Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (1) : 220593    https://doi.org/10.1007/s11706-022-0593-9
RESEARCH ARTICLE
Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries
Zhenxiao LU(), Zixiao ZHAO, Guangyin LIU, Xiaodi LIU, Renzhi YANG
School of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
 Download: PDF(1906 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel hierarchical structure of bimetal sulfide FeS2@SnS2 with the 1D/2D heterostructure was developed for high-performance sodium-ion batteries (SIBs). The FeS2@SnS2 was synthesized through a hydrothermal reaction and a sulphuration process. The exquisite 1D/2D heterostructure is featured with 2D SnS2 nanoflakes anchoring on the 1D FeS2 nanorod. This well-designed FeS2@SnS2 provides shortened ion diffusion pathway and adequate surface area, which facilitates the Na+ transport and capacitive Na+ storage. Besides, the FeS2@SnS2 integrates the 1D/2D synthetic structural advantages and synthetic hybrid active material. Consequently, the FeS2@SnS2 anode exhibits high initial specific capacity of 765.5 mAh·g−1 at 1 A·g−1 and outstanding reversibility (506.0 mAh·g−1 at 1 A·g−1 after 200 cycles, 262.5 mAh·g−1 at 5 A·g−1 after 1400 cycles). Moreover, the kinetic analysis reveals that the FeS2@SnS2 anode displays significant capacitive behavior which boosts the rate capacity.

Keywords sodium-ion battery      FeS2@SnS2      1D/2D      capacitance behavior     
Corresponding Author(s): Zhenxiao LU   
About author:

Miaojie Yang and Mahmood Brobbey Oppong contributed equally to this work.

Issue Date: 06 April 2022
 Cite this article:   
Zhenxiao LU,Zixiao ZHAO,Guangyin LIU, et al. Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries[J]. Front. Mater. Sci., 2022, 16(1): 220593.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0593-9
https://academic.hep.com.cn/foms/EN/Y2022/V16/I1/220593
Fig.1  Scheme1 Systematic illustrations of (a) the preparation process of FeS2@SnS2, (b) the electrochemical transformation during the charging/discharging process, and (c) the enlargement of the SnS2 nanoflake.
Fig.2  (a) XRD pattern of FeS2@SnS2, (b) TGA curves of FeS2@SnS2 and neat FeS2, and (c)(d)(e)(f) survey, Fe 2p, Sn 3d and S 2p XPS spectra of FeS2@SnS2.
Fig.3  (a) Low- and (b) high-resolution SEM images of ɑ-FeOOH@SnO2. (c) Low- and (d) high-resolution SEM images of FeS2@SnS2. (e) TEM image of FeS2@SnS2. (f) HRTEM image of the SnS2 nanoflake.
Fig.4  Electrochemical properties of the FeS2@SnS2 electrode in SIBs: (a) charge/discharge profiles at 1 A·g?1, (b) cycling performance at 1 A·g?1, (c) rate property, (d) charge/discharge profiles at various current densities, and (e) cycling performance at 5 A·g?1.
Fig.5  FeS2@SnS2/Na batteries: (a) CV curves for the initial three cycles at the scan rate of 0.1 mV·s?1; (b) CV curves at different scan rates; (c) b values of different peaks in panel (b); (d) CV curve with the capacitance controlled current shown by the shaded section; (e) contribution ratios of the capacitive storage to the total capacity at different scan rates; (f) variation of the normalized capacity with v?1/2 (v is the scan rate).
  Fig.S1 A comprehensive comparison of the rate performance between this work and other related sulfide electrodes of SIBs.
1 Y J Ma , Y Ma , G Giuli . et al.. Introducing highly redox-active atomic centers into insertion-type electrodes for lithium-ion batteries. Advanced Energy Materials, 2020, 10( 25): 2000783
https://doi.org/10.1002/aenm.202000783
2 K Ku , B Kim , S K Jung . et al.. A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy & Environmental Science, 2020, 13( 4): 1269– 1278
https://doi.org/10.1039/C9EE04123K
3 Y Jia , Z Ma , Z Li . et al.. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries. Frontiers of Materials Science, 2019, 13( 4): 367– 374
https://doi.org/10.1007/s11706-019-0483-y
4 X Wu , Y Xu , C Zhang . et al.. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. Journal of the American Chemical Society, 2019, 141( 15): 6338– 6344
https://doi.org/10.1021/jacs.9b00617
5 Y Zhang , L Tao , C Xie . et al.. Defect engineering on electrode materials for rechargeable batteries. Advanced Materials, 2020, 32( 7): 1905923
https://doi.org/10.1002/adma.201905923
6 Z X Lu , Y J Zhai , N N Wang . et al.. FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chemical Engineering Journal, 2020, 380 : 122455
https://doi.org/10.1016/j.cej.2019.122455
7 C Yang , S Xin , L Mai . et al.. Materials design for high-safety sodium-ion battery. Advanced Energy Materials, 2021, 11( 2): 2000974
https://doi.org/10.1002/aenm.202000974
8 X Xu , K Lin , D Zhou . et al.. Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem, 2020, 6( 4): 902– 918
https://doi.org/10.1016/j.chempr.2020.01.008
9 P Liu , J Han , K Zhu . et al.. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Advanced Energy Materials, 2020, 10( 24): 2000741
https://doi.org/10.1002/aenm.202000741
10 X Lu , J Luo , E Matios . et al.. Enabling high-performance sodium metal anodes via a sodiophilic structure constructed by hierarchical Sb2MoO6 microspheres. Nano Energy, 2020, 69 : 104446
https://doi.org/10.1016/j.nanoen.2020.104446
11 H Zhai , H Jiang , Y Qian . et al.. Sb2S3 nanocrystals embedded in multichannel N-doped carbon nanofiber for ultralong cycle life sodium-ion batteries. Materials Chemistry and Physics, 2020, 240 : 122139
https://doi.org/10.1016/j.matchemphys.2019.122139
12 W Y Chen , X Jiang , S N Lai . et al.. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nature Communications, 2020, 11( 1): 1302
https://doi.org/10.1038/s41467-020-15092-4
13 F B Wang , G D Li , W F Cui . FeS2 hollow nanospheres as high-performance anode for sodium ion battery and their surface pseudocapacitive properties. Journal of Nanoparticle Research, 2019, 21( 6): 121
https://doi.org/10.1007/s11051-019-4565-7
14 Z Lin , X Xiong , M Fan . et al.. Scalable synthesis of FeS2 nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode. Nanoscale, 2019, 11( 9): 3773– 3779
https://doi.org/10.1039/C8NR10444A
15 S W Wang , Y P Jing , L F Han . et al.. Ultrathin carbon-coated FeS2 nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6( 2): 459– 464
https://doi.org/10.1039/C8QI01144C
16 R Zang , P X Li , X Guo . et al.. Yolk–shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 23): 14051– 14059
https://doi.org/10.1039/C9TA03917A
17 L Cao , X Gao , B Zhang . et al.. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano, 2020, 14( 3): 3610– 3620
https://doi.org/10.1021/acsnano.0c00020
18 B Luo , Y X Hu , X B Zhu . et al.. Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 4): 1462– 1472
https://doi.org/10.1039/C7TA09757C
19 Y T Wu , P Nie , L Y Wu . et al.. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chemical Engineering Journal, 2018, 334 : 932– 938
https://doi.org/10.1016/j.cej.2017.10.007
20 S Wang , S Liu , X Li . et al.. SnS2/Sb2S3 heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries. Chemistry, 2018, 24( 15): 3873– 3881
https://doi.org/10.1002/chem.201705855
21 X Zhang , J Zhou , Y Zheng . et al.. Co0.85Se nanoparticles encapsulated by nitrogen-enriched hierarchically porous carbon for high-performance lithium-ion batteries. ACS Applied Materials & Interfaces, 2020, 12( 8): 9236– 9247
https://doi.org/10.1021/acsami.9b20866
22 J Xia , K Jiang , J Xie . et al.. Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries. Chemical Engineering Journal, 2019, 359 : 1244– 1251
https://doi.org/10.1016/j.cej.2018.11.053
23 M Ma , S Zhang , Y Yao . et al.. Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: superior potassium-ion storage and insight into potassium storage mechanism. Advanced Materials, 2020, 32( 22): 2000958
https://doi.org/10.1002/adma.202000958
24 Y Zhao , F Wang , C Wang . et al.. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy, 2019, 56 : 426– 433
https://doi.org/10.1016/j.nanoen.2018.11.040
25 C Yang , X Liang , X Ou . et al.. Heterostructured nanocube-shaped binary sulfide (SnCo)S2 interlaced with S-doped graphene as a high-performance anode for advanced Na+ batteries. Advanced Functional Materials, 2019, 29( 9): 1807971
https://doi.org/10.1002/adfm.201807971
26 X C Ren , J S Wang , D M Zhu . et al.. Sn−C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy, 2018, 54 : 322– 330
https://doi.org/10.1016/j.nanoen.2018.10.019
27 Y H Liu , X Y Yu , Y J Fang . et al.. Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule, 2018, 2( 4): 725– 735
https://doi.org/10.1016/j.joule.2018.01.004
28 Y Zhao , J J Wang , C L Ma . et al.. Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries. Chemical Engineering Journal, 2019, 378 : 122168
https://doi.org/10.1016/j.cej.2019.122168
29 Y Liu , H Kang , L Jiao . et al.. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale, 2015, 7( 4): 1325– 1332
https://doi.org/10.1039/C4NR05106H
30 C M Chen , Y C Yang , X Tang . et al.. Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small, 2019, 15( 10): 1804740
https://doi.org/10.1002/smll.201804740
31 L Zeng , L P Zhang , X G Liu . et al.. SnS2 nanocrystalline-anchored three-dimensional graphene for sodium batteries with improved rate performance. Nanomaterials, 2020, 10( 12): 2336
https://doi.org/10.3390/nano10122336
32 Y F Li , S G Wang , Y H Shi . et al.. In situ chemically encapsulated and controlled SnS2 nanocrystal composites for durable lithium/sodium-ion batteries. Dalton Transactions, 2020, 49( 44): 15874– 15882
https://doi.org/10.1039/D0DT02877K
33 M Shao , Y Cheng , T Zhang . et al.. Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions. ACS Applied Materials & Interfaces, 2018, 10( 39): 33097– 33104
https://doi.org/10.1021/acsami.8b10110
34 S W Wang , Y P Jing , L F Han . et al.. Ultrathin carbon-coated FeS2 nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6( 2): 459– 464
https://doi.org/10.1039/C8QI01144C
35 Y Liu , X Hu , G Zhong . et al.. Layer-by-layer stacked nanohybrids of N,S-co-doped carbon film modified atomic MoS2 nanosheets for advanced sodium dual-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 42): 24271– 24280
https://doi.org/10.1039/C9TA09636A
36 X Ren , Y Zhu , Q Li . et al.. A novel multielement nanocomposite with ultrahigh rate capacity and durable performance for sodium-ion battery anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8( 23): 11598– 11606
https://doi.org/10.1039/D0TA04349D
37 P Gao , Y Y Zhang , L P Wang . et al.. In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS2 nanostructures. Nano Energy, 2017, 32 : 302– 309
https://doi.org/10.1016/j.nanoen.2016.12.051
38 J Li , L Han , Y Li . et al.. MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chemical Engineering Journal, 2020, 380 : 122590
https://doi.org/10.1016/j.cej.2019.122590
39 L Cao , B Zhang , X Ou . et al.. Synergistical coupling interconnected ZnS/SnS2 nanoboxes with polypyrrole-derived N/S dual-doped carbon for boosting high-performance sodium storage. Small, 2019, 15( 9): 1804861
https://doi.org/10.1002/smll.201804861
40 J Zhao , X Yu , Z G Gao . et al.. One step synthesis of SnS2 nanosheets assembled hierarchical tubular structures using metal chelate nanowires as a soluble template for improved Na-ion storage. Chemical Engineering Journal, 2018, 332 : 548– 555
https://doi.org/10.1016/j.cej.2017.09.110
41 P Xue , N Wang , Z Fang . et al.. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Letters, 2019, 19( 3): 1998– 2004
https://doi.org/10.1021/acs.nanolett.8b05189
42 X Xu , R S Zhao , B Chen . et al.. Progressively exposing active facets of 2D nanosheets toward enhanced pseudocapacitive response and high-rate sodium storage. Advanced Materials, 2019, 31( 17): 1900526
https://doi.org/10.1002/adma.201900526
43 Y L Liu , N N Wang , X H Zhao . et al.. Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe2 nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8( 5): 2843– 2850
https://doi.org/10.1039/C9TA13377A
44 N Wang , Y Wang , X Xu . et al.. Defect sites-rich porous carbon with pseudocapacitive behaviors as an ultrafast and long-term cycling anode for sodium-ion batteries. ACS Applied Materials & Interfaces, 2018, 10( 11): 9353– 9361
https://doi.org/10.1021/acsami.7b17893
[1] Senrong QIAO, Huijun LI, Xiaoqin CHENG, Dongyu BIAN, Xiaomin WANG. Bi/3DPG composite structure optimization realizes high specific capacity and rapid sodium-ion storage[J]. Front. Mater. Sci., 2022, 16(2): 220605-.
[2] Kevin VARGHESE, Dona Susan BAJI, Shantikumar NAIR, Dhamodaran SANTHANAGOPALAN. Conducting polymer PEDOT:PSS coated Co3O4 nanoparticles as the anode for sodium-ion battery applications[J]. Front. Mater. Sci., 2022, 16(2): 220601-.
[3] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[4] Luoyang LI, Tian CHEN, Fengbin HUANG, Peng LIU, Qingrong YAO, Feng WANG, Jianqiu DENG. Double core---shell nanostructured Sn---Cu alloy as enhanced anode materials for lithium and sodium storage[J]. Front. Mater. Sci., 2020, 14(2): 133-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed