Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (3) : 230652    https://doi.org/10.1007/s11706-023-0652-x
RESEARCH ARTICLE
Self-assembled dandelion-like NiS nanowires on biomass-based carbon aerogels as electrode material for hybrid supercapacitors
Chunfei Lv, Ranran Guo, Xiaojun Ma(), Yujuan Qiu
College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, China
 Download: PDF(7473 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon aerogels derived from biomass have low specific capacity due to the underutilized structure, limiting their application in high-performance supercapacitors. In this work, the hierarchical nickel sulfide/carbon aerogels from liquefied wood (LWCA-NiS) were synthesized via a simple two-step hydrothermal method. Benefitting from the unique 3D coral-like network structure of LWCA, self-assembled NiS nanowires with the dandelion-like structure showed high specific surface (389.1 m2·g−1) and hierarchical pore structure, which increased affluent exposure of numerous active sites and structural stability, causing superior energy storage performance. As expected, LWCA-NiS displayed high specific capacity (131.5 mAh·g−1 at 1 A·g−1), good rate performance, and highly reversible and excellent cycle stability (13.1% capacity fading after 5000 cycles) in the electrochemical test. Furthermore, a symmetrical supercapacitor using LWCA-NiS-10 as the electrode material delivered an energy density of 12.7 Wh·kg−1 at 299.85 W·kg−1. Therefore, the synthesized LWCA-NiS composite was an economical and sustainable candidate for the electrodes of high-performance supercapacitors.

Keywords carbon aerogel      liquefied wood      NiS      self-assembly      electrochemistry     
Corresponding Author(s): Xiaojun Ma   
Issue Date: 14 July 2023
 Cite this article:   
Chunfei Lv,Ranran Guo,Xiaojun Ma, et al. Self-assembled dandelion-like NiS nanowires on biomass-based carbon aerogels as electrode material for hybrid supercapacitors[J]. Front. Mater. Sci., 2023, 17(3): 230652.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0652-x
https://academic.hep.com.cn/foms/EN/Y2023/V17/I3/230652
  Scheme1 Schematic illustration of the preparation of LWCA-NiS.
Fig.1  SEM images of (a) LWCA, (b) LWCA-NiS-4, (c) LWCA-NiS-7, (d) LWCA-NiS-10, and (e) LWCA-NiS-13. (f)(g)(h)(i) Elemental mappings of C, S, and Ni of LWCA-NiS-10.
Fig.2  (a) FTIR spectra, (b) XRD patterns, (c) Raman spectra, (d) Nitrogen adsorption?desorption isotherms, and (e) pore size distributions of LWCA and LWCA-NiS-10. (f) Element distribution diagrammatic sketch. (g) C 1s, (h) Ni 2p, and (i) S 2p spectra of LWCA-NiS-x.
Fig.3  (a) CV curves of different samples. (b) Discharge time curves at the current density of 1 A·g?1. (c) Specific capacities of different samples. (d) CV curves of different scanning rates. (e) The logarithm plot of the peak current as a function of the scanning rate. (f) Percentage capacitive contributions obtained at different scanning rates of 5, 10, 30, 50, 70, and 100 mV·s?1. (g) GCD curves at different current densities. (h) Nyquist plots of all samples. (i) Cycle stability at the current density of 1 A·g?1.
MaterialPotential window/VElectrolyteSpecific capacity/(mAh·g?1)Cycle stabilityRef.
NiS/rGO0–0.5 (SCE)2.0 mol·L?1 KOH99.4@1 A·g?180.9%@2000 cycles[9]
MoS2@Ni/Co-S0?0.4 (SCE)6.0 mol·L?1 KOH109.8@1 A·g?185.4%@5000 cycles[37]
Ni(OH)2/SnS2@CC0?0.5 (Hg/HgO)6.0 mol·L?1 KOH126.6@1 A·g?180.5%@1000 cycles[38]
NiS/CNFs0?0.5 (Hg/HgO)6.0 mol·L?1 KOH133.3@1 A·g?182.5%@5000 cycles[39]
LWCA-NiS0?0.4 (Hg/HgO)6.0 mol·L?1 KOH131.5@1 A·g?186.9%@5000 cyclesthis work
Tab.1  Comparison of electrochemical performance of NiS-based electrodes with different morphologies in anterior reports under the three-electrode system
Fig.4  (a) CV curves of the LWCA-NiS-10 symmetrical supercapacitor device at different potential windows at 100 mV·s?1. (b) CV curves at different scanning rates. (c) GCD curves at different current densities. (d) Nyquist plot of the symmetrical supercapacitor. (e) Ragone plot. (f) Cycle stability at 5 A·g?1.
1 F, Li L, Xie G, Sun et al.. Resorcinol-formaldehyde based carbon aerogel: preparation, structure and applications in energy storage devices.Microporous and Mesoporous Materials, 2019, 279: 293–315
https://doi.org/10.1016/j.micromeso.2018.12.007
2 Q, Cao Y, Zhang J, Chen et al.. Electrospun biomass based carbon nanofibers as high-performance supercapacitors.Industrial Crops and Products, 2020, 148: 112181
https://doi.org/10.1016/j.indcrop.2020.112181
3 Y, Zhang H, Chen S, Wang et al.. A new lamellar larch-based carbon material: fabrication, electrochemical characterization and supercapacitor applications.Industrial Crops and Products, 2020, 148: 112306
https://doi.org/10.1016/j.indcrop.2020.112306
4 N N, Loganathan V, Perumal B R, Pandian et al.. Recent studies on polymeric materials for supercapacitor development.Journal of Energy Storage, 2022, 49: 104149
https://doi.org/10.1016/j.est.2022.104149
5 Y, Shao M F, El-Kady J, Sun et al.. Design and mechanisms of asymmetric supercapacitors.Chemical Reviews, 2018, 118(18): 9233–9280
https://doi.org/10.1021/acs.chemrev.8b00252
6 Y, Gao L Zhao . Review on recent advances in nanostructured transition-metal–sulfide-based electrode materials for cathode materials of asymmetric supercapacitors.Chemical Engineering Journal, 2022, 430: 132745
https://doi.org/10.1016/j.cej.2021.132745
7 L, Lu Q, Xu Y, Chen et al.. Preparation of metal sulfide electrode materials derived based on metal organic framework and application of supercapacitors.Journal of Energy Storage, 2022, 49: 104073
https://doi.org/10.1016/j.est.2022.104073
8 Darsara S, Azizi M, Seifi M B, Askari et al.. Hierarchical 3D starfish-like Ni3S4–NiS on reduced graphene oxide for high-performance supercapacitors.Ceramics International, 2021, 47(15): 20992–20998
https://doi.org/10.1016/j.ceramint.2021.04.099
9 D, Zhang S, Gao J, Zhang et al.. Facile solid-phase synthesis of layered NiS/rGO nanocomposite for high-performance hybrid supercapacitor.Journal of Power Sources, 2021, 514: 230590
https://doi.org/10.1016/j.jpowsour.2021.230590
10 Y, Hsu A, Mondal Y, Su et al.. Highly hydrophilic electrodeposited NiS/Ni3S2 interlaced nanosheets with surface-enriched Ni3+ sites as binder-free flexible cathodes for high-rate hybrid supercapacitors.Applied Surface Science, 2022, 579: 151923
https://doi.org/10.1016/j.apsusc.2021.151923
11 J, Zhang D, Zhang B, Yang et al.. Targeted synthesis of NiS and NiS2 nanoparticles for high-performance hybrid supercapacitor via a facile green solid-phase synthesis route.Journal of Energy Storage, 2020, 32: 101852
https://doi.org/10.1016/j.est.2020.101852
12 B, Huang J, Yuan Y, Lu et al.. Hollow nanospheres comprising amorphous NiMoS4 and crystalline NiS2 for all-solid-state supercapacitors.Chemical Engineering Journal, 2022, 436: 135231
https://doi.org/10.1016/j.cej.2022.135231
13 T, Yu X, Lei H, Chen et al.. Conductive hydrogels with 2D/2D β-NiS/Ti3C2TX heterostructure for high-performance supercapacitor electrode materials.Ceramics International, 2022, 48(1): 1382–1393
https://doi.org/10.1016/j.ceramint.2021.09.224
14 X, Zhang Q, Lu H, Liu et al.. Nature-inspired design of NiS/carbon microspheres for high-performance hybrid supercapacitors.Applied Surface Science, 2020, 528: 146976
https://doi.org/10.1016/j.apsusc.2020.146976
15 Y, Zhang L, Zuo L, Zhang et al.. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors.Nano Research, 2016, 9(9): 2747–2759
https://doi.org/10.1007/s12274-016-1163-1
16 Q, Yin L, He J, Lian et al.. The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors.Carbon, 2019, 155: 147–154
https://doi.org/10.1016/j.carbon.2019.08.060
17 X, Ma F, Zhang J, Zhu et al.. Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution.Bioresource Technology, 2014, 164: 1–6
https://doi.org/10.1016/j.biortech.2014.04.050
18 C, Hsieh C, Chang S, Gupta et al.. Binder-free CoMn2O4/carbon nanotubes composite electrodes for high-performance asymmetric supercapacitor.Journal of Alloys and Compounds, 2022, 897: 163231
https://doi.org/10.1016/j.jallcom.2021.163231
19 D, Wang P Liu . Well-defined tetraaniline deposited graphene via mixed self-assembly for high-performance flexible supercapacitor application.Surfaces and Interfaces, 2022, 29: 101793
https://doi.org/10.1016/j.surfin.2022.101793
20 Z, Norouzi Najafi S H, Mahmoudi S A Mozaffari . Silver-loaded carbon sphere-in-rod 3D nano-architectures as electrode material for supercapacitors.Diamond and Related Materials, 2022, 121: 108734
https://doi.org/10.1016/j.diamond.2021.108734
21 Y, Ma J, Yin H, Liang et al.. A two step approach for making super capacitors from waste wood.Journal of Cleaner Production, 2021, 279: 123786
https://doi.org/10.1016/j.jclepro.2020.123786
22 C F, Lv X J Ma . Controllable preparation of hierarchical porous carbon aerogel from liquefied wood for supercapacitors.Journal of Materials Science, 2022, 57(3): 1947–1961
https://doi.org/10.1007/s10853-021-06653-z
23 X, Ma C, Ding D, Li et al.. A facile approach to prepare biomass-derived activated carbon hollow fibers from wood waste as high-performance supercapacitor electrodes.Cellulose, 2018, 25(8): 4743–4755
https://doi.org/10.1007/s10570-018-1903-3
24 S, Lv L, Ma X, Shen et al.. Potassium chloride-catalyzed growth of porous carbon nanotubes for high-performance supercapacitors.Journal of Alloys and Compounds, 2022, 906: 164242
https://doi.org/10.1016/j.jallcom.2022.164242
25 L, Huang S, Wang Y, Zhang et al.. Preparation of a N‒P co-doped waste cotton fabric-based activated carbon for supercapacitor electrodes.New Carbon Materials, 2021, 36(6): 1128–1135
https://doi.org/10.1016/S1872-5805(21)60054-9
26 C, Song K, Ren S, Long et al.. Preparation of activated carbon from unburned carbon in biomass fly ash and its supercapacitor performance.Journal of Fuel Chemistry & Technology, 2021, 49(12): 1936–1942
https://doi.org/10.1016/S1872-5813(21)60129-9
27 G, Jiang S, Osman R A, Senthil et al.. Hierarchically porous carbon derived from magnesium-based metal–organic frameworks as advanced active material for supercapacitor.Journal of Energy Storage, 2022, 49: 104071
https://doi.org/10.1016/j.est.2022.104071
28 J, Wang Y, Xu M, Yan et al.. Preparation and application of biomass-based porous carbon with S, N, Zn, and Fe heteroatoms loading for use in supercapacitors.Biomass and Bioenergy, 2022, 156: 106301
https://doi.org/10.1016/j.biombioe.2021.106301
29 T, Feng S, Wang Y, Hua et al.. Synthesis of biomass-derived N,O-codoped hierarchical porous carbon with large surface area for high-performance supercapacitor.Journal of Energy Storage, 2021, 44(Part A): 103286
https://doi.org/10.1016/j.est.2021.103286
30 H, Khammar A, Abdelwahab H S, Abdel-Samad et al.. Synergistic performance of simply fabricated polyaniline/carbon xerogel composite as supercapacitor electrode.Journal of Electroanalytical Chemistry, 2021, 880: 114848
https://doi.org/10.1016/j.jelechem.2020.114848
31 J, Shi X, Tian X, Li et al.. Micro/mesopore carbon spheres derived from sucrose for use in high performance supercapacitors.New Carbon Materials, 2021, 36(6): 1149–1155
https://doi.org/10.1016/S1872-5805(21)60044-6
32 X, Yang B, Fei J, Ma et al.. Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes.Carbohydrate Polymers, 2018, 180: 385–392
https://doi.org/10.1016/j.carbpol.2017.10.013
33 Y, Zhu H, Xu P, Chen et al.. Electrochemical performance of polyaniline-coated γ-MnO2 on carbon cloth as flexible electrode for supercapacitor.Electrochimica Acta, 2022, 413: 140146
https://doi.org/10.1016/j.electacta.2022.140146
34 X, Yang L, Kong J, Ma et al.. Facile construction of hierarchically porous carbon nanofiber aerogel for high-performance supercapacitor.Journal of Applied Electrochemistry, 2019, 49(3): 241–250
https://doi.org/10.1007/s10800-018-1270-7
35 H, Zhuo Y, Hu Z, Chen et al.. Cellulose carbon aerogel/PPy composites for high-performance supercapacitor.Carbohydrate Polymers, 2019, 215: 322–329
https://doi.org/10.1016/j.carbpol.2019.03.101
36 Z, Nie Y, Wang X, Li et al.. Heteroatom-doped hierarchical porous carbon from corn straw for high-performance supercapacitor.Journal of Energy Storage, 2021, 44(Part B): 103410
https://doi.org/10.1016/j.est.2021.103410
37 J S, Gao T T, Lian Z M, Liu et al.. 2D@3D MoS2@Ni/Co–S submicroboxes derived from prussian blue analogues for high performance supercapacitors.Journal of Alloys and Compounds, 2022, 901: 163558
https://doi.org/10.1016/j.jallcom.2021.163558
38 S D, Guan X L, Fu B, Zhang et al.. Cation-exchange-assisted formation of NiS/SnS2 porous nanowalls with ultrahigh energy density for battery–supercapacitor hybrid devices.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(6): 3300–3310
https://doi.org/10.1039/C9TA11517J
39 L R, Qiu W S, Yang Q, Zhao et al.. NiS nanoflake-coated carbon nanofiber electrodes for supercapacitors.ACS Applied Nano Materials, 2022, 5(5): 6192–6200
https://doi.org/10.1021/acsanm.2c00142
[1] FMS-23652-OF-Lcf_suppl_1 Download
[1] Yuzhe Zhang, Yuxi Liu, Lifei Lin, Man Zhou, Wang Zhang, Liwei Lin, Zhongyu Li, Yuanzhe Piao, Sun Ha Paek. Advanced flexible humidity sensors: structures, techniques, mechanisms and performances[J]. Front. Mater. Sci., 2023, 17(4): 230662-.
[2] Pin Chen, Siyuan Di, Weixin Xie, Zihan Li, Shukui Zhu. One-step synthesis of triazine-based covalent organic frameworks at room temperature for efficient photodegradation of bisphenol A under visible light irradiation[J]. Front. Mater. Sci., 2023, 17(4): 230661-.
[3] Junhai Wang, Jiandong Zheng, Liping Gao, Qingshan Dai, Sang Woo Joo, Jiarui Huang. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage[J]. Front. Mater. Sci., 2023, 17(3): 230654-.
[4] Chong Xu, Guang Ma, Wang Yang, Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li. Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries[J]. Front. Mater. Sci., 2023, 17(3): 230651-.
[5] Yechen Hu, Lin Zhang, Yafeng Huang, Xiufang Chen, Fengtao Chen, Wangyang Lu. Facile fabrication of superior antibacterial cotton fabric based on ZnO nanoparticles/quaternary ammonium salts hybrid composites and mechanism study[J]. Front. Mater. Sci., 2023, 17(2): 230643-.
[6] Fenglan CHEN, Xin LIU, Zhengya WANG, Shengnian TIE, Chang-An WANG. Hierarchically porous CMC/rGO/CNFs aerogels for leakage-proof mirabilite phase change materials with superior energy thermal storage[J]. Front. Mater. Sci., 2022, 16(4): 220619-.
[7] Ning CHEN, Sidi LI, Xueping LI, Lixia LONG, Xubo YUAN, Xin HOU, Jin ZHAO. Functionalization of PEG-PMPC-based polymers for potential theranostic applications[J]. Front. Mater. Sci., 2021, 15(2): 280-290.
[8] Qin LI, Min XING, Lan CHANG, Linlin MA, Zhi CHEN, Jianrong QIU, Jianding YU, Jiang CHANG. Upconversion luminescence Ca--Mg--Si bioactive glasses synthesized using the containerless processing technique[J]. Front. Mater. Sci., 2019, 13(4): 399-409.
[9] Vijaya KUMARI, Anuj MITTAL, Jitender JINDAL, Suprabha YADAV, Naveen KUMAR. S-, N- and C-doped ZnO as semiconductor photocatalysts: A review[J]. Front. Mater. Sci., 2019, 13(1): 1-22.
[10] Chi WANG, Kai LI, Xin SUN, Yi MEI, Xin SONG, Ping NING, Lina SUN. Surface characteristics of regenerative Fe-KOH/LSB catalysts for low-temperature catalytic hydrolysis of carbon disulfide and research of the surface regeneration mechanism[J]. Front. Mater. Sci., 2018, 12(4): 426-437.
[11] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic simulation on magnetic properties of Nd2Fe14B/α-Fe nanocomposites with Fe nanowires as the soft phase[J]. Front. Mater. Sci., 2018, 12(4): 348-353.
[12] Huan-Yan XU, Yuan WANG, Tian-Nuo SHI, Hang ZHAO, Qu TAN, Bo-Chao ZHAO, Xiu-Lan HE, Shu-Yan QI. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters[J]. Front. Mater. Sci., 2018, 12(1): 21-33.
[13] Huan-Yan XU, Yuan WANG, Tian-Nuo SHI, Hang ZHAO, Qu TAN, Bo-Chao ZHAO, Xiu-Lan HE, Shu-Yan QI. Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism[J]. Front. Mater. Sci., 2018, 12(1): 34-44.
[14] Stavros KATSIAOUNIS, Christina TIFLIDIS, Christina TSEKOURA, Emmanuel TOPOGLIDIS. Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cytochrome c[J]. Front. Mater. Sci., 2018, 12(1): 64-73.
[15] Jun WU, Chentian SHI, Yupeng ZHANG, Qiang FU, Chunxu PAN. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies[J]. Front. Mater. Sci., 2017, 11(4): 358-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed