.Journal of Colloid and Interface Science, 2021, 584: 204–215
https://doi.org/10.1016/j.jcis.2020.09.071 pmid: 33069019
45 S, Wang Y, Shi C, Fan et al.. Layered g-C3N4@reduced graphene oxide composites as anodes with improved rate performance for lithium-ion batteries.ACS Applied Materials & Interfaces, 2018, 10(36): 30330–30336
https://doi.org/10.1021/acsami.8b09219 pmid: 30117734
46 Y, Hou J, Li Z, Wen et al.. N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries.Nano Energy, 2014, 8: 157–164
https://doi.org/10.1016/j.nanoen.2014.06.003
47 B, Zhang Y, Yu Z, Huang et al.. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles.Energy & Environmental Science, 2012, 5(12): 9895–9902
https://doi.org/10.1039/c2ee23145j
48 H, Hu Q, Li L, Li et al.. Laser irradiation of electrode materials for energy storage and conversion.Matter, 2020, 3(1): 95–126
https://doi.org/10.1016/j.matt.2020.05.001
49 C, Xu W, Yang G, Ma et al.. Edge-nitrogen enriched porous carbon nanosheets anodes with enlarged interlayer distance for fast charging sodium-ion batteries.Small, 2022, 18(48): 2204375
https://doi.org/10.1002/smll.202204375 pmid: 36269880
50 Y, Li W, Yang Z, Tu et al.. Water-soluble salt-templated strategy to regulate mesoporous nanosheets-on-network structure with active mixed-phase CoO/Co3O4 nanosheets on graphene for superior lithium storage.Journal of Alloys and Compounds, 2021, 857: 157626
https://doi.org/10.1016/j.jallcom.2020.157626
51 J, Qin C, He N, Zhao et al.. Graphene networks anchored with sn@graphene as lithium ion battery anode.ACS Nano, 2014, 8(2): 1728–1738
https://doi.org/10.1021/nn406105n pmid: 24400945
52 T, Yang J, Zhong J, Liu et al.. A general strategy for antimony-based alloy nanocomposite embedded in Swiss-cheese-like nitrogen-doped porous carbon for energy storage.Advanced Functional Materials, 2021, 31(13): 2009433
https://doi.org/10.1002/adfm.202009433
53 J, Liu Y, Zhang L, Zhang et al.. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries.Advanced Materials, 2019, 31(24): 1901261
https://doi.org/10.1002/adma.201901261
54 W, Zhang J, Yin M, Sun et al.. Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries.Advanced Materials, 2020, 32(25): 2000732
https://doi.org/10.1002/adma.202000732 pmid: 32410270
55 D, Qin L, Wang X, Zeng et al.. Tailored edge-heteroatom tri-doping strategy of turbostratic carbon anodes for high-rate performance lithium and sodium-ion batteries.Energy Storage Materials, 2023, 54: 498–507
https://doi.org/10.1016/j.ensm.2022.10.049
56 W, Tian H, Zhang X, Duan et al.. Porous carbons: structure-oriented design and versatile applications.Advanced Functional Materials, 2020, 30(17): 1909265
https://doi.org/10.1002/adfm.201909265
57 D H, Youn A, Heller C B Mullins . Simple synthesis of nanostructured Sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode.Chemistry of Materials, 2016, 28(5): 1343–1347
https://doi.org/10.1021/acs.chemmater.5b04282
58 Y, Cheng Z, Yi C, Wang et al.. Controllable fabrication of C/Sn and C/SnO/Sn composites as anode materials for high-performance lithium-ion batteries.Chemical Engineering Journal, 2017, 330: 1035–1043
https://doi.org/10.1016/j.cej.2017.08.066
59 H, Ying S, Zhang Z, Meng et al.. Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(18): 8334–8342
https://doi.org/10.1039/C7TA01480E
60 X, Chang T, Wang Z, Liu et al.. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries.Nano Research, 2017, 10(6): 1950–1958
https://doi.org/10.1007/s12274-016-1381-6
61 M G, Park D H, Lee H, Jung et al.. Sn-based nanocomposite for Li-ion battery anode with high energy density, rate capability, and reversibility.ACS Nano, 2018, 12(3): 2955–2967
https://doi.org/10.1021/acsnano.8b00586 pmid: 29505237
62 X, Liu X, Li J, Yu et al.. Ultrasmall Sn nanoparticles embedded in N-doped carbon nanospheres as long cycle life anode for lithium ion batteries.Materials Letters, 2018, 223: 203–206
https://doi.org/10.1016/j.matlet.2018.04.043
63 R, Mo X, Tan F, Li et al.. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities.Nature Communications, 2020, 11(1): 1374
https://doi.org/10.1038/s41467-020-14859-z pmid: 32170134
64 C, Xu G, Ma W, Yang et al.. One-step reconstruction of acid treated spent graphite for high capacity and fast charging lithium-ion batteries.Electrochimica Acta, 2022, 415: 140198
https://doi.org/10.1016/j.electacta.2022.140198
65 L, Zhu Y, Wang M, Wang et al.. High edge-nitrogen-doped porous carbon nanosheets with rapid pseudocapacitive mechanism for boosted potassium-ion storage.Carbon, 2022, 187: 302–309
https://doi.org/10.1016/j.carbon.2021.11.021
[1] FMS-23651-OF-Xc_suppl_1 Download
[1] Junhai Wang, Jiandong Zheng, Liping Gao, Qingshan Dai, Sang Woo Joo, Jiarui Huang. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage[J]. Front. Mater. Sci., 2023, 17(3): 230654-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed