Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (2) : 230643    https://doi.org/10.1007/s11706-023-0643-y
RESEARCH ARTICLE
Facile fabrication of superior antibacterial cotton fabric based on ZnO nanoparticles/quaternary ammonium salts hybrid composites and mechanism study
Yechen Hu, Lin Zhang, Yafeng Huang, Xiufang Chen(), Fengtao Chen(), Wangyang Lu
National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
 Download: PDF(10792 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the research for the safe and efficiently antibacterial cotton fabrics to minimize risk for human health, an organic–inorganic hybrid material of ZnO nanoparticles (NPs) and quaternary ammonium salt (QAS) was employed to modify cotton fabrics by a dipping–padding–drying method. The synergistic effects of ZnO NPs and QAS on the structure and antibacterial properties of cotton fabrics were studied in detail. Results displayed that the QAS and ZnO NPs were immobilized firmly in cotton fabric by the formation of chemical covalent bonds and silica gel structure. ZnO/QAS/cotton had a good inhibitory effect on the growth of E. coli and S. aureus, with superior antibacterial efficiency of >99.99%. ZnO/QAS/cotton preserved good mechanical property, water absorbability, and limpness. We also provided a detailed analysis of antibacterial mechanism for the hybrid materials. The contact mechanism and the Zn2+ release were considered as the main mechanisms for the ZnO/QAS/cotton, while the reactive oxygen species (ROS) generation only had a little contribution to the antibacterial activity. In short, the excellent integrated properties endowed the hybrid cotton fabrics as potential application in many fields, like healthcare, food packaging.

Keywords ZnO      quaternary ammonium salt      organic–inorganic hybrid material      antibacterial mechanism     
Corresponding Author(s): Xiufang Chen,Fengtao Chen   
About author:

*These authors equally shared correspondence to this manuscript.

Issue Date: 28 April 2023
 Cite this article:   
Yechen Hu,Lin Zhang,Yafeng Huang, et al. Facile fabrication of superior antibacterial cotton fabric based on ZnO nanoparticles/quaternary ammonium salts hybrid composites and mechanism study[J]. Front. Mater. Sci., 2023, 17(2): 230643.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0643-y
https://academic.hep.com.cn/foms/EN/Y2023/V17/I2/230643
Fig.1  The schematic diagram of the fabrication of ZnO/QAS/cotton.
Fig.2  XRD patterns of ZnO (a), cotton (b), ZnO/cotton (c), QAS/cotton (d), and ZnO/QAS/cotton (e).
Fig.3  (a) Survey XPS spectrum and high-resolution XPS spectra of (b) C 1s, (c) Zn 2p, (d) O 1s, (e) Si 2p, and (f) N 1s of ZnO/QAS/cotton.
Fig.4  SEM images of (a1)(a2)(a3) cotton, (b1)(b2)(b3) ZnO/cotton, (c1)(c2)(c3) QAS/cotton, and (d1)(d2)(d3) ZnO/QAS/cotton.
Fig.5  Static contact angle images of (a) cotton, (b) ZnO/cotton, (c) QAS/cotton, and (d) ZnO/QAS/cotton.
Fig.6  Antibacterial activities of various cotton fabrics against E. coli and S. aureus.
Fig.7  The antibacterial activities against E. coli by different antibacterial cotton fabrics at different times.
Fig.8  SEM images of E. coli on the cotton fabrics after antibacterial test for 18 h: (a)(b) cotton; (c)(d) ZnO/QAS/cotton.
Fig.9  Fluorescence merge images, and SYTO 9 and PI staining images in BacLight Live/Dead assay by different cotton fabrics after antibacterial test for 18 h.
Fig.10  The zeta potential plots of cotton, ZnO/cotton, QAS/cotton, and ZnO/QAS/cotton in saturated potassium chloride solution with pH = 7.0.
Fig.11  The effect of Zn2+ ions in ZnO/cotton and ZnO/QAS/cotton on the antibacterial activity.
Fig.12  Antibacterial ability of different antibacterial cotton fabrics for E. coli containing various ROS scavengers (control represents native cotton, and OS represents ZnO/QAS/cotton).
Fig.13  The effect of mechanical damage on antibacterial properties against (a) E. coli and (b) S. aureus.
Fig.14  The main antibacterial mechanisms diagram of ZnO/QAS/cotton.
Fig.15  (a) Strain–stress curves, (b) tensile stresses, (c) water absorbability values, (d) vapor transmission rates, and (e) limpness values of the antibacterial samples.
1 Z, Kpadeh-Rogers G L, Robinson H, Alserehi et al.. Effect of glove decontamination on bacterial contamination of healthcare personnel hands.Clinical Infectious Diseases, 2019, 69(Suppl 3): S224–S227
https://doi.org/10.1093/cid/ciz615 pmid: 31517972
2 S, Bhattacharjee R, Joshi M, Yasir et al.. Graphene- and nanoparticle-embedded antimicrobial and biocompatible cotton/silk fabrics for protective clothing.ACS Applied Bio Materials, 2021, 4(8): 6175–6185
https://doi.org/10.1021/acsabm.1c00508 pmid: 35006896
3 Y M, Ni G, Shen K H, Ng et al.. Rational construction of superhydrophobic PDMS/PTW@cotton fabric for efficient UV/NIR light shielding.Cellulose, 2022, 29(8): 4673–4685
https://doi.org/10.1007/s10570-022-04548-z
4 S Y, Nam M B, Hillyer B D, Condon et al.. Silver nanoparticle-infused cotton fiber: durability and aqueous release of silver in laundry water.Journal of Agricultural and Food Chemistry, 2020, 68(46): 13231–13240
https://doi.org/10.1021/acs.jafc.9b07531 pmid: 32286814
5 X J, Wang K K, Ma T, Goh et al.. Photocatalytic biocidal coatings featuring Zr6Ti4-based metal-organic frameworks.Journal of the American Chemical Society, 2022, 144(27): 12192–12201
https://doi.org/10.1021/jacs.2c03060 pmid: 35786901
6 X, Wang X G, Chen S, Cowling et al.. Polymer brushes tethered ZnO crystal on cotton fiber and the application on durable and washable UV protective clothing.Advanced Materials Interfaces, 2019, 6(14): 1900564
https://doi.org/10.1002/admi.201900564
7 A, Syafiuddin M A, Fulazzaky S, Salmiati et al.. Sticky silver nanoparticles and surface coatings of different textile fabrics stabilised by Muntingia calabura leaf extract.SN Applied Sciences, 2020, 2(4): 733
https://doi.org/10.1007/s42452-020-2534-5
8 S M, Imani L, Ladouceur T, Marshall et al.. Antimicrobial nanomaterials and coatings: current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2.ACS Nano, 2020, 14(10): 12341–12369
https://doi.org/10.1021/acsnano.0c05937 pmid: 33034443
9 Q B, Xu R L, Li L W, Shen et al.. Enhancing the surface affinity with silver nano-particles for antibacterial cotton fabric by coating carboxymethyl chitosan and L-cysteine.Applied Surface Science, 2019, 497: 143673
https://doi.org/10.1016/j.apsusc.2019.143673
10 Z H, Jing X, Liu Y, Du et al.. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites.Frontiers of Materials Science, 2020, 14(1): 1–13
https://doi.org/10.1007/s11706-020-0491-y
11 X, He Q C, Liu Y, Zhou et al.. Graphene oxide-silver/cotton fiber fabric with anti-bacterial and anti-UV properties for wearable gas sensors.Frontiers of Materials Science, 2021, 15(3): 406–415
https://doi.org/10.1007/s11706-021-0564-6
12 Q B, Xu P P, Duan Y Y, Zhang et al.. Double protect copper nanoparticles loaded on L-cysteine modified cotton fabric with durable antibacterial properties.Fibers and Polymers, 2018, 19(11): 2324–2334
https://doi.org/10.1007/s12221-018-8621-1
13 J L, Zhou H X, Xiang F, Zabihi et al.. Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity.Nano Research, 2019, 12(6): 1453–1460
https://doi.org/10.1007/s12274-019-2406-8
14 F Y, Fu B B, Yang X M, Hu et al.. Biomimetic synthesis of 3D Au-decorated chitosan nanocomposite for sensitive and reliable SERS detection.Chemical Engineering Journal, 2020, 392: 123693
https://doi.org/10.1016/j.cej.2019.123693
15 X N, Hu Y Y, Zhao Z J, Hu et al.. Gold nanorods core/AgPt alloy nanodots shell: a novel potent antibacterial nanostructure.Nano Research, 2013, 6(11): 822–835
https://doi.org/10.1007/s12274-013-0360-4
16 F, Fu J, Gu R, Zhang et al.. Three-dimensional cellulose based silver-functionalized ZnO nanocomposite with controlled geometry: synthesis, characterization and properties.Journal of Colloid and Interface Science, 2018, 530: 433–443
https://doi.org/10.1016/j.jcis.2018.07.009 pmid: 29990779
17 M K, Peng F Y, Hu M T, Du et al.. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities.Frontiers of Materials Science, 2020, 14(1): 14–23
https://doi.org/10.1007/s11706-020-0489-5
18 J Y, Zhang B, Zhang X F, Chen et al.. Antimicrobial bamboo materials functionalized with ZnO and graphene oxide nanocomposites.Materials, 2017, 10(3): 239
https://doi.org/10.3390/ma10030239 pmid: 28772597
19 A, Sirelkhatim S, Mahmud A, Seeni et al.. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism.Nano-Micro Letters, 2015, 7(3): 219–242
https://doi.org/10.1007/s40820-015-0040-x pmid: 30464967
20 B, Abebe E A, Zereffa A, Tadesse et al.. A review on enhancing the antibacterial activity of ZnO: mechanisms and microscopic investigation.Nanoscale Research Letters, 2020, 15(1): 190
https://doi.org/10.1186/s11671-020-03418-6 pmid: 33001404
21 I, Perelshtein A, Lipovsky N, Perkas et al.. The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties.Nano Research, 2015, 8(2): 695–707
https://doi.org/10.1007/s12274-014-0553-5
22 M, Yang J, Zhang Y H, Wei et al.. Recent advances in metal-organic framework-based materials for anti-Staphylococcus aureus infection.Nano Research, 2022, 15(7): 6220–6242
https://doi.org/10.1007/s12274-022-4302-x pmid: 35578616
23 C K, Kang S S, Kim S, Kim et al.. Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts.Carbohydrate Polymers, 2016, 151: 1012–1018
https://doi.org/10.1016/j.carbpol.2016.06.043 pmid: 27474649
24 S B, Zhang X H, Yang B, Tang et al.. New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine.Chemical Engineering Journal, 2018, 336: 123–132
https://doi.org/10.1016/j.cej.2017.10.168
25 D G, Gao Y J, Li B, Lyu et al.. Silicone quaternary ammonium salt based nanocomposite: a long-acting antibacterial cotton fabric finishing agent with good softness and air permeability.Cellulose, 2020, 27(2): 1055–1069
https://doi.org/10.1007/s10570-019-02832-z
26 A P, Hui R, Yan W B, Wang et al.. Incorporation of quaternary ammonium chitooligosaccharides on ZnO/palygorskite nanocomposites for enhancing antibacterial activities.Carbohydrate Polymers, 2020, 247: 116685
https://doi.org/10.1016/j.carbpol.2020.116685 pmid: 32829813
27 K R, Raghupathi R T, Koodali A C Manna . Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles.Langmuir, 2011, 27(7): 4020–4028
https://doi.org/10.1021/la104825u pmid: 21401066
28 Y, Liu J, Li L, Li et al.. Characterization and mechanism for the protection of photolytic decomposition of N-halamine siloxane coatings by titanium dioxide.ACS Applied Materials & Interfaces, 2016, 8(5): 3516–3523
https://doi.org/10.1021/acsami.5b12601 pmid: 26824841
29 A A, Bernardes C A, Emanuelli P, Cofferri et al.. Octadecyl-modified silicas obtained by non-hydrolytic condensation of a C18-hybrid silica sol on a silica surface.Journal of Non-Crystalline Solids, 2017, 466–467: 8–14
https://doi.org/10.1016/j.jnoncrysol.2017.03.033
30 I M, Sundaram S, Kalimuthu G Ponniah . Highly active ZnO modified g-C3N4 nanocomposite for dye degradation under UV and visible light with enhanced stability and antimicrobial activity.Composites Communications, 2017, 5: 64–71
https://doi.org/10.1016/j.coco.2017.07.003
31 Y, Lu Y L, Jia Y, Zhou et al.. Straightforward one-step solvent-free synthesis of the flame retardant for cotton with excellent efficiency and durability.Carbohydrate Polymers, 2018, 201: 438–445
https://doi.org/10.1016/j.carbpol.2018.08.078 pmid: 30241839
32 K P M, Tang C W, Kan J T, Fan et al.. Effect of softener and wetting agent on improving the flammability, comfort, and mechanical properties of flame-retardant finished cotton fabric.Cellulose, 2017, 24(6): 2619–2634
https://doi.org/10.1007/s10570-017-1268-z
33 P S, Mbule G H, Mhlongo S S, Pitale et al.. Sensitizing effects of ZnO quantum dots on red-emitting Pr3+-doped SiO2 phosphor.Physica B: Condensed Matter, 2012, 407(10): 1607–1610
https://doi.org/10.1016/j.physb.2011.09.097
34 M, He Y M, Zhou S X, Nie et al.. Synthesis of amphiphilic copolymers containing ciprofloxacin and amine groups and their antimicrobial performances as revealed by confocal laser-scanning microscopy and atomic-force microscopy.Journal of Agricultural and Food Chemistry, 2018, 66(31): 8406–8414
https://doi.org/10.1021/acs.jafc.8b01759 pmid: 30016099
35 H M, Mao B, Zhang Y L, Nie et al.. Enhanced antibacterial activity of V-doped ZnO@SiO2 composites.Applied Surface Science, 2021, 546: 149127
https://doi.org/10.1016/j.apsusc.2021.149127
36 S, Yang Y L, Nie B, Zhang et al.. Construction of Er-doped ZnO/SiO2 composites with enhanced antimicrobial properties and analysis of antibacterial mechanism.Ceramics International, 2020, 46(13): 20932–20942
https://doi.org/10.1016/j.ceramint.2020.05.149
37 A, Joe S H, Park K D, Shim et al.. Antibacterial mechanism of ZnO nanoparticles under dark conditions.Journal of Industrial and Engineering Chemistry, 2017, 45: 430–439
https://doi.org/10.1016/j.jiec.2016.10.013
38 Y Q, Zhao Z P, Xiu R N, Wu et al.. A near-infrared-responsive quaternary ammonium/gold nanorod hybrid coating with enhanced antibacterial properties.Advanced NanoBiomed Research, 2022, 2(11): 2200111
https://doi.org/10.1002/anbr.202200111
39 N D C, Pinto L M, Campos A C S, Evangelista et al.. Antimicrobial Annona muricata L.(soursop) extract targets the cell membranes of Gram-positive and Gram-negative bacteria. Industrial Crops and Products, 2017, 107: 332–340
https://doi.org/10.1016/j.indcrop.2017.05.054
40 Ojha S, Chandra C, Imtong K, Meetum et al.. Purification and characterization of the antibacterial peptidase lysostaphin from Staphylococcus simulans: adverse influence of Zn2+ on bacteriolytic activity.Protein Expression and Purification, 2018, 151: 106–112
https://doi.org/10.1016/j.pep.2018.06.013 pmid: 29944958
41 J W, Kang S S, Kim D H Kang . Inactivation dynamics of 222 nm krypton-chlorine excilamp irradiation on Gram-positive and Gram-negative foodborne pathogenic bacteria.Food Research International, 2018, 109: 325–333
https://doi.org/10.1016/j.foodres.2018.04.018 pmid: 29803456
42 S, Saidin M A, Jumat Amin N A A, Mohd et al.. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application.Materials Science and Engineering C, 2021, 118: 111382
https://doi.org/10.1016/j.msec.2020.111382 pmid: 33254989
43 B, Chishti Z A, Ansari S G Ansari . Engineered nano-ZnO: doping regulates dissolution and reactive oxygen species levels eliciting biocompatibility.Materials Today: Proceedings, 2021, 36: 626–630
https://doi.org/10.1016/j.matpr.2020.04.039
44 D Y, Chao Q, Dong J X, Chen et al.. Highly efficient disinfection based on multiple enzyme-like activities of Cu3P nanoparticles: a catalytic approach to impede antibiotic resistance.Applied Catalysis B: Environmental, 2022, 304: 121017
https://doi.org/10.1016/j.apcatb.2021.121017
45 C H, Hwang M H, Choi H E, Kim et al.. Reactive oxygen species-generating hydrogel platform for enhanced antibacterial therapy.NPG Asia Materials, 2022, 14(1): 72
https://doi.org/10.1038/s41427-022-00420-5
46 Y N, Tang H, Sun Z, Qin et al.. Bioinspired photocatalytic ZnO/Au nanopillar-modified surface for enhanced antibacterial and antiadhesive property.Chemical Engineering Journal, 2020, 398: 125575
https://doi.org/10.1016/j.cej.2020.125575
47 D G, Gao X Y, Duan C, Chen et al.. Synthesis of polymer quaternary ammonium salt containing epoxy group/nano ZnO long-acting antimicrobial coating for cotton fabrics.Industrial & Engineering Chemistry Research, 2015, 54(43): 10560–10567
https://doi.org/10.1021/acs.iecr.5b02509
48 J, Lin X Y, Chen C Y, Chen et al.. Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers.ACS Applied Materials & Interfaces, 2018, 10(7): 6124–6136
https://doi.org/10.1021/acsami.7b16235 pmid: 29356496
[1] FMS-23643-OF-Hyc_suppl_1 Download
[1] Yingze BAI, Xin DONG, Chuanyu GUO, Yingming XU, Bin WANG, Xiaoli CHENG. Spray synthesis of rapid recovery ZnO/polyaniline film ammonia sensor at room temperature[J]. Front. Mater. Sci., 2022, 16(4): 220620-.
[2] Liuyang HAN, Saisai ZHANG, Bo ZHANG, Bowen ZHANG, Yan WANG, Hari BALA, Zhanying ZHANG. The rapid detection for methane of ZnO porous nanoflakes with the decoration of Ag nanoparticles[J]. Front. Mater. Sci., 2021, 15(4): 621-631.
[3] Bharat BARUAH, Christopher KELLEY, Grace B. DJOKOTO, Kelly M. HARTNETT. Polymer-capped gold nanoparticles and ZnO nanorods form binary photocatalyst on cotton fabrics: Catalytic breakdown of dye[J]. Front. Mater. Sci., 2021, 15(3): 431-447.
[4] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
[5] Cuicui HU, Huanhuan ZHANG, Yanjun XING. Alkylamine-mediated synthesis and photocatalytic properties of ZnO[J]. Front. Mater. Sci., 2019, 13(1): 33-42.
[6] Yazi WANG, Wei LI, Yimeng FENG, Shasha LV, Mingyang LI, Zhengcao LI. Nitrogen ion irradiation effect on enhancing photocatalytic performance of CdTe/ZnO heterostructures[J]. Front. Mater. Sci., 2018, 12(4): 392-404.
[7] Zhenrong JIA, Xuefeng XIA, Xiaofeng WANG, Tengyi WANG, Guiying XU, Bei LIU, Jitong ZHOU, Fan LI. All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells[J]. Front. Mater. Sci., 2018, 12(3): 225-238.
[8] Wenyan ZHAO, Chuanjin TIAN, Zhipeng XIE, Changan WANG, Wuyou FU, Haibin YANG. Hydrothermal growth of symmetrical ZnO nanorod arrays on nanosheets for gas sensing applications[J]. Front. Mater. Sci., 2017, 11(3): 271-275.
[9] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[10] Ya ZHANG,Qingzhi CUI,Zhanyong WANG,Gan LIU,Tian TIAN,Jiayue XU. Up-converted ultraviolet luminescence of Er3+:BaGd2ZnO5 phosphors for healthy illumination[J]. Front. Mater. Sci., 2016, 10(3): 328-333.
[11] David ADOLPH,Tobias TINGBERG,Thorvald ANDERSSON,Tommy IVE. Plasma-assisted molecular beam epitaxy of ZnO on in-situ grown GaN/4H-SiC buffer layers[J]. Front. Mater. Sci., 2015, 9(2): 185-191.
[12] R. ELILARASSI, G. CHANDRASEKARAN. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method[J]. Front Mater Sci, 2013, 7(2): 196-201.
[13] BIAN Xin-chao, HUO Chun-qing, ZHANG Yue-fei, CHEN Qiang. Preparation and photoluminescence of ZnO with nanostructure by hollow-cathode discharge[J]. Front. Mater. Sci., 2008, 2(1): 31-36.
[14] JIN Chenggang, WU Xuemei, SHA Zhendong, ZHUGE Lanjian. The structure and photoluminescence properties of ZnO/SiC multilayer film on Si substrate[J]. Front. Mater. Sci., 2007, 1(2): 158-161.
[15] LAN Wei, PENG Xingping, LIU Xueqin, HE Zhiwei, WANG Yinyue. Preparation and properties of ZnO thin films deposited by sol-gel technique[J]. Front. Mater. Sci., 2007, 1(1): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed