|
|
Bi/3DPG composite structure optimization realizes high specific capacity and rapid sodium-ion storage |
Senrong QIAO, Huijun LI, Xiaoqin CHENG, Dongyu BIAN, Xiaomin WANG( ) |
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract As an anode material for sodium-ion batteries (SIBs), bismuth (Bi) has attracted widespread attention due to its suitable voltage platform and high volumetric energy density. However, the severe volume expansion of Bi during charging and discharging leads to a rapid decline in battery capacity. Loading Bi on the graphene can relieve volume expansion and improve electrochemical performance. However, excessive loading of Bi on graphene will cause the porosity of the composite material to decrease, which leads to a decrease of the Na+ transmission rate. Herein, the Bi/three-dimensional porous graphene (Bi/3DPG) composite material was prepared and the pore structure was optimized to obtain the medium-load Bi/3DPG (Bi/3DPG-M) with better electrochemical performance. Bi/3DPG-M exhibited a fast kinetic process while maintaining a high specific capacity. The specific capacity still remained at 270 mA·h·g−1 (93.3%) after 500 cycles at a current density of 0.1 A·g−1. Even at 5 A·g−1, the specific capacity of Bi/3DPG-M could still reach 266.1 mA·h·g−1. This work can provide a reference for research on the use of alloy–graphene composite in the anode of SIBs.
|
Keywords
sodium-ion battery
microemulsion method
bismuth
graphene
pore structure
|
Corresponding Author(s):
Xiaomin WANG
|
Issue Date: 07 July 2022
|
|
1 |
M D, Slater D, Kim E, Lee , et al.. Sodium-ion batteries. Advanced Functional Materials, 2013, 23( 8): 947– 958
https://doi.org/10.1002/adfm.201200691
|
2 |
H, Li S, Hao Z, Tian , et al.. Flexible self-supporting Ni2P@N-doped carbon anode for superior rate and durable sodium-ion storage. Electrochimica Acta, 2019, 321 : 134624
https://doi.org/10.1016/j.electacta.2019.134624
|
3 |
L, Yue C, Ma S, Yan , et al.. Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage. Nano Research, 2022, 15( 1): 186– 194
https://doi.org/10.1007/s12274-021-3455-3
|
4 |
M, Qian Z, Xu Z, Wang , et al.. Realizing few-layer iodinene for high-rate sodium-ion batteries. Advanced Materials, 2020, 32( 43): 2004835
https://doi.org/10.1002/adma.202004835
pmid: 33000881
|
5 |
J, Liang H, Zhao L, Yue , et al.. Recent advances in electrospun nanofibers for supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8( 33): 16747– 16789
https://doi.org/10.1039/D0TA05100D
|
6 |
Q, Liu Z, Hu W, Li , et al.. Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries?. Energy & Environmental Science, 2021, 14( 1): 158– 179
https://doi.org/10.1039/D0EE02997A
|
7 |
Z, Lv M, Ling M, Yue , et al.. Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: toward high-energy and high-power applications. Journal of Energy Chemistry, 2021, 55 : 361– 390
https://doi.org/10.1016/j.jechem.2020.07.008
|
8 |
Y, Cao J, Liang X, Li , et al.. Recent advances in perovskite oxides as electrode materials for supercapacitors. Chemical Communications, 2021, 57( 19): 2343– 2355
https://doi.org/10.1039/D0CC07970G
pmid: 33595045
|
9 |
P, Xiong P, Bai A, Li , et al.. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Advanced Materials, 2019, 31( 48): 1904771
https://doi.org/10.1002/adma.201904771
pmid: 31588636
|
10 |
H, Tan D, Chen X, Rui , et al.. Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities. Advanced Functional Materials, 2019, 29( 14): 1808745
https://doi.org/10.1002/adfm.201808745
|
11 |
Y, Wang P, Niu J, Li , et al.. Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Storage Materials, 2021, 34 : 436– 460
https://doi.org/10.1016/j.ensm.2020.10.003
|
12 |
J Y, Hwang S T, Myung Y K Sun . Sodium-ion batteries: present and future. Chemical Society Reviews, 2017, 46( 12): 3529– 3614
https://doi.org/10.1039/C6CS00776G
pmid: 28349134
|
13 |
L, Cao X, Liang X, Ou , et al.. Heterointerface engineering of hierarchical Bi2S3/MoS2 with self-generated rich phase boundaries for superior sodium storage performance. Advanced Functional Materials, 2020, 30( 16): 1910732
https://doi.org/10.1002/adfm.201910732
|
14 |
W, Zhao X, Wang X, Ma , et al.. In situ tailoring bimetallic-organic framework-derived yolk–shell NiS2/CuS hollow microspheres: an extraordinary kinetically pseudocapacitive nanoreactor for an effective sodium-ion storage anode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9( 28): 15807– 15819
https://doi.org/10.1039/D1TA04386B
|
15 |
N, Yabuuchi K, Kubota M, Dahbi , et al.. Research development on sodium-ion batteries. Chemical Reviews, 2014, 114( 23): 11636– 11682
https://doi.org/10.1021/cr500192f
pmid: 25390643
|
16 |
L, Yue J, Liang Z, Wu , et al.. Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9( 20): 11879– 11907
https://doi.org/10.1039/D1TA01626A
|
17 |
Z, Zhao H, Li Z, Yang , et al.. Hierarchical Ni2P nanosheets anchored on three-dimensional graphene as self-supported anode materials towards long-life sodium-ion batteries. Journal of Alloys and Compounds, 2020, 817 : 152751
https://doi.org/10.1016/j.jallcom.2019.152751
|
18 |
S, Hao H, Li Z, Zhao , et al.. Pseudocapacitance-enhanced anode of CoP@C particles embedded in graphene aerogel toward ultralong cycling stability sodium-ion batteries. Chem Electro Chem, 2019, 6( 22): 5712– 5720
https://doi.org/10.1002/celc.201901549
|
19 |
W, Zhao X, Ma L, Yue , et al.. A gradient hexagonal-prism Fe3Se4@SiO2@C configuration as a highly reversible sodium conversion anode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10( 8): 4087– 4099
https://doi.org/10.1039/D1TA10571J
|
20 |
L, Yue D, Wang Z, Wu , et al.. Polyrrole-encapsulated Cu2Se nanosheets in situ grown on Cu mesh for high stability sodium-ion battery anode. Chemical Engineering Journal, 2022, 433 : 134477
https://doi.org/10.1016/j.cej.2021.134477
|
21 |
M, Mortazavi Q, Ye N, Birbilis , et al.. High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights. Journal of Power Sources, 2015, 285 : 29– 36
https://doi.org/10.1016/j.jpowsour.2015.03.051
|
22 |
H, Wang D, Yu X, Wang , et al.. Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angewandte Chemie International Edition in English, 2019, 58( 46): 16451– 16455
https://doi.org/10.1002/anie.201908607
pmid: 31482655
|
23 |
S, Dong D, Yu J, Yang , et al.. Tellurium: a high-volumetric-capacity potassium-ion battery electrode material. Advanced Materials, 2020, 32( 23): 1908027
https://doi.org/10.1002/adma.201908027
pmid: 32350944
|
24 |
X, Cheng R, Shao D, Li , et al.. A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage. Advanced Functional Materials, 2021, 31( 22): 2011264
https://doi.org/10.1002/adfm.202011264
|
25 |
S, Guo H, Li Y, Lu , et al.. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi–Sb alloy/carbon nanofibers. Energy Storage Materials, 2020, 27 : 270– 278
https://doi.org/10.1016/j.ensm.2020.02.003
|
26 |
D, Su S, Dou G Wang . Bismuth: a new anode for the Na-ion battery. Nano Energy, 2015, 12 : 88– 95
https://doi.org/10.1016/j.nanoen.2014.12.012
|
27 |
Z, Hu X, Li J, Qu , et al.. Electrolytic bismuth/carbon nanotubes composites for high-performance sodium-ion battery anodes. Journal of Power Sources, 2021, 496 : 229830
https://doi.org/10.1016/j.jpowsour.2021.229830
|
28 |
J, Zhou J, Chen M, Chen , et al.. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Advanced Materials, 2019, 31( 12): 1807874
https://doi.org/10.1002/adma.201807874
pmid: 30714223
|
29 |
H, Gao W, Ma W, Yang , et al.. Sodium storage mechanisms of bismuth in sodium ion batteries: an operando X-ray diffraction study. Journal of Power Sources, 2018, 379 : 1– 9
https://doi.org/10.1016/j.jpowsour.2018.01.017
|
30 |
K, Song C, Liu L, Mi , et al.. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small, 2021, 17( 9): 1903194
https://doi.org/10.1002/smll.201903194
pmid: 31544320
|
31 |
S, Liu J, Feng X, Bian , et al.. Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4( 26): 10098– 10104
https://doi.org/10.1039/C6TA02796B
|
32 |
J, Xiang Z, Liu T Song . Bi@C nanoplates derived from (BiO)2CO3 as an enhanced electrode material for lithium/sodium-ion batteries. ChemistrySelect, 2018, 3( 31): 8973– 8979
https://doi.org/10.1002/slct.201801774
|
33 |
P, Xue N, Wang Z, Fang , et al.. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Letters, 2019, 19( 3): 1998– 2004
https://doi.org/10.1021/acs.nanolett.8b05189
pmid: 30727727
|
34 |
Y, Zhang X, Xia B, Liu , et al.. Multiscale graphene-based materials for applications in sodium ion batteries. Advanced Energy Materials, 2019, 9( 8): 1803342
https://doi.org/10.1002/aenm.201803342
|
35 |
J, Hwang J H, Park K Y, Chung , et al.. One-pot synthesis of Bi-reduced graphene oxide composite using supercritical acetone as anode for Na-ion batteries. Chemical Engineering Journal, 2020, 387 : 124111
https://doi.org/10.1016/j.cej.2020.124111
|
36 |
W, Li J, Liu D Zhao . Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1( 6): 16023
https://doi.org/10.1038/natrevmats.2016.23
|
37 |
J, Fang K L, Stokes J, Wiemann , et al.. Nanocrystalline bismuth synthesized via an in situ polymerization-microemulsion process. Materials Letters, 2000, 42( 1–2): 113– 120
https://doi.org/10.1016/S0167-577X(99)00169-X
|
38 |
X, Wang Y, Wu P, Huang , et al.. A multi-layered composite assembly of Bi nanospheres anchored on nitrogen-doped carbon nanosheets for ultrastable sodium storage. Nanoscale, 2020, 12( 46): 23682– 23693
https://doi.org/10.1039/D0NR07230C
pmid: 33225337
|
39 |
Z, Sun Y, Liu W, Ye , et al.. Unveiling intrinsic potassium storage behaviors of hierarchical nano Bi@N-doped carbon nanocages framework via in situ characterizations. Angewandte Chemie International Edition, 2021, 60( 13): 7180– 7187
https://doi.org/10.1002/anie.202016082
|
40 |
X, Shi J, Zhang Q, Yao , et al.. A self-template approach to synthesize multicore–shell Bi@N-doped carbon nanosheets with interior void space for high-rate and ultrastable potassium storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8( 16): 8002– 8009
https://doi.org/10.1039/C9TA13975C
|
41 |
H, Liu K L, Choy M Roe . Enhanced conductivity of reduced graphene oxide decorated with aluminium oxide nanoparticles by oxygen annealing. Nanoscale, 2013, 5( 13): 5725– 5731
https://doi.org/10.1039/c3nr00362k
pmid: 23712529
|
42 |
L, Wang A A, Voskanyan K Y, Chan , et al.. Combustion synthesized porous bismuth/N-doped carbon nanocomposite for reversible sodiation in a sodium-ion battery. ACS Applied Energy Materials, 2020, 3( 1): 565– 572
https://doi.org/10.1021/acsaem.9b01799
|
43 |
J, Sottmann M, Herrmann P, Vajeeston , et al.. How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chemistry of Materials, 2016, 28( 8): 2750– 2756
https://doi.org/10.1021/acs.chemmater.6b00491
|
44 |
J, Chen X, Fan X, Ji , et al.. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy & Environmental Science, 2018, 11( 5): 1218– 1225
https://doi.org/10.1039/C7EE03016A
|
45 |
X, Cheng D, Li Y, Wu , et al.. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 9): 4913– 4921
https://doi.org/10.1039/C8TA11947C
|
46 |
C, Wang L, Wang F, Li , et al.. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Advanced Materials, 2017, 29( 35): 1702212
https://doi.org/10.1002/adma.201702212
pmid: 28707413
|
47 |
K Xu . Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014, 114( 23): 11503– 11618
https://doi.org/10.1021/cr500003w
pmid: 25351820
|
48 |
X, Cheng Q, Bai H, Li , et al.. Nanoconfined SnS2 in robust SnO2 nanocrystals building heterostructures for stable sodium ion storage. Chemical Engineering Journal, 2022, 442 : 136222
https://doi.org/10.1016/j.cej.2022.136222
|
49 |
H, Li X, Wang Z, Zhao , et al.. Microstructure controlled synthesis of Ni, N-codoped CoP/carbon fiber hybrids with improving reaction kinetics for superior sodium storage. Journal of Materials Science and Technology, 2022, 99 : 184– 192
https://doi.org/10.1016/j.jmst.2021.05.034
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|