Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (1) : 23-30    https://doi.org/10.1007/s11706-016-0322-3
RESEARCH ARTICLE
Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2
Dongthanh NGUYEN1,2,Wei WANG1,*(),Haibo LONG2,Hongqiang RU2,*()
1. Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education (ATM), Northeastern University, Shenyang 110819, China
2. School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China
 Download: PDF(1048 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mesoporous titania (meso-TiO2) has received extensive attention owing to its versatile potential applications. This paper reports a low-temperature templating approach for the fabrication of meso-TiO2 using the peroxo titanic acid (PTA) sol as precursor and Pluronic P123 as nonionic template. The TGA, XRD, N2 sorption, FE-SEM and HRTEM were used to characterize the obtained samples. The results showed that meso-TiO2 with high surface area up to 163 m2·g--1 and large pore volume of 0.65 cm3·g--1 can be obtained. The mesopore sizes can be varied between 13 and 20 nm via this synthesis approach. The amount of P123 and the calcination conditions were found to have great influence on the mesoporous and crystalline structures of meso-TiO2. The photocatalytic activity testing clearly shows that the high surface area and bi-crystallinity phases of meso-TiO2 play important roles in enhancing photocatalytic properties of meso-TiO2 in photo-decomposing Rhodamine B in water.

Keywords surfactant templating      mesopore      bi-crystallinity      titania     
Corresponding Author(s): Wei WANG,Hongqiang RU   
Online First Date: 31 December 2015    Issue Date: 15 January 2016
 Cite this article:   
Dongthanh NGUYEN,Wei WANG,Haibo LONG, et al. Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2[J]. Front. Mater. Sci., 2016, 10(1): 23-30.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0322-3
https://academic.hep.com.cn/foms/EN/Y2016/V10/I1/23
Fig.1  N2 adsorption–desorption isotherms and corresponding pore size distributions (inset) of mesoporous titania prepared with varying amounts of P123 template after calcination at 450°C. Isotherm curves of c, d and e were shifted horizontally by+0.15, +0.3 and+0.45, respectively, to avoid overlap. Curve a was also shifted downward by 10 cm3·g−1, STP.
Sample SBET /(m2·g−1) V /(cm3·g−1) Da /nm Dd /nm XR /% WA /nm WR /nm
LP0/450 55 0.08 6.9 4.5 0.0 17.1
LP2/450 134 0.38 13.2 9.9 10.9 8.7 6.3
LP4/450 154 0.56 17.2 12.1 11.9 8.0 5.8
LP6/450 163 0.65 19.8 12.5 13.6 7.3 5.4
LP8/450 162 0.63 19.8 12.4 17.0 7.5 4.8
LP6/550 125 0.40 16.1 11.5 19.7 10.2 6.8
Tab.1  Structural parameters of meso-TiO2 prepared in this work
Fig.2  FE-SEM images of samples: (a)(b) P0/450; (c)(d) P2/450; (e)(f) P6/450; (g)(h) P6/550.
Fig.3  N2 adsorption–desorption isotherms and corresponding pore size distributions (inset) of mesoporous titania prepared with fixed amounts of P123 template and varying calcination temperatures.
Fig.4  (a) TEM and (b) HRTEM images of LP6/450 sample.
Fig.5  Wide-angle XRD patterns of meso-TiO2 prepared with varying amounts of P123 template after calcination at 450°C (a–e) and after calcination at 550°C (f, inset). The rutile reference (ICDD PDF2 00-004-0551) was also provided to differentiate the reflections of rutile from those of anatase.
Fig.6  (a) Photocatalytic degradation of RhB monitored as the concentration change versus irradiation time in the presence of meso-TiO2. (b) Pseudo first-order rate constant determined from the linear relationship between ln(C0/C) and irradiation time.
BET Brunauer–Emmett–Teller
BJH Barret–Joyner–Halenda
CTAB cetyltrimethylammonium bromide
DAT differential thermal analysis
FE-SEM field-emission scanning electron microscopy
HRTEM high-resolution transmission electron microscopy
PSD pore size distribution
PTA peroxo titanic acid
RhB Rhodamine B
TBOT tetrabutyl orthotitanate
TEM transmission electron microscopy
TGA thermogravimetric analysis
TTIP titanium tetraisopropoxide
UV ultraviolet
XRD X-ray powder diffraction
Tab.2  
1 Boettcher  S W, Fan  J, Tsung  C K, . Harnessing the sol–gel process for the assembly of non-silicate mesostructured oxide materials.  Accounts  of  Chemical  Research,  2007,  40(9):  784–792
2 Li  W, Wu  Z, Wang  J, . A perspective on mesoporous TiO2 materials. Chemistry of Materials, 2014, 26(1): 287–298
3 Zhang  R, Elzatahry  A A, Al-Deyab  S S, . Mesoporous titania: From synthesis to application. Nano Today, 2012, 7(4): 344–366
4 Pan  J H, Dou  H, Xiong  Z, . Porous photocatalysts for advanced water purifications. Journal of Materials Chemistry, 2010, 20(22): 4512–4528
5 Oveisi  H, Suzuki  N, Beitollahi  A, . Aerosol-assisted fabrication of mesoporous titania spheres with crystallized anatase structures and investigation of their photocatalitic properties. Journal of Sol-Gel Science and Technology, 2010, 56(2): 212–218
6 Samiee  L, Beitollahi  A, Vinu  A. Effect of calcination atmosphere on the structure and photocatalytic properties of titania mesoporous powder. Research on Chemical Intermediates, 2012, 38(7): 1467–1482
7 Shamaila  S, Sajjad  A K L, Chen  F, . Mesoporous titania with high crystallinity during synthesis by dual template system as an efficient photocatalyst. Catalysis Today, 2011, 175(1): 568–575
8 Renuka  N K, Praveen  A K, Aravindakshan  K K. Synthesis and characterisation of mesoporous anatase TiO2 with highly crystalline framework. Materials Letters, 2013, 91: 118–120
9 Chang  Y S, Lee  Y C, Yuhara  J, . Effect of water on the formation of nanostructured mesoporous titania. Current Applied Physics, 2011, 11(3): 486–491
10 Chu  S, Luo  L L, Yang  J C, . Low-temperature synthesis of mesoporous TiO2 photocatalyst with self-cleaning strategy to remove organic templates. Applied Surface Science, 2012, 258(24): 9664–9667
11 Xu  J H, Dai  W L, Li  J X, . Novel core–shell structured mesoporous titania microspheres: Preparation, characterization and excellent photocatalytic activity in phenol abatement. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195(2–3): 284–294
12 Mohamed  M M, Bayoumy  W A, Khairy  M, . Structural features and photocatalytic behavior of titania and titania supported vanadia synthesized by polyol functionalized materials. Microporous and Mesoporous Materials, 2008, 109(1–3): 445–457
13 Dong  Q, Su  H L, Zhang  D, . Synthesis of hierarchical mesoporous titania with interwoven networks by eggshell membrane directed sol–gel technique. Microporous and Mesoporous Materials, 2007, 98(1-3): 344–351
14 Chen  L, Yao  B D, Cao  Y, . Synthesis of well-ordered mesoporous titania with tunable phase content and high photoactivity. Journal of Physical Chemistry C, 2007, 111(32): 11849–11853
15 Tian  C X, Yang  Y, Pu  H. Effect of calcination temperature on porous titania prepared from industrial titanyl sulfate solution. Applied Surface Science, 2011, 257(20): 8391–8395
16 Baiju  K V, Periyat  P, Shajesh  P, . Mesoporous gadolinium doped titania photocatalyst through an aqueous sol–gel method. Journal of Alloys and Compounds, 2010, 505(1): 194–200
17 Shibata  H, Mihara  H, Mukai  T, . Preparation and formation mechanism of mesoporous titania particles having crystalline wall. Chemistry of Materials, 2006, 18(9): 2256–2260
18 Tian  C X, Zhang  Z, Hou  J, . Surfactant/co-polymer template hydrothermal synthesis of thermally stable, mesoporous TiO2 from TiOSO4. Materials Letters, 2008, 62(1): 77–80
19 Shibata  H, Ogura  T, Mukai  T, . Direct synthesis of mesoporous titania particles having a crystalline wall. Journal of the American Chemical Society, 2005, 127(47): 16396–16397
20 Song  H, Chen  T, Sun  Y, . Controlled synthesis of porous flower-like TiO2 nanostructure with enhanced photocatalytic activity. Ceramics International, 2014, 40(7): 11015–11022
21 Tang  H, Zhang  D, Tang  G G, . Low temperature synthesis and photocatalytic properties of mesoporous TiO2 nanospheres. Journal of Alloys and Compounds, 2014, 591: 52–57
22 Ge  L, Xu  M X. Fabrication and characterization of TiO2 photocatalytic thin film prepared from peroxo titanic acid sol. Journal of Sol-Gel Science and Technology, 2007, 43(1): 1–7
23 Lee  C K, Kim  D K, Lee  J H, . Preparation and characterization of peroxo titanic acid solution using TiCl3. Journal of Sol-Gel Science and Technology, 2004, 31(1–3): 67–72
24 Kim  G H, Lee  C G, Kim  I. Properties of TiO2 film prepared from titanium tetrachloride. Metals and Materials International, 2004, 10(5): 423–427
25 Sasirekha  N, Rajesh  B, Chen  Y W. Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent. Thin Solid Films, 2009, 518(1): 43–48
26 Liu  Y J, Aizawa  M, Wang  Z M, . Comparative examination of titania nanocrystals synthesized by peroxo titanic acid approach from different precursors. Journal of Colloid and Interface Science, 2008, 322(2): 497–504
27 Zakharova  G S, Andreikov  E I. Effect of the precursor heat treatment procedure on the properties of titania photocatalysts. Inorganic Materials, 2012, 48(7): 727–731
28 Wang  W, Nguyen  D T, Long  H B, . High temperature and water-based evaporation-induced self-assembly approach for facile and rapid synthesis of nanocrystalline mesoporous TiO2. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(38): 15912–15920
29 Wan  Y, Zhao  D. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860
30 Wan  Y, Shi  Y, Zhao  D. Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chemical Communications, 2007, (9): 897–926
31 Wang  W, Qi  H, Long  H, . A simple ternary non-ionic templating system for preparation of complex hierarchically meso-mesoporous silicas with 3D interconnected large mesopores. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(15): 5363–5370
32 Wang  W, Shan  W J, Ru  H Q, . Short-time synthesis of SBA-15s with large mesopores via partitioned cooperative self-assembly process based on sodium silicate. Journal of Sol-Gel Science and Technology, 2012, 64(1): 200–208
33 Zhang  H, Banfield  J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. The Journal of Physical Chemistry B, 2000, 104(15): 3481–3487
34 Wanka  G, Hoffmann  H, Ulbricht  W. Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules, 1994, 27(15): 4145–4159
35 Yamada  S, Wang  Z, Mouri  E, . Crystallization of titania ultra-fine particles from peroxotitanic acid in aqueous solution in the present of polymer and incorporation into poly(methyl methacylate) via dispersion in organic solvent. Colloid & Polymer Science, 2009, 287(2): 139–146
36 Bacsa  R R, Kiwi  J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Applied Catalysis B: Environmental, 1998, 16(1): 19–29
37 Bakardjieva  S, Šubrt  J, Štengl  V, . Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Applied Catalysis B: Environmental, 2005, 58(3–4): 193–202
38 Ohno  T, Tokieda  K, Higashida  S, . Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A, 2003, 244(2): 383–391
39 Yan  M, Chen  F, Zhang  J, . Preparation of controllable crystalline titania and study on the photocatalytic properties. The Journal of Physical Chemistry B, 2005, 109(18): 8673–8678
[1] Dongthanh NGUYEN,Wei WANG,Haibo LONG,Hongqiang RU. Facile and controllable preparation of mesoporous TiO2 using poly(ethylene glycol) as structure-directing agent and peroxotitanic acid as precursor[J]. Front. Mater. Sci., 2016, 10(4): 405-412.
[2] Ruiping LIU,Feng REN,Jinlin YANG,Weiming SU,Zhiming SUN,Lei ZHANG,Chang-an WANG. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity[J]. Front. Mater. Sci., 2016, 10(1): 15-22.
[3] Abhijeet OJHA,Manish THAKKER,Dinesh O. SHAH,Prachi THAREJA. Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films[J]. Front. Mater. Sci., 2016, 10(1): 1-7.
[4] LIU Shuxia, HE Junhui. Inorganic replication of human hair and in situ synthesis of gold nanoparticles[J]. Front. Mater. Sci., 2007, 1(3): 263-267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed