Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (2) : 194-200    https://doi.org/10.1007/s11706-009-0025-0
RESEARCH ARTICLE
Electrochemical preparation and electrochemical behavior of polypyrrole/carbon nanotube composite films
Xue-tong ZHANG1,2(), Wen-hui SONG1
1. School of Materials Science & Engineering, Beijing Institute of Technology,; 2. Wolfson Center for Materials Processing, Brunel University, West London UB8 3PH, UK
 Download: PDF(413 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polypyrrole/multiwalled carbon nanotube (MWNT) composite films were electrochemically deposited in the presence of an ionic surfactant, sodium dodecyl sulfate (SDS), acting as both supporting electrolyte and dispersant. The effects of the surfactant and the MWNT concentrations on the structure of the resulting composite films were investigated. The electrochemical behavior of the resulting polypyrrole/MWNT composite film was investigated as well by cyclic voltammogram. The effect of the additional alternating electric field applied during the constant direct potential electrochemical deposition on the morphology and electrochemical behavior of the resulting composite film was also investigated in this study.

Keywords carbon nanotubes      conducting polymers      electrochemical polymerization      electrochemical capacitors      nanocomposites      surfactant     
Corresponding Author(s): ZHANG Xue-tong,Email:zhangxt@bit.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Xue-tong ZHANG,Wen-hui SONG. Electrochemical preparation and electrochemical behavior of polypyrrole/carbon nanotube composite films[J]. Front Mater Sci Chin, 2009, 3(2): 194-200.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0025-0
https://academic.hep.com.cn/foms/EN/Y2009/V3/I2/194
Fig.1  Schematic diagram of two different configurations of electrochemical cells
Electrolyte 1 [23]Electrolyte 2
SDS /(mol·L-1)0.100.02
CNT /(g·L-1)0.170.85
Monomer /(mmol·L-1)2550
Tab.1  Two different aqueous electrolyte solutions
Fig.2  SEM images of MWNTs dispersed in distilled water and in 0.02 mol·L SDS aqueous solution
Fig.3  Cyclic voltammograms of bare Au electrode in Electrolyte 2 containing 0.02 mol·L SDS, 50 mmol·L pyrrole and 0.85 g·L MWNTs
Fig.4  SEM images of the resulting polypyrrole/MWNTs composite films obtained by constant potential electro-deposition in two different electrolytes: obtained from Electrolyte 1; cross-section of (a); obtained from Electrolyte 2; cross-section of (c)
Fig.5  CV curves of the resulting polypyrrole/MWNTs composite films obtained in the conditions of potential range from -0.2 to 0.5 V (vs. SCE), scan rate 50 mV/s and 0.5 mol/L NaSO aqueous solution; Curve 1 shows the CV behavior of the resulting composite film deposited from Electrolyte 1, and Curve 2 the CV behavior of the resulting composite film deposited from Electrolyte 2.
Fig.6  SEM images of the resulting polypyrrole/MWNTs composite films deposited by using Cell 1 and Cell 2
Fig.7  CV curves of the resulting polypyrrole/MWNTs composite films obtained in the condition of potential range from -0.2 to 0.5 V (vs. SCE), scan rate 50 mV/s and 0.5 mol/L NaSO aqueous solution; Curve in black color indicates the CV behavior of the resulting composite film deposited by using Cell 1, and Curve in red color the CV behavior of the resulting composite film deposited by using Cell 2.
1 Odom T W, Huang J, Kim P, . Atomic structure and electronic properties of single-walled carbon nanotubes. Nature , 1998, 391: 62–64
doi: 10.1038/34145
2 Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications. Science , 2002, 297: 787–792
doi: 10.1126/science.1060928
3 Krishnan A, Dujardin E, Ebbesen T W. Young’s modulus of single-walled nanotubes. Physical Review B , 1998, 58: 14013–14019
doi: 10.1103/PhysRevB.58.14013
4 Dai H. Carbon nanotubes: synthesis, integration, and properties. Accounts of Chemical Research , 2002, 35(12): 1035–1044
doi: 10.1021/ar0101640
5 Harris P J F. Carbon nanotube composites. International Materials Reviews , 2004, 49: 31–43
doi: 10.1179/095066004225010505
6 Biercuk M J, Llaguno M C, Radosavljevic M., . Carbon nanotube composites for thermal management. Applied Physics Letters , 2002, 80: 2767–2769
doi: 10.1063/1.1469696
7 Woo H S, Czerw R, Webster S. Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2, 5-dioctoxy-p-phenylene vinylene). Applied Physics Letters , 2000, 77: 1393–1395
doi: 10.1063/1.1290275
8 Qian D, Dickey E C, Andrews R, . Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters , 2000, 76: 2868–2870
doi: 10.1063/1.126500
9 Zhang X, Song W, Harris P J F, . Chiral polymer-carbon nanotube composite nanofibers. Advanced Materials , 2007, 19: 1079–1083
doi: 10.1002/adma.200601886
10 Girifalco L A, Hodak M, Lee R S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical Review B , 2000, 62: 13104–13110
doi: 10.1103/PhysRevB.62.13104
11 Bahr J L, Yang J P, Kosynkin D V, . Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. Journal of the American Chemical Society , 2001, 123(27): 6536–6542
doi: 10.1021/ja010462s
12 Georgakilas V, Kordatos K, Prato M, . Organic functionalization of carbon nanotubes. Journal of the American Chemical Society , 2002, 124(5): 760–761
doi: 10.1021/ja016954m
13 Sun Y, Wilson S R, Schuster D I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. Journal of the American Chemical Society , 2001, 123(22): 5348–5349
doi: 10.1021/ja0041730
14 Chen R J, Zhang Y, Wang D, . Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society , 2001, 123(16): 3838–3839
doi: 10.1021/ja010172b
15 Kang Y, Taton T A. Micelle-encapsulated carbon nanotubes: a route to nanotube composites. Journal of the American Chemical Society , 2003, 125(19): 5650–5651
doi: 10.1021/ja034082d
16 Islam M F, Rojas E, Bergey D M, . High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters , 2003, 3(2): 269–273
doi: 10.1021/nl025924u
17 Patil A, Sippel J, Martin G W, . Enhanced functionality of nanotube atomic force microscopy tips by polymer coating. Nano Letters , 2004, 4(2): 303–308
doi: 10.1021/nl0350581
18 Zhang X T, Zhang J, Wang R M, . Surfactant-directed polypyrrole/CNT nanocables: synthesis, characterization, and enhanced electrical properties. ChemPhysChem , 2004, 5: 998–1002
doi: 10.1002/cphc.200301217
19 Zhang X T, Zhang J, Wang R M, . Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon , 2004, 42: 1455–1461
doi: 10.1016/j.carbon.2004.01.003
20 Long Y Z, Chen Z J, Zhang X T, . Synthesis and electrical properties of carbon nanotube polyaniline composites. Applied Physics Letters , 2004, 85(10): 1796–1798
doi: 10.1063/1.1786370
21 Long Y Z, Chen Z J, Zhang X T, . Electrical properties of multi-walled carbon nanotube/polypyrrole nanocables: percolation-dominated conductivity. Journal of Physics D , 2004, 37: 1965–1969
doi: 10.1088/0022-3727/37/14/011
22 Zhang X T, Lu Z, Wen M T, . Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties. The Journal of Physical Chemistry B , 2005, 109: 1101–1107
doi: 10.1021/jp045934e
23 Zhang X T, Zhang J, Liu Z F. Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. Carbon , 2005, 43: 2186–2191
doi: 10.1016/j.carbon.2005.03.034
24 Qian W Z, Wei F, Wang Z W, . Production of carbon nanotubes in a packed bed and a fluidized bed. AIChE Journal , 2003, 49(3): 619–625
doi: 10.1002/aic.690490308
25 Sayyah S M, Abd El-Rehim S S, El-Deeb M M. Electropolymerization of pyrrole and characterization of the obtained polymer films. Journal of Applied Polymer Science , 2003, 90(7): 1783–1792
doi: 10.1002/app.12793
26 Hughes M, Shaffer M S P, Renouf A C, . Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Advanced Materials , 2002, 14(5): 382–385
doi: 10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO;2-Y
27 Ferraris J P, Eissa M M, Brotherston I D, . Performance evaluation of poly 3-(Phenylthiophene) derivatives as active materials for electrochemical capacitor applications. Chemistry of Materials , 1998, 10(11): 3528–3535
doi: 10.1021/cm9803105
28 Ingram M D, Staesche H, Ryder K S. ‘Activated’ polypyrrole electrodes for high-power supercapacitor applications. Solid State Ionics , 2004, 169(1-4): 51–57
doi: 10.1016/j.ssi.2002.12.003
29 West K, Bay L, Nielsen M M, . Electronic conductivity of polypyrrole-dodecyl benzene sulfonate complexes. The Journal of Physical Chemistry B , 2004, 108(39): 15001–15008
doi: 10.1021/jp048153m
30 Chen J H, Li W Z, Wang D Z, . Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon , 2002, 40(8): 1193–1197
doi: 10.1016/S0008-6223(01)00266-4
31 Frackowiak E, Delpeux S, Jurewicz K, . Enhanced capacitance of carbon nanotubes through chemical activation. Chemical Physics Letters , 2002, 361(1-2): 35–41
doi: 10.1016/S0009-2614(02)00684-X
32 Che G, Lakshmi B B, Fisher E R, . Carbon nanotubule membranes for electrochemical energy storage and production. Nature , 1998, 393: 346–249
doi: 10.1038/30694
33 Hughes M, Chen G Z, Shaffer M S P, . Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chemistry of Materials , 2002, 14(4): 1610–1613
doi: 10.1021/cm010744r
34 Jurewicz K, Delpeux S, Bertagna V, . Supercapacitors from nanotubes/polypyrrole composites. Chemical Physics Letters , 2001, 347(1-3): 36–40
doi: 10.1016/S0009-2614(01)01037-5
[1] Yuqiao CHENG, Yang YANG, Chunrong NIU, Zhe FENG, Wenhui ZHAO, Shuang LU. Progress in synthesis and application of zwitterionic Gemini surfactants[J]. Front. Mater. Sci., 2019, 13(3): 242-257.
[2] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[3] Somdutta SINGHA, Swapankumar GHOSH. Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline[J]. Front. Mater. Sci., 2017, 11(3): 276-283.
[4] Hassan Rayat AZIMI,Mahmood GHORANNEVISS,Seyed Mohammad ELAHI,Mohammad Reza MAHMOUDIAN,Farid JAMALI-SHEINI,Ramin YOUSEFI. Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method[J]. Front. Mater. Sci., 2016, 10(4): 385-393.
[5] Dongthanh NGUYEN,Wei WANG,Haibo LONG,Hongqiang RU. Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2[J]. Front. Mater. Sci., 2016, 10(1): 23-30.
[6] Lin-Hao SUN, Song WANG, Wei-Lin SHI, Shuming ZHANG, Xi CHEN, Qiang CAI. A new type of anionic surfactant with four carboxylates for the preparation of mesoporous materials[J]. Front Mater Sci, 2012, 6(3): 268-277.
[7] Junyi ZHU, Su-Huai WEI. Overcoming doping bottleneck by using surfactant and strain[J]. Front Mater Sci, 2011, 5(4): 335-341.
[8] Wei CHEN, Gi XUE, . Formation of conducting polymer nanostructures with the help of surfactant crystallite templates[J]. Front. Mater. Sci., 2010, 4(2): 152-157.
[9] LI Zai-feng, WANG Sheng-jun, LI Jin-yan. Synthesis and characterization of waterborne polyurethane/organic clay nanocomposites[J]. Front. Mater. Sci., 2008, 2(3): 271-275.
[10] ZHANG Jin-chao, JI Xiao-yu, LIU Cui-lian, SHEN Shi-gang, WANG Shu-xiang, SUN Jing. Effect of single-walled carbon nanotubes on primary immune cells [J]. Front. Mater. Sci., 2008, 2(2): 228-232.
[11] ZHANG Hui, ZHANG Zhong, PARK Hyung-Woo, ZHU Xing. Influence of surface-modified TiO nanoparticles on fracture behavior of injection molded polypropylene[J]. Front. Mater. Sci., 2008, 2(1): 9-15.
[12] JIANG Qi, QIAN Lan, YI Jing, ZHU Xiaotong, ZHAO Yong. Effects of boron-doping on the morphology and magnetic property of carbon nanotubes[J]. Front. Mater. Sci., 2007, 1(4): 379-382.
[13] FANG Zhengping, WANG Jianguo, GU Aijuan, TONG Lifang. Curing behavior and kinetic analysis of epoxy resin/multi-walled carbon nanotubes composites[J]. Front. Mater. Sci., 2007, 1(4): 415-422.
[14] LIU Tong, TANG Huiqin, ZHAO Jie, LI Dejun, LI Ruying, SUN Xueliang. A study on the bactericidal properties of Cu-coated carbon nanotubes[J]. Front. Mater. Sci., 2007, 1(2): 147-150.
[15] HONG Haoqun, JIA Demin, HE Hui. Effect of compound organification of montmorillonite on the structure and properties of polypropylene/montmorillonite nanocomposites[J]. Front. Mater. Sci., 2007, 1(1): 65-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed