Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (2) : 220605    https://doi.org/10.1007/s11706-022-0605-9
RESEARCH ARTICLE
Bi/3DPG composite structure optimization realizes high specific capacity and rapid sodium-ion storage
Senrong QIAO, Huijun LI, Xiaoqin CHENG, Dongyu BIAN, Xiaomin WANG()
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
 Download: PDF(15578 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As an anode material for sodium-ion batteries (SIBs), bismuth (Bi) has attracted widespread attention due to its suitable voltage platform and high volumetric energy density. However, the severe volume expansion of Bi during charging and discharging leads to a rapid decline in battery capacity. Loading Bi on the graphene can relieve volume expansion and improve electrochemical performance. However, excessive loading of Bi on graphene will cause the porosity of the composite material to decrease, which leads to a decrease of the Na+ transmission rate. Herein, the Bi/three-dimensional porous graphene (Bi/3DPG) composite material was prepared and the pore structure was optimized to obtain the medium-load Bi/3DPG (Bi/3DPG-M) with better electrochemical performance. Bi/3DPG-M exhibited a fast kinetic process while maintaining a high specific capacity. The specific capacity still remained at 270 mA·h·g−1 (93.3%) after 500 cycles at a current density of 0.1 A·g−1. Even at 5 A·g−1, the specific capacity of Bi/3DPG-M could still reach 266.1 mA·h·g−1. This work can provide a reference for research on the use of alloy–graphene composite in the anode of SIBs.

Keywords sodium-ion battery      microemulsion method      bismuth      graphene      pore structure     
Corresponding Author(s): Xiaomin WANG   
Issue Date: 07 July 2022
 Cite this article:   
Senrong QIAO,Huijun LI,Xiaoqin CHENG, et al. Bi/3DPG composite structure optimization realizes high specific capacity and rapid sodium-ion storage[J]. Front. Mater. Sci., 2022, 16(2): 220605.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0605-9
https://academic.hep.com.cn/foms/EN/Y2022/V16/I2/220605
Fig.1  (a) Synthetic schematic diagram of the Bi/3DPG composite. (b) TEM image, (c) HRTEM image and (d) XRD pattern of Bi/3DPG-M. (e) Bi 4f, (f) C 1s and (g) O 1s high-resolution XPS spectra of Bi/3DPG-M.
Fig.2  SEM images at different magnifications of (a)(b)(c) Bi NPs, (d)(e)(f) Bi/3DPG-L, (g)(h)(i) Bi/3DPG-M, and (j)(k)(l) Bi/3DPG-H.
Fig.3  (a) TGA and (b) DTG curves of Bi NPs, 3DPG, Bi/3DPG-L, Bi/3DPG-M and Bi/3DPG-H. (c) Isothermal adsorption–desorption curves and (d) pore size distribution diagrams of 3DPG, Bi/3DPG-L, Bi/3DPG-M and Bi/3DPG-H.
Fig.4  (a) CV curves of Bi/3DPG-M with a sweep rate of 0.1 mV·s?1 in the range of 0.1–1.8 V. (b) Constant current charge–discharge curves of Bi/3DPG-M at 0.1 A·g?1. (c) Cycle performance of Bi NPs, Bi/3DPG-L, Bi/3DPG-M and Bi/3DPG-H at 0.1 A·g?1. (d) Rate performance and (e) long-cycle life performance of Bi/3DPG-L, Bi/3DPG-M and Bi/3DPG-H at 2 A·g?1.
Fig.5  lgi?lgv curves of Bi/3DPG-L, Bi/3DPG-M and Bi/3DPG-H at (a) R1 peak, (b) R2 peak, (c) O1 peak, and (d) O2 peak. (e) Schematic diagram of the alloying process.
1 M D, Slater D, Kim E, Lee , et al.. Sodium-ion batteries. Advanced Functional Materials, 2013, 23( 8): 947– 958
https://doi.org/10.1002/adfm.201200691
2 H, Li S, Hao Z, Tian , et al.. Flexible self-supporting Ni2P@N-doped carbon anode for superior rate and durable sodium-ion storage. Electrochimica Acta, 2019, 321 : 134624
https://doi.org/10.1016/j.electacta.2019.134624
3 L, Yue C, Ma S, Yan , et al.. Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage. Nano Research, 2022, 15( 1): 186– 194
https://doi.org/10.1007/s12274-021-3455-3
4 M, Qian Z, Xu Z, Wang , et al.. Realizing few-layer iodinene for high-rate sodium-ion batteries. Advanced Materials, 2020, 32( 43): 2004835
https://doi.org/10.1002/adma.202004835 pmid: 33000881
5 J, Liang H, Zhao L, Yue , et al.. Recent advances in electrospun nanofibers for supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8( 33): 16747– 16789
https://doi.org/10.1039/D0TA05100D
6 Q, Liu Z, Hu W, Li , et al.. Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries?. Energy & Environmental Science, 2021, 14( 1): 158– 179
https://doi.org/10.1039/D0EE02997A
7 Z, Lv M, Ling M, Yue , et al.. Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: toward high-energy and high-power applications. Journal of Energy Chemistry, 2021, 55 : 361– 390
https://doi.org/10.1016/j.jechem.2020.07.008
8 Y, Cao J, Liang X, Li , et al.. Recent advances in perovskite oxides as electrode materials for supercapacitors. Chemical Communications, 2021, 57( 19): 2343– 2355
https://doi.org/10.1039/D0CC07970G pmid: 33595045
9 P, Xiong P, Bai A, Li , et al.. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Advanced Materials, 2019, 31( 48): 1904771
https://doi.org/10.1002/adma.201904771 pmid: 31588636
10 H, Tan D, Chen X, Rui , et al.. Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities. Advanced Functional Materials, 2019, 29( 14): 1808745
https://doi.org/10.1002/adfm.201808745
11 Y, Wang P, Niu J, Li , et al.. Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Storage Materials, 2021, 34 : 436– 460
https://doi.org/10.1016/j.ensm.2020.10.003
12 J Y, Hwang S T, Myung Y K Sun . Sodium-ion batteries: present and future. Chemical Society Reviews, 2017, 46( 12): 3529– 3614
https://doi.org/10.1039/C6CS00776G pmid: 28349134
13 L, Cao X, Liang X, Ou , et al.. Heterointerface engineering of hierarchical Bi2S3/MoS2 with self-generated rich phase boundaries for superior sodium storage performance. Advanced Functional Materials, 2020, 30( 16): 1910732
https://doi.org/10.1002/adfm.201910732
14 W, Zhao X, Wang X, Ma , et al.. In situ tailoring bimetallic-organic framework-derived yolk–shell NiS2/CuS hollow microspheres: an extraordinary kinetically pseudocapacitive nanoreactor for an effective sodium-ion storage anode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9( 28): 15807– 15819
https://doi.org/10.1039/D1TA04386B
15 N, Yabuuchi K, Kubota M, Dahbi , et al.. Research development on sodium-ion batteries. Chemical Reviews, 2014, 114( 23): 11636– 11682
https://doi.org/10.1021/cr500192f pmid: 25390643
16 L, Yue J, Liang Z, Wu , et al.. Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9( 20): 11879– 11907
https://doi.org/10.1039/D1TA01626A
17 Z, Zhao H, Li Z, Yang , et al.. Hierarchical Ni2P nanosheets anchored on three-dimensional graphene as self-supported anode materials towards long-life sodium-ion batteries. Journal of Alloys and Compounds, 2020, 817 : 152751
https://doi.org/10.1016/j.jallcom.2019.152751
18 S, Hao H, Li Z, Zhao , et al.. Pseudocapacitance-enhanced anode of CoP@C particles embedded in graphene aerogel toward ultralong cycling stability sodium-ion batteries. Chem Electro Chem, 2019, 6( 22): 5712– 5720
https://doi.org/10.1002/celc.201901549
19 W, Zhao X, Ma L, Yue , et al.. A gradient hexagonal-prism Fe3Se4@SiO2@C configuration as a highly reversible sodium conversion anode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10( 8): 4087– 4099
https://doi.org/10.1039/D1TA10571J
20 L, Yue D, Wang Z, Wu , et al.. Polyrrole-encapsulated Cu2Se nanosheets in situ grown on Cu mesh for high stability sodium-ion battery anode. Chemical Engineering Journal, 2022, 433 : 134477
https://doi.org/10.1016/j.cej.2021.134477
21 M, Mortazavi Q, Ye N, Birbilis , et al.. High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights. Journal of Power Sources, 2015, 285 : 29– 36
https://doi.org/10.1016/j.jpowsour.2015.03.051
22 H, Wang D, Yu X, Wang , et al.. Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angewandte Chemie International Edition in English, 2019, 58( 46): 16451– 16455
https://doi.org/10.1002/anie.201908607 pmid: 31482655
23 S, Dong D, Yu J, Yang , et al.. Tellurium: a high-volumetric-capacity potassium-ion battery electrode material. Advanced Materials, 2020, 32( 23): 1908027
https://doi.org/10.1002/adma.201908027 pmid: 32350944
24 X, Cheng R, Shao D, Li , et al.. A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage. Advanced Functional Materials, 2021, 31( 22): 2011264
https://doi.org/10.1002/adfm.202011264
25 S, Guo H, Li Y, Lu , et al.. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi–Sb alloy/carbon nanofibers. Energy Storage Materials, 2020, 27 : 270– 278
https://doi.org/10.1016/j.ensm.2020.02.003
26 D, Su S, Dou G Wang . Bismuth: a new anode for the Na-ion battery. Nano Energy, 2015, 12 : 88– 95
https://doi.org/10.1016/j.nanoen.2014.12.012
27 Z, Hu X, Li J, Qu , et al.. Electrolytic bismuth/carbon nanotubes composites for high-performance sodium-ion battery anodes. Journal of Power Sources, 2021, 496 : 229830
https://doi.org/10.1016/j.jpowsour.2021.229830
28 J, Zhou J, Chen M, Chen , et al.. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Advanced Materials, 2019, 31( 12): 1807874
https://doi.org/10.1002/adma.201807874 pmid: 30714223
29 H, Gao W, Ma W, Yang , et al.. Sodium storage mechanisms of bismuth in sodium ion batteries: an operando X-ray diffraction study. Journal of Power Sources, 2018, 379 : 1– 9
https://doi.org/10.1016/j.jpowsour.2018.01.017
30 K, Song C, Liu L, Mi , et al.. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small, 2021, 17( 9): 1903194
https://doi.org/10.1002/smll.201903194 pmid: 31544320
31 S, Liu J, Feng X, Bian , et al.. Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4( 26): 10098– 10104
https://doi.org/10.1039/C6TA02796B
32 J, Xiang Z, Liu T Song . Bi@C nanoplates derived from (BiO)2CO3 as an enhanced electrode material for lithium/sodium-ion batteries. ChemistrySelect, 2018, 3( 31): 8973– 8979
https://doi.org/10.1002/slct.201801774
33 P, Xue N, Wang Z, Fang , et al.. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Letters, 2019, 19( 3): 1998– 2004
https://doi.org/10.1021/acs.nanolett.8b05189 pmid: 30727727
34 Y, Zhang X, Xia B, Liu , et al.. Multiscale graphene-based materials for applications in sodium ion batteries. Advanced Energy Materials, 2019, 9( 8): 1803342
https://doi.org/10.1002/aenm.201803342
35 J, Hwang J H, Park K Y, Chung , et al.. One-pot synthesis of Bi-reduced graphene oxide composite using supercritical acetone as anode for Na-ion batteries. Chemical Engineering Journal, 2020, 387 : 124111
https://doi.org/10.1016/j.cej.2020.124111
36 W, Li J, Liu D Zhao . Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1( 6): 16023
https://doi.org/10.1038/natrevmats.2016.23
37 J, Fang K L, Stokes J, Wiemann , et al.. Nanocrystalline bismuth synthesized via an in situ polymerization-microemulsion process. Materials Letters, 2000, 42( 1–2): 113– 120
https://doi.org/10.1016/S0167-577X(99)00169-X
38 X, Wang Y, Wu P, Huang , et al.. A multi-layered composite assembly of Bi nanospheres anchored on nitrogen-doped carbon nanosheets for ultrastable sodium storage. Nanoscale, 2020, 12( 46): 23682– 23693
https://doi.org/10.1039/D0NR07230C pmid: 33225337
39 Z, Sun Y, Liu W, Ye , et al.. Unveiling intrinsic potassium storage behaviors of hierarchical nano Bi@N-doped carbon nanocages framework via in situ characterizations. Angewandte Chemie International Edition, 2021, 60( 13): 7180– 7187
https://doi.org/10.1002/anie.202016082
40 X, Shi J, Zhang Q, Yao , et al.. A self-template approach to synthesize multicore–shell Bi@N-doped carbon nanosheets with interior void space for high-rate and ultrastable potassium storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8( 16): 8002– 8009
https://doi.org/10.1039/C9TA13975C
41 H, Liu K L, Choy M Roe . Enhanced conductivity of reduced graphene oxide decorated with aluminium oxide nanoparticles by oxygen annealing. Nanoscale, 2013, 5( 13): 5725– 5731
https://doi.org/10.1039/c3nr00362k pmid: 23712529
42 L, Wang A A, Voskanyan K Y, Chan , et al.. Combustion synthesized porous bismuth/N-doped carbon nanocomposite for reversible sodiation in a sodium-ion battery. ACS Applied Energy Materials, 2020, 3( 1): 565– 572
https://doi.org/10.1021/acsaem.9b01799
43 J, Sottmann M, Herrmann P, Vajeeston , et al.. How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chemistry of Materials, 2016, 28( 8): 2750– 2756
https://doi.org/10.1021/acs.chemmater.6b00491
44 J, Chen X, Fan X, Ji , et al.. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy & Environmental Science, 2018, 11( 5): 1218– 1225
https://doi.org/10.1039/C7EE03016A
45 X, Cheng D, Li Y, Wu , et al.. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 9): 4913– 4921
https://doi.org/10.1039/C8TA11947C
46 C, Wang L, Wang F, Li , et al.. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Advanced Materials, 2017, 29( 35): 1702212
https://doi.org/10.1002/adma.201702212 pmid: 28707413
47 K Xu . Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014, 114( 23): 11503– 11618
https://doi.org/10.1021/cr500003w pmid: 25351820
48 X, Cheng Q, Bai H, Li , et al.. Nanoconfined SnS2 in robust SnO2 nanocrystals building heterostructures for stable sodium ion storage. Chemical Engineering Journal, 2022, 442 : 136222
https://doi.org/10.1016/j.cej.2022.136222
49 H, Li X, Wang Z, Zhao , et al.. Microstructure controlled synthesis of Ni, N-codoped CoP/carbon fiber hybrids with improving reaction kinetics for superior sodium storage. Journal of Materials Science and Technology, 2022, 99 : 184– 192
https://doi.org/10.1016/j.jmst.2021.05.034
[1] FMS-22605-OF-Qsr_suppl_1 Download
[1] Sachin Sharma Ashok KUMAR, Shahid BASHIR, Kasi RAMESH, Subramaniam RAMESH. Why is graphene an extraordinary material? A review based on a decade of research[J]. Front. Mater. Sci., 2022, 16(2): 220603-.
[2] Kevin VARGHESE, Dona Susan BAJI, Shantikumar NAIR, Dhamodaran SANTHANAGOPALAN. Conducting polymer PEDOT:PSS coated Co3O4 nanoparticles as the anode for sodium-ion battery applications[J]. Front. Mater. Sci., 2022, 16(2): 220601-.
[3] Meng REN, Ying FANG, Yufan ZHANG, Heli DENG, Desuo ZHANG, Hong LIN, Yuyue CHEN, Jiaqing XIONG. In-situ sugar-templated porous elastomer sensor with high sensitivity for wearables[J]. Front. Mater. Sci., 2022, 16(2): 220597-.
[4] Zhenxiao LU, Zixiao ZHAO, Guangyin LIU, Xiaodi LIU, Renzhi YANG. Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries[J]. Front. Mater. Sci., 2022, 16(1): 220593-.
[5] Xia HE, Qingchun LIU, Ying ZHOU, Zhan CHEN, Chenlu ZHU, Wanhui JIN. Graphene oxide-silver/cotton fiber fabric with anti-bacterial and anti-UV properties for wearable gas sensors[J]. Front. Mater. Sci., 2021, 15(3): 406-415.
[6] Yishan WANG, Xueqian ZHANG, Fanpeng MENG, Guangwu WEN. Stabilizing Co3O4 nanorods/N-doped graphene as advanced anode for lithium-ion batteries[J]. Front. Mater. Sci., 2021, 15(2): 216-226.
[7] Jinlong SU, Jie TENG. Recent progress in graphene-reinforced aluminum matrix composites[J]. Front. Mater. Sci., 2021, 15(1): 79-97.
[8] Shalmali BASU, Kamalika SEN. A review on graphene-based materials as versatile cancer biomarker sensors[J]. Front. Mater. Sci., 2020, 14(4): 353-372.
[9] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[10] Luoyang LI, Tian CHEN, Fengbin HUANG, Peng LIU, Qingrong YAO, Feng WANG, Jianqiu DENG. Double core---shell nanostructured Sn---Cu alloy as enhanced anode materials for lithium and sodium storage[J]. Front. Mater. Sci., 2020, 14(2): 133-144.
[11] Jinxing ZHANG, Kexing HU, Qi OUYANG, Qilin GUI, Xiaonong CHEN. One-step functionalization of graphene via Diels--Alder reaction for improvement of dispersibility[J]. Front. Mater. Sci., 2020, 14(2): 198-210.
[12] Kun YANG, Jinghuan TIAN, Wei QU, Bo LUAN, Ke LIU, Jun LIU, Likui WANG, Junhui JI, Wei ZHANG. Host-mediated biofilm forming promotes post-graphene pathogen expansion via graphene micron-sheet[J]. Front. Mater. Sci., 2020, 14(2): 221-231.
[13] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[14] Wei SUN, Rui ZHAO, Tian WANG, Ke ZHAN, Zheng YANG, Bin ZHAO, Ya YAN. An approach to prepare uniform graphene oxide/aluminum composite powders by simple electrostatic interaction in water/alcohol solution[J]. Front. Mater. Sci., 2019, 13(4): 375-381.
[15] Chaoyuan LIU, Zhongbing HUANG, Ximing PU, Lei SHANG, Guangfu YIN, Xianchun CHEN, Shuang CHENG. Fabrication of carboxylic graphene oxide-composited polypyrrole film for neurite growth under electrical stimulation[J]. Front. Mater. Sci., 2019, 13(3): 258-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed