Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (3) : 230654    https://doi.org/10.1007/s11706-023-0654-8
RESEARCH ARTICLE
Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage
Junhai Wang1, Jiandong Zheng1(), Liping Gao1, Qingshan Dai2, Sang Woo Joo3(), Jiarui Huang2()
1. School of Material and Chemical Engineering, Chuzhou University, Chuzhou 239000, China
2. Key Laboratory of Functional Molecular Solids of the Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
3. School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
 Download: PDF(5288 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nitrogen-doped carbon-coated hollow SnS2/NiS (SnS2/NiS@N–C) microflowers were obtained using NiSn(OH)6 nanospheres as the template via a solvent-thermal method followed by the polydopamine coating and carbonization process. When served as an anode material for lithium-ion batteries, such hollow SnS2/NiS@N–C microflowers exhibited a capacity of 403.5 mAh·g−1 at 2.0 A·g−1 over 200 cycles and good rate performance. The electrochemical reaction kinetics of this anode was analyzed, and the morphologies and structures of anode materials after the cycling test were characterized. The high stability and good rate performance were mainly due to bimetallic synergy, hollow micro/nanostructure, and nitrogen-doped carbon layers. The revealed excellent electrochemical energy storage properties of hollow SnS2/NiS@N–C microflowers in this study highlight their potential as the anode material.

Keywords SnS2      NiS      microflower      hollow structure      nitrogen-doped carbon      anode      lithium-ion battery     
Corresponding Author(s): Jiandong Zheng,Sang Woo Joo,Jiarui Huang   
Issue Date: 24 July 2023
 Cite this article:   
Junhai Wang,Jiandong Zheng,Liping Gao, et al. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage[J]. Front. Mater. Sci., 2023, 17(3): 230654.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0654-8
https://academic.hep.com.cn/foms/EN/Y2023/V17/I3/230654
Fig.1  Schematic diagram of the preparation process for hollow SnS2/NiS@N–C microflowers.
Fig.2  (a) The XRD pattern of NiSn(OH)6 nanospheres. (b) XRD patterns of hollow SnS2/NiS and SnS2/NiS@N–C microflowers.
Fig.3  (a) SEM and (b) TEM images of NiSn(OH)6 nanospheres. (c) SEM and (d) TEM images of hollow SnS2/NiS microflowers. (e) SEM and (f) TEM images of hollow SnS2/NiS@N–C microflowers. (g) HRTEM image and (h) SAED pattern of hollow SnS2/NiS@N–C microflowers.
Fig.4  (a) The TGA curve of hollow SnS2/NiS@N–C microflowers. (b) Raman spectra of hollow SnS2/NiS and SnS2/NiS@N–C microflowers. N2 adsorption/desorption isotherms of (c) hollow SnS2/NiS and (d) SnS2/NiS@N–C microflowers (insets are the corresponding pore-size distribution curves).
Fig.5  XPS spectra of hollow SnS2/NiS@N–C microflowers: (a) survey, (b) Ni 2p, (c) Sn 3d, (d) S 2p, (e) C 1s, and (f) N 1s spectra.
Fig.6  (a) Initial five CV curves of the hollow SnS2/NiS@N–C microflower anode at a scan rate of 0.1 mV·s?1. (b) Charge/discharge profiles for the 1st, 2nd, 50th, 100th, and 200th cycles at a current density of 0.2 A·g?1. (c) Cycling performance of the hollow SnS2/NiS@N–C microflower anode at 0.2 A·g?1. (d) Rate performance of hollow SnS2/NiS@N–C and SnS2/NiS microflower anodes at various current densities. (e) Cycling performance of hollow SnS2/NiS@N–C and SnS2/NiS microflower anodes at 2.0 A·g?1.
Fig.7  (a) CV curves of the hollow SnS2/NiS@N–C microflower anode at different scan rates ranging from 0.1 to 1.0 mV·s?1. (b) Plots of lgi versus lgv for two peaks. (c) The CV curve with the pseudocapacitive fraction shown by the red region at a scan rate of 1.0 mV·s?1. (d) Capacitive contribution ratios at different scan rates for the hollow SnS2/NiS@N–C microflower anode.
1 Y, Ding P, Cai Z Wen . Electrochemical neutralization energy: from concept to devices.Chemical Society Reviews, 2021, 50(3): 1495–1511
https://doi.org/10.1039/D0CS01239D
2 Z Y, Pang H Z, Zhang L, Wang et al.. Towards safe lithium‒sulfur batteries from liquid-state electrolyte to solid-state electrolyte.Frontiers of Materials Science, 2023, 17(1): 230630
https://doi.org/10.1007/s11706-023-0630-3
3 Z Y, Ma Q B, Wang Y H, Wang et al.. High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure.Frontiers of Materials Science, 2022, 16(4): 220624
https://doi.org/10.1007/s11706-022-0624-6
4 Y Y, Zhou Z Y, Zhang H Z, Zhang et al.. Progress and perspective of vanadium-based cathode materials for lithium ion batteries.Tungsten, 2021, 3(3): 279–288
https://doi.org/10.1007/s42864-021-00101-w
5 A I, Inamdar B, Hou H S, Chavan et al.. Copper cobalt tin sulphide (Cu2CoSnS4) anodes synthesised using a chemical route for stable and efficient rechargeable lithium-ion batteries.Dalton Transactions, 2022, 51(38): 14535–14544
https://doi.org/10.1039/D2DT01966C
6 X J, Wei Y B, Zhang B K, Zhang et al.. Yolk–shell-structured zinc‒cobalt binary metal sulfide @ N-doped carbon for enhanced lithium-ion storage.Nano Energy, 2019, 64: 103899
https://doi.org/10.1016/j.nanoen.2019.103899
7 X X, Yang C J, He Y L, Hou et al.. In-situ growth engineering of nano-sheets SnS2 on S-doped reduced graphene oxide for high lithium/sodium storage capacity.Journal of Electroanalytical Chemistry, 2022, 904: 115947
https://doi.org/10.1016/j.jelechem.2021.115947
8 X, Dong Z P, Deng L H, Huo et al.. Large-scale synthesis of NiS@N and S co-doped carbon mesoporous tubule as high performance anode for lithium-ion battery.Journal of Alloys and Compounds, 2019, 788: 984–992
https://doi.org/10.1016/j.jallcom.2019.02.326
9 L Q, Yu S X, Zhao Q L, Wu et al.. Strengthening the interface between flower-like VS4 and porous carbon for improving its lithium storage performance.Advanced Functional Materials, 2020, 30(16): 2000427
https://doi.org/10.1002/adfm.202000427
10 Z J, Zhao Y G, Chao F, Wang et al.. Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage.Rare Metals, 2022, 41(4): 1245–1254
https://doi.org/10.1007/s12598-021-01850-w
11 S P, Zhang G, Wang B B, Wang et al.. 3D carbon nanotube network bridged hetero-structured Ni–Fe–S nanocubes toward high-performance lithium, sodium, and potassium storage.Advanced Functional Materials, 2020, 30(24): 2001592
https://doi.org/10.1002/adfm.202001592
12 Y, Fang D, Luan S, Gao et al.. Rational design and engineering of one-dimensional hollow nanostructures for efficient electrochemical energy storage.Angewandte Chemie International Edition, 2021, 60(37): 20102–20118
https://doi.org/10.1002/anie.202104401
13 Y, Zhang P X, Wang Y Y, Yin et al.. Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode.Carbon, 2019, 150: 378–387
https://doi.org/10.1016/j.carbon.2019.05.048
14 Y M, Lin Z Z, Qiu D Z, Li et al.. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries.Energy Storage Materials, 2018, 11: 67–74
https://doi.org/10.1016/j.ensm.2017.06.001
15 G Z, Fang Z X, Wu J, Zhou et al.. Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode.Advanced Energy Materials, 2018, 8(19): 1703155
https://doi.org/10.1002/aenm.201703155
16 Z Y, Wen C P, Gu Y J, Yin et al.. Ultra-thin N-doped carbon coated SnO2 nanotubes as anode material for high performance lithium-ion batteries.Applied Surface Science, 2021, 568: 150969
https://doi.org/10.1016/j.apsusc.2021.150969
17 H, Liu W, Lei Z, Tong et al.. Enhanced diffusion kinetics of Li ions in double-shell hollow carbon fibers.ACS Applied Materials & Interfaces, 2021, 13(21): 24604–24614
https://doi.org/10.1021/acsami.1c01222
18 L, Xue Y, Li W, Lin et al.. Electrochemical properties and facile preparation of hollow porous V2O5 microspheres for lithium-ion batteries.Journal of Colloid and Interface Science, 2023, 638: 231–241
https://doi.org/10.1016/j.jcis.2023.01.131
19 J R, Huang Q S, Dai Q A, Wu et al.. Preparation of hollow SnO2@N‒C nanospheres for high performance lithium-ion battery.Journal of Electroanalytical Chemistry, 2022, 922: 116741
https://doi.org/10.1016/j.jelechem.2022.116741
20 W L, Zhang Z Y, Huang H H, Zhou et al.. Facile synthesis of ZnS nanoparticles decorated on defective CNTs with excellent performances for lithium-ion batteries anode material.Journal of Alloys and Compounds, 2020, 816: 152633
https://doi.org/10.1016/j.jallcom.2019.152633
21 X Y, Han D L, Zhao W J, Meng et al.. Hollow tremella-like graphene sphere/SnO2 composite for high performance Li-ion battery anodes.Ceramics International, 2019, 45(13): 16244–16250
https://doi.org/10.1016/j.ceramint.2019.05.146
22 W, Li B, Huang Z, Liu et al.. NiS2 wrapped into graphene with strong Ni–O interaction for advanced sodium and potassium ion batteries.Electrochimica Acta, 2021, 369: 137704
https://doi.org/10.1016/j.electacta.2020.137704
23 Y L, Ji X M, Lu F Y, Luo et al.. Improved SnO2/C composite anode enabled by well-designed heterogeneous nanospheres decoration.Chemical Physics Letters, 2021, 763: 138242
https://doi.org/10.1016/j.cplett.2020.138242
24 F M, Chen Z L, Chen Z Y, Dai et al.. Self-templating synthesis of carbon-encapsulated SnO2 hollow spheres: a promising anode material for lithium-ion batteries.Journal of Alloys and Compounds, 2020, 816: 152495
https://doi.org/10.1016/j.jallcom.2019.152495
25 S, Guan T, Wang X, Fu et al.. Coherent SnS2/NiS2 hetero-nanosheet arrays with fast charge transfer for enhanced sodium-ion storage.Applied Surface Science, 2020, 508: 145241
https://doi.org/10.1016/j.apsusc.2019.145241
26 N A, Khan N, Rashid M, Junaid et al.. NiO/NiS heterostructures: an efficient and stable electrocatalyst for oxygen evolution reaction.ACS Applied Energy Materials, 2019, 2(5): 3587–3594
https://doi.org/10.1021/acsaem.9b00317
27 L C, Xue F M, Chen Z B, Zhang et al.. Fast charge transfer kinetics enabled by carbon-coated, heterostructured SnO2/SnSx arrays for robust, flexible lithium-ion batteries.Chem Electro Chem, 2022, 9(2): e202101327
https://doi.org/10.1002/celc.202101327
28 L, Xue Y, Li W, Lin et al.. Electrochemical properties and facile preparation of hollow porous V2O5 microspheres for lithium-ion batteries.Journal of Colloid and Interface Science, 2023, 638: 231–241
https://doi.org/10.1016/j.jcis.2023.01.131
29 C P, Wang Y Y, Zhang Y S, Li et al.. Construction of uniform SnS2/ZnS heterostructure nanosheets embedded in graphene for advanced lithium-ion batteries.Journal of Alloys and Compounds, 2020, 820: 153147
https://doi.org/10.1016/j.jallcom.2019.153147
30 R, Zhang C X, Lu Z L, Shi et al.. Hexagonal phase NiS octahedrons co-modified by 0D-, 1D-, and 2D carbon materials for high performance supercapacitor.Electrochimica Acta, 2019, 311: 83–91
https://doi.org/10.1016/j.electacta.2019.04.111
31 X, Wang X, Li Q, Li et al.. Improved electrochemical performance based on nanostructured SnS2@CoS2‒rGO composite anode for sodium-ion batteries.Nano-Micro Letters, 2018, 10(3): 46
https://doi.org/10.1007/s40820-018-0200-x
32 D L, Zhang H Y, Mou F, Lu et al.. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting.Applied Catalysis B: Environmental, 2019, 254: 471–478
https://doi.org/10.1016/j.apcatb.2019.05.029
33 W L, Li Z, Chen J M, Hou et al.. SnO2 nano-crystals anchored on N-doped porous carbon with enhanced lithium storage properties.Applied Surface Science, 2020, 515: 145902
https://doi.org/10.1016/j.apsusc.2020.145902
34 M, Xiang J, Li S, Feng et al.. Synergistic capture and conversion of polysulfides in cathode composites with multidimensional framework structures.Journal of Colloid and Interface Science, 2022, 624: 471–481
https://doi.org/10.1016/j.jcis.2022.05.118
35 J J, Li X Y, Li X, Fan et al.. Holey graphene anchoring of the monodispersed nano-sulfur with covalently-grafted polyaniline for lithium sulfur batteries.Carbon, 2022, 188: 155–165
https://doi.org/10.1016/j.carbon.2021.11.037
36 Y J, Ren G Q, Zhang J H, Huo et al.. Flower-like TiO2 hollow microspheres with mixed-phases for high-pseudocapacitive lithium storage.Journal of Alloys and Compounds, 2022, 902: 163730
https://doi.org/10.1016/j.jallcom.2022.163730
37 S Q, Feng J F, Wang N S, Gao et al.. Heterogeneous interface of Ni–Mn composite Prussian blue analog-coated structure modulates the adsorption and conversion of polysulfides in lithium‒sulfur batteries.Electrochimica Acta, 2022, 433: 141218
https://doi.org/10.1016/j.electacta.2022.141218
38 T, Deepalakshmi T T, Nguyen N H, Kim et al.. Rational design of ultrathin 2D tin nickel selenide nanosheets for high-performance flexible supercapacitors.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(42): 24462–24476
https://doi.org/10.1039/C9TA08677C
39 H H, Dai Y, Zhao Z, Zhang et al.. Ostwald ripening and sulfur escaping enabled chrysanthemum-like architectures composed of NiS2/NiS@C heterostructured petals with enhanced charge storage capacity and rate capability.Journal of Electroanalytical Chemistry, 2022, 921: 116671
https://doi.org/10.1016/j.jelechem.2022.116671
40 X L, Yu C M, Chen R X, Li et al.. Construction of SnS2@MoS2@rGO heterojunction anode and their half/full sodium ion storage performances.Journal of Alloys and Compounds, 2022, 896: 162784
https://doi.org/10.1016/j.jallcom.2021.162784
41 S, Li Z, Zhao C, Li et al.. SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries.Nano-Micro Letters, 2019, 11(1): 14
https://doi.org/10.1007/s40820-019-0243-7
42 L S, Zhang Y P, Huang Y F, Zhang et al.. Flexible electrospun carbon nanofiber@NiS core/sheath hybrid membranes as binder-free anodes for highly reversible lithium storage.Advanced Materials Interfaces, 2016, 3(2): 1500467–1500476
https://doi.org/10.1002/admi.201500467
43 S J, Huang H P, Li G B, Xu et al.. Porous N-doped carbon sheets wrapped MnO in 3D carbon networks as high-performance anode for Li-ion batteries.Electrochimica Acta, 2020, 342: 136115
https://doi.org/10.1016/j.electacta.2020.136115
44 M, Xiang H Y, Zhang S Q, Feng et al.. Nitrogen-doped carbon–cobalt-modified MnO nanowires as cathodes for high-performance lithium sulfur batteries.Journal of Electroanalytical Chemistry, 2021, 900: 115721
https://doi.org/10.1016/j.jelechem.2021.115721
45 Y R, Pei M, Zhao Y P, Zhu et al.. VN nanoparticle-assembled hollow microspheres/N-doped carbon nanofibers: an anode material for superior potassium storage.Nano Materials Science, 2022, 4(2): 104–112
https://doi.org/10.1016/j.nanoms.2021.06.007
46 D D, Han N R, Xiao B, Liu et al.. One-pot synthesis of core/shell structured NiS@onion-like carbon nanocapsule as a high-performance anode material for lithium-ion batteries.Materials Letters, 2017, 196: 119–122
https://doi.org/10.1016/j.matlet.2017.03.042
47 H, Li Y Y, He Y X, Dai et al.. Bimetallic SnS2/NiS2@S‒rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries.Chemical Engineering Journal, 2022, 427: 131784
https://doi.org/10.1016/j.cej.2021.131784
48 X, Ou L, Cao X, Liang et al.. Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability.ACS Nano, 2019, 13(3): 3666–3676
https://doi.org/10.1021/acsnano.9b00375
49 Y, Miao X, Zhao X, Wang et al.. Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries.Nano Research, 2020, 13(11): 3041–3047
https://doi.org/10.1007/s12274-020-2969-4
50 Z Q, Jia Z H, Cui Y B, Tan et al.. Bimetal-organic frameworks derived ternary metal sulphide nanoparticles embedded in porous carbon spheres/carbon nanotubes as high-performance lithium storage materials.Chemical Engineering Journal, 2019, 370: 89–97
https://doi.org/10.1016/j.cej.2019.03.162
51 L W, Su Z, Zhou X, Qin et al.. CoCO3 submicrocube/graphene composites with high lithium storage capability.Nano Energy, 2013, 2(2): 276–282
https://doi.org/10.1016/j.nanoen.2012.09.012
52 L, Yin R, Cheng Q, Song et al.. Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets composite as highly efficient anode for lithium ion batteries.Electrochimica Acta, 2019, 293: 408–418
https://doi.org/10.1016/j.electacta.2018.10.020
53 W, Deng X, Chen Z, Liu et al.. Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries.Journal of Power Sources, 2015, 277: 131–138
https://doi.org/10.1016/j.jpowsour.2014.12.006
54 S, Liu X, Zhang P, Yan et al.. Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries.ACS Nano, 2019, 13(8): 8854–8864
https://doi.org/10.1021/acsnano.9b02129
55 Q, Pan J, Xie S Y, Liu et al.. Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties.RSC Advances, 2013, 3(12): 3899–3906
https://doi.org/10.1039/c2ra22410k
56 J, Li X, Xu X, Yu et al.. Monodisperse CoSn and NiSn nanoparticles supported on commercial carbon as anode for lithium- and potassium-ion batteries.ACS Applied Materials & Interfaces, 2020, 12(4): 4414–4422
https://doi.org/10.1021/acsami.9b16418
57 H, Peng R, Li J, Hu et al.. Core‒shell Sn‒Ni‒Cu-alloy@carbon nanorods to array as three-dimensional anode by nano electrodeposition for high-performance lithium ion batteries.ACS Applied Materials & Interfaces, 2016, 8(19): 12221–12227
https://doi.org/10.1021/acsami.6b03383
58 T L, Nguyen D S, Kim J, Hur et al.. Ni–Sn-based hybrid composite anodes for high-performance lithium-ion batteries.Electrochimica Acta, 2018, 278: 25–32
https://doi.org/10.1016/j.electacta.2018.05.022
59 Y, Zhang P, Wang Y, Yin et al.. Heterostructured SnS‒ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries.Chemical Engineering Journal, 2019, 356: 1042–1051
https://doi.org/10.1016/j.cej.2018.09.131
60 C X, Xu K V, Manukyan R A, Adams et al.. One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries.Carbon, 2019, 142: 51–59
https://doi.org/10.1016/j.carbon.2018.10.016
61 Y, Ding W W, Wang M F, Bi et al.. CoTe nanorods/rGO composites as a potential anode material for sodium-ion storage.Electrochimica Acta, 2019, 313: 331–340
https://doi.org/10.1016/j.electacta.2019.05.047
62 B K, Cao Z Q, Liu C Y, Xu et al.. High-rate-induced capacity evolution of mesoporous C@SnO2@C hollow nanospheres for ultra-long cycle lithium-ion batteries.Journal of Power Sources, 2019, 414: 233–241
https://doi.org/10.1016/j.jpowsour.2019.01.001
[1] FMS-23654-OF-Wjh_suppl_1 Download
[1] Hang Chen, Xinghan Yuan, Hongmei Qin, Chuanxi Xiong. Highly reversible and long-lived zinc anode assisted by polymer-based hydrophilic coating[J]. Front. Mater. Sci., 2023, 17(4): 230668-.
[2] Junhai Wang, Jiandong Zheng, Liping Gao, Chunyu Meng, Jiarui Huang, Sang Woo Joo. SnO2 nanotubes with N-doped carbon coating for advanced Li-ion battery anodes[J]. Front. Mater. Sci., 2023, 17(4): 230663-.
[3] Yuzhe Zhang, Yuxi Liu, Lifei Lin, Man Zhou, Wang Zhang, Liwei Lin, Zhongyu Li, Yuanzhe Piao, Sun Ha Paek. Advanced flexible humidity sensors: structures, techniques, mechanisms and performances[J]. Front. Mater. Sci., 2023, 17(4): 230662-.
[4] Pin Chen, Siyuan Di, Weixin Xie, Zihan Li, Shukui Zhu. One-step synthesis of triazine-based covalent organic frameworks at room temperature for efficient photodegradation of bisphenol A under visible light irradiation[J]. Front. Mater. Sci., 2023, 17(4): 230661-.
[5] Chunfei Lv, Ranran Guo, Xiaojun Ma, Yujuan Qiu. Self-assembled dandelion-like NiS nanowires on biomass-based carbon aerogels as electrode material for hybrid supercapacitors[J]. Front. Mater. Sci., 2023, 17(3): 230652-.
[6] Chong Xu, Guang Ma, Wang Yang, Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li. Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries[J]. Front. Mater. Sci., 2023, 17(3): 230651-.
[7] Yechen Hu, Lin Zhang, Yafeng Huang, Xiufang Chen, Fengtao Chen, Wangyang Lu. Facile fabrication of superior antibacterial cotton fabric based on ZnO nanoparticles/quaternary ammonium salts hybrid composites and mechanism study[J]. Front. Mater. Sci., 2023, 17(2): 230643-.
[8] Hengxin Xu, Song Yang, Yufeng Chen, Junle Xiong, Shengtao Zhang, Fang Gao, Zhengyong Huang, Hongru Li. A diluent protective organic additive electrolyte of hydrophilic hyperbranched polyester for long-life reversible aqueous zinc manganese oxide batteries[J]. Front. Mater. Sci., 2023, 17(2): 230639-.
[9] Zhiyuan MA, Qingbing WANG, Yuhua WANG, Zhaolong LI, Hong ZHANG, Zhicheng LI. High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure[J]. Front. Mater. Sci., 2022, 16(4): 220624-.
[10] Kevin VARGHESE, Dona Susan BAJI, Shantikumar NAIR, Dhamodaran SANTHANAGOPALAN. Conducting polymer PEDOT:PSS coated Co3O4 nanoparticles as the anode for sodium-ion battery applications[J]. Front. Mater. Sci., 2022, 16(2): 220601-.
[11] Zhenxiao LU, Zixiao ZHAO, Guangyin LIU, Xiaodi LIU, Renzhi YANG. Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries[J]. Front. Mater. Sci., 2022, 16(1): 220593-.
[12] Yun LI, Wang YANG, Hanlin LIU, Zhiqiang TU, Sai CHE, Bo JIANG, Chong XU, Guang MA, Guoyong HUANG, Yongfeng LI. Template-mediated strategy to regulate hierarchically nitrogen--sulfur co-doped porous carbon as superior anode material for lithium capacity[J]. Front. Mater. Sci., 2022, 16(1): 220584-.
[13] Yishan WANG, Xueqian ZHANG, Fanpeng MENG, Guangwu WEN. Stabilizing Co3O4 nanorods/N-doped graphene as advanced anode for lithium-ion batteries[J]. Front. Mater. Sci., 2021, 15(2): 216-226.
[14] Junqiang HUA, Hailiang CHU, Ying ZHU, Tingting FANG, Shujun QIU, Yongjin ZOU, Cuili XIANG, Kexiang ZHANG, Bin LI, Huanzhi ZHANG, Fen XU, Lixian SUN. Superior performance for lithium storage from an integrated composite anode consisting of SiO-based active material and current collector[J]. Front. Mater. Sci., 2020, 14(3): 243-254.
[15] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed