Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (2) : 220601    https://doi.org/10.1007/s11706-022-0601-0
RESEARCH ARTICLE
Conducting polymer PEDOT:PSS coated Co3O4 nanoparticles as the anode for sodium-ion battery applications
Kevin VARGHESE, Dona Susan BAJI, Shantikumar NAIR, Dhamodaran SANTHANAGOPALAN()
Centre for Nanosciences, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
 Download: PDF(4437 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal oxides are considered as potential anodes for sodium-ion batteries (SIBs). Nevertheless, they suffer from poor cycling and rate capability. Here, we investigate conductive polymer coating on Co3O4 nanoparticles varying with different percentages. X-ray diffraction, electron microscopy and surface chemical analysis were adopted to analyze coated and uncoated Co3O4 nanoparticles. Conducting polymer, poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS), has been utilized for coating. Improved specific capacity and rate capability for an optimal coating of 0.5 wt.% were observed. The 0.5 wt.% coated sample outperformed the uncoated one in terms of capacity, rate capability and coulombic efficiency. It delivered a reversible capacity of 561 mAh·g−1 at 100 mA·g−1 and maintained a capacity of 318 mAh·g−1 at a high rate of 1 A·g−1. Increasing the PEDOT:PSS coating percentage led to lower performance due to the thicker coating induced kinetic issues. Ex-situ analysis of the 0.5 wt.% coated sample after 100 cycles at 1 A·g−1 was characterized for performance correlation. Such a simple, cost-effective and wet-chemical approach has not been employed before for Co3O4 as the SIB anode.

Keywords Co3O4      sodium-ion battery      anode      conducting polymer      surface coating     
Corresponding Author(s): Dhamodaran SANTHANAGOPALAN   
Issue Date: 15 June 2022
 Cite this article:   
Kevin VARGHESE,Dona Susan BAJI,Shantikumar NAIR, et al. Conducting polymer PEDOT:PSS coated Co3O4 nanoparticles as the anode for sodium-ion battery applications[J]. Front. Mater. Sci., 2022, 16(2): 220601.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0601-0
https://academic.hep.com.cn/foms/EN/Y2022/V16/I2/220601
Fig.1  XRD patterns of bare Co3O4, Co3O4@P-0.5, Co3O4@P-1.0 and Co3O4@P-2.0.
Fig.2  TEM (left) and HRTEM (right) images of (a)(b) Co3O4 and (c)(d) Co3O4@P-2.0.
Fig.3  High-resolution XPS spectra of (a) Co 2p, (b) O 1s, (c) C 1s and (d) S 2p for all the four samples.
Fig.4  Initial charge?discharge profiles at different current densities: (a) Co3O4; (b) Co3O4@P-0.5; (c) Co3O4@P-1.0; (d) Co3O4@P-2.0.
Fig.5  (a) Rate performance of uncoated and coated Co3O4 samples at different current densities of 100, 250, 500 and 1000 mA·g?1. (b) Cycling performance of all the samples at 1 A·g?1.
Fig.6  EIS results of (a) Co3O4, (b) Co3O4@P-0.5, (c) Co3O4@P-1.0 and (d) Co3O4@P-2.0.
Fig.7  Ex-situ XRD patterns of Co3O4@P-0.5 before and after cycling at 1 A·g?1 for 100 cycles.
Fig.8  Ex-situ (a) TEM and (b) HRTEM images of Co3O4@P-0.5 after cycling at 1 A·g?1 for 100 cycles.
Fig.9  (a) Ex-situ XPS wide spectra of Co3O4@P-0.5 electrodes uncycled and cycled at 1 A·g?1 for 100 cycles. (b)(c)(d) High-resolution S 2p, F 1s and Na 1s XPS spectra of Co3O4@P-0.5 cycled at 1 A·g?1 for 100 cycles.
1 Y Liang , C Z Zhao , H Yuan . et al.. A review of rechargeable batteries for portable electronic devices. InfoMat, 2019, 1( 1): 6– 32
https://doi.org/10.1002/inf2.12000
2 B Gangaja , S V Nair , D Santhanagopalan . Interface-engineered Li4Ti5O12-TiO2 dual-phase nanoparticles and CNT additive for supercapacitor-like high-power Li-ion battery applications. Nanotechnology, 2018, 29( 9): 095402
https://doi.org/10.1088/1361-6528/aaa2ea
3 T Perveen , M Siddiq , N Shahzad . et al.. Prospects in anode materials for sodium ion batteries— a review. Renewable & Sustainable Energy Reviews, 2020, 119 : 109549
https://doi.org/10.1016/j.rser.2019.109549
4 K Chayambuka , G Mulder , D L Danilov . et al.. Sodium-ion battery materials and electrochemical properties reviewed. Advanced Energy Materials, 2018, 8( 16): 1800079
https://doi.org/10.1002/aenm.201800079
5 J Biemolt , P Jungbacker , T van Teijlingen . et al.. Beyond lithium-based batteries. Materials, 2020, 13( 2): 425
https://doi.org/10.3390/ma13020425
6 B Gangaja , S V Nair , D Santhanagopalan . Solvent-controlled solid-electrolyte interphase layer composition of a high performance Li4Ti5O12 anode for Na-ion battery applications. Sustainable Energy & Fuels, 2019, 3( 9): 2490– 2498
https://doi.org/10.1039/C9SE00349E
7 Y Niu , Y Zhang , M Xu . A review on pyrophosphate framework cathode materials for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 25): 15006– 15025
https://doi.org/10.1039/C9TA04274A
8 G Chang , Y Zhao , L Dong . et al.. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8( 10): 4996– 5048
https://doi.org/10.1039/C9TA12169B
9 S Fang , D Bresser , S Passerini . Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Advanced Energy Materials, 2020, 10( 1): 1902485
https://doi.org/10.1002/aenm.201902485
10 S Goriparti , E Miele , F De Angelis . et al.. Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 2014, 257 : 421– 443
https://doi.org/10.1016/j.jpowsour.2013.11.103
11 Y Fang , X Y Yu , X W D Lou . Nanostructured electrode materials for advanced sodium-ion batteries. Matter, 2019, 1( 1): 90– 114
https://doi.org/10.1016/j.matt.2019.05.007
12 P Subalakshmi , A Sivashanmugam . Nano Co3O4 as anode material for Li-ion and Na-ion batteries: an insight into surface morphology. ChemistrySelect, 2018, 3( 18): 5040– 5049
https://doi.org/10.1002/slct.201702197
13 M M Rahman , A M Glushenkov , T Ramireddy . et al.. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chemical Communications, 2014, 50( 39): 5057– 5060
https://doi.org/10.1039/C4CC01033G
14 X Leng , S Wei , Z Jiang . et al.. Carbon-encapsulated Co3O4 nanoparticles as anode materials with super lithium storage performance. Scientific Reports, 2015, 5 : 16629
https://doi.org/10.1038/srep16629
15 J Yang , T Zhou , R Zhu . et al.. Highly ordered dual porosity mesoporous cobalt oxide for sodium-ion batteries. Advanced Materials Interfaces, 2016, 3( 3): 1500464
https://doi.org/10.1002/admi.201500464
16 S Santangelo , M Fiore , F Pantò . et al.. Electro-spun Co3O4 anode material for Na-ion rechargeable batteries. Solid State Ionics, 2017, 309 : 41– 47
https://doi.org/10.1016/j.ssi.2017.07.002
17 G Longoni , M Fiore , J H Kim . et al.. Co3O4 negative electrode material for rechargeable sodium ion batteries: an investigation of conversion reaction mechanism and morphology–performances correlations. Journal of Power Sources, 2016, 332 : 42– 50
https://doi.org/10.1016/j.jpowsour.2016.09.094
18 Q Deng , L Wang , J Li . Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries. Journal of Materials Science, 2015, 50( 11): 4142– 4148
https://doi.org/10.1007/s10853-015-8975-3
19 J W Wen , D W Zhang , Y Zang . et al.. Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries. Electrochimica Acta, 2014, 132 : 193– 199
https://doi.org/10.1016/j.electacta.2014.03.139
20 Y Wang , C Wang , Y Wang . et al.. Superior sodium-ion storage performance of Co3O4@nitrogen-doped carbon: derived from a metal-organic framework. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4( 15): 5428– 5435
https://doi.org/10.1039/C6TA00236F
21 J Lee , W Choi . Surface modification of over-lithiated layered oxides with PEDOT:PSS conducting polymer in lithium-ion batteries. Journal of the Electrochemical Society, 2015, 162( 4): A743– A748
https://doi.org/10.1149/2.0801504jes
22 H C Dinh , H Lim , K D Park . et al.. Long-term cycle stability at a high current for nanocrystalline LiFePO4 coated with a conductive polymer. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4 : 015011
https://doi.org/10.1088/2043-6262/4/1/015011
23 Q Gao L Yang N Liu. Chapter-7. In: Saini P, ed. Fundamentals of Conjugated Polymer Blends, Copolymers and Composites: Synthesis, Properties, and Applications. Hoboken, NJ, USA: John Wiley & Sons, 2015
24 Y Chen , Y Zhang , S Fu . Synthesis and characterization of Co3O4 hollow spheres. Materials Letters, 2007, 61( 3): 701– 705
https://doi.org/10.1016/j.matlet.2006.05.046
25 Y Wang , C Zhang , F Liu . et al.. Well-dispersed palladium supported on ordered mesoporous Co3O4 for catalytic oxidation of o-xylene. Applied Catalysis B: Environmental, 2013, 142–143 : 72– 79
https://doi.org/10.1016/j.apcatb.2013.05.003
26 X Y Yu , Q Q Meng , T Luo . et al.. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions. Scientific Reports, 2013, 3( 1): 2886
https://doi.org/10.1038/srep02886
27 A P Varghese , S Nair , D Santhanagopalan . Cobalt oxide thin films for high capacity and stable Li-ion battery anode. Journal of Solid State Electrochemistry, 2019, 23( 2): 513– 518
https://doi.org/10.1007/s10008-018-4158-x
28 A Younis , D Chu , X Lin . et al.. Bipolar resistive switching in p-type Co3O4 nanosheets prepared by electrochemical deposition. Nanoscale Research Letters, 2013, 8( 1): 36
https://doi.org/10.1186/1556-276X-8-36
29 W H Kao , Y L Su , M Y Shih . Effects of varying power and argon gas flux on tribological properties and high-speed drilling performance of diamond-like carbon coatings deposited using high-power impulse magnetron sputtering system. Journal of Materials Engineering and Performance, 2020, 29( 11): 7291– 7307
https://doi.org/10.1007/s11665-020-05242-6
30 H Yan , H Okuzaki . Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPS and STEM/AFM studies. Synthetic Metals, 2009, 159( 21–22): 2225– 2228
https://doi.org/10.1016/j.synthmet.2009.07.032
31 Q Deng , L Wang , J Li . Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries. Journal of Materials Science, 2015, 50( 11): 4142– 4148
https://doi.org/10.1007/s10853-015-8975-3
32 Y Liu , Z Cheng , H Sun . et al.. Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. Journal of Power Sources, 2015, 273 : 878– 884
https://doi.org/10.1016/j.jpowsour.2014.09.121
[1] FMS-22601-OF-Vk_suppl_1 Download
[1] Senrong QIAO, Huijun LI, Xiaoqin CHENG, Dongyu BIAN, Xiaomin WANG. Bi/3DPG composite structure optimization realizes high specific capacity and rapid sodium-ion storage[J]. Front. Mater. Sci., 2022, 16(2): 220605-.
[2] Zhenxiao LU, Zixiao ZHAO, Guangyin LIU, Xiaodi LIU, Renzhi YANG. Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries[J]. Front. Mater. Sci., 2022, 16(1): 220593-.
[3] Yishan WANG, Xueqian ZHANG, Fanpeng MENG, Guangwu WEN. Stabilizing Co3O4 nanorods/N-doped graphene as advanced anode for lithium-ion batteries[J]. Front. Mater. Sci., 2021, 15(2): 216-226.
[4] Biyu ZHOU, Junbo LI, Binzhong LU, Wenlan WU, Leitao ZHANG, Ju LIANG, Junpeng YI, Xin LI. Novel polyzwitterion shell with adaptable surface chemistry engineered to enhance anti-fouling and intracellular imaging of detonation nanodiamonds under tumor pHe[J]. Front. Mater. Sci., 2020, 14(4): 402-412.
[5] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[6] Junqiang HUA, Hailiang CHU, Ying ZHU, Tingting FANG, Shujun QIU, Yongjin ZOU, Cuili XIANG, Kexiang ZHANG, Bin LI, Huanzhi ZHANG, Fen XU, Lixian SUN. Superior performance for lithium storage from an integrated composite anode consisting of SiO-based active material and current collector[J]. Front. Mater. Sci., 2020, 14(3): 243-254.
[7] Luoyang LI, Tian CHEN, Fengbin HUANG, Peng LIU, Qingrong YAO, Feng WANG, Jianqiu DENG. Double core---shell nanostructured Sn---Cu alloy as enhanced anode materials for lithium and sodium storage[J]. Front. Mater. Sci., 2020, 14(2): 133-144.
[8] Ruiping LIU, Ning ZHANG, Xinyu WANG, Chenhui YANG, Hui CHENG, Hanqing ZHAO. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries[J]. Front. Mater. Sci., 2019, 13(2): 186-192.
[9] Ruiping LIU, Chao ZHANG, Xiaofan ZHANG, Fei GUO, Yue DONG, Qi WANG, Hanqing ZHAO. Construction of yolk--shell Fe3O4@C nanocubes for highly stable and efficient lithium-ion storage[J]. Front. Mater. Sci., 2018, 12(4): 361-367.
[10] Xinyi LUO, Jialiang LANG, Shasha LV, Zhengcao LI. High performance sandwich structured Si thin film anodes with LiPON coating[J]. Front. Mater. Sci., 2018, 12(2): 147-155.
[11] Vahini RAJA, Senthil Kumar PUVANESWARAN, Karuthapandian SWAMINATHAN. Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants[J]. Front. Mater. Sci., 2017, 11(4): 375-384.
[12] Xueyang LIU,Jian FANG,Yong LIU,Tong LIN. Progress in nanostructured photoanodes for dye-sensitized solar cells[J]. Front. Mater. Sci., 2016, 10(3): 225-237.
[13] Wei CHEN, Gi XUE, . Formation of conducting polymer nanostructures with the help of surfactant crystallite templates[J]. Front. Mater. Sci., 2010, 4(2): 152-157.
[14] Xue-tong ZHANG, Wen-hui SONG. Electrochemical preparation and electrochemical behavior of polypyrrole/carbon nanotube composite films[J]. Front Mater Sci Chin, 2009, 3(2): 194-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed