Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2011, Vol. 5 Issue (4) : 335-341    https://doi.org/10.1007/s11706-011-0148-y
REVIEW ARTICLE
Overcoming doping bottleneck by using surfactant and strain
Junyi ZHU(), Su-Huai WEI
National Renewable Energy Laboratory, Golden, Colorado 80401, USA
 Download: PDF(319 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Overcoming the doping bottleneck in semiconductors, especially in wide band gap semiconductors, has been a challenge in semiconductor physics for many years. In this paper, we review some recent progresses in enhancing doping by surfactant and strain. We show that surfactant and strain are two effective approaches to enhance dopant solubility in epitaxial growth. The surfactant can introduce an energy level deep inside the band gap, making the host compound less stable, thus lower the formation energy of the intentional dopant. The strain enhanced doping is based on the observation that dopant induces volume change in the host. If the external strain is in the same direction as the dopant induced volume change, the formation energy of the dopant is reduced. This effect can be used to tune doping sites, thus doping type, in a host. A hybrid method to both include strain and surfactant is proposed, which can be a promising general method to further enhance doping.

Keywords semiconductor      surfactant      strain      doping      band gap     
Corresponding Author(s): ZHU Junyi,Email:junyi.zhu@nrel.gov   
Issue Date: 05 December 2011
 Cite this article:   
Junyi ZHU,Su-Huai WEI. Overcoming doping bottleneck by using surfactant and strain[J]. Front Mater Sci, 2011, 5(4): 335-341.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-011-0148-y
https://academic.hep.com.cn/foms/EN/Y2011/V5/I4/335
Fig.1  Schematic illustration of Zn doping in different surfactant configurations. (Reproduced with permission from Ref. [], Copyright 2008 The American Physical Society)
Fig.2  Density of states for GaP(001) surfaces: no surfactant; only Sb as a surfactant; both Sb and H as surfactants. (Reproduced with permission from Ref. [], Copyright 2009 The American Physical Society)
Fig.3  Band diagrams showing the concept of enhancement of dopant solubility via epitaxial growth with appropriate surfactants. The key of the concept is to find the appropriate surfactants that generate high (low) levels that can transfer electrons (holes) to dopant acceptor (donor) levels in -type (-type) doping, thus significantly lowering the formation energy of dopants. Hollow and filled circles represent empty and filled electronic states, respectively. The arrows indicate the routes of charge transfer. (Reproduced with permission from Ref. [], Copyright 2009 The American Physical Society)
Fig.4  Dopants induced volume change in GaP. (Reproduced with permission from Ref. [], Copyright 2010 The American Physical Society)
Fig.5  Doping energy difference versus strain for various dopants in GaP. (Reproduced with permission from Ref. [], Copyright 2010 The American Physical Society)
Fig.6  Doping energy difference of interstitial Li and substitutional Li doping of Li in ZnO under compressive hydrostatic strains. (Reproduced with permission from Ref. [], Copyright 2011 Elsevier Ltd.)
1 Schubert E F. Doping in III-V Semiconductors, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. Cambridge: Cambridge University Press, 2005, 1
2 Shockley W, Moll J L. Solubility of flaws in heavily-doped semiconductors. Physical Review , 1960, 119(5): 1480-1482
3 Pearton S J, Cho H, Ren F, . In: Feenstra R, Myers T, Shur M S, et al., eds. GaN and Related Alloys. Materials Research Society , 2000, 595: W10.6.1-W10.6.10
4 Wei S-H. Overcoming the doping bottleneck in semiconductors. Computational Materials Science , 2004, 30(3-4): 337-348
5 Copel M, Reuter M C, Kaxiras E, . Surfactants in epitaxial growth. Physical Review Letters , 1989, 63(6): 632-635
6 Rosenfeld G, Servaty R, Teichert C, . Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: A model study for surfactant-mediated growth. Physical Review Letters , 1993, 71(6): 895-898
7 Meyer J A, Vrijmoeth J, van der Vegt H A, . Importance of the additional step-edge barrier in determining film morphology during epitaxial growth. Physical Review B , 1995, 51(20): 14790-14793
8 Pillai M R, Kim S-S, Ho S T, . Growth of InxGa1-xAs/GaAs heterostructures using Bi as a surfactant. Journal of Vacuum Science and Technology B , 2000, 18(3): 1232-1236
9 Fetzer C M, Lee R T, Shurtleff J K, . The use of a surfactant (Sb) to induce triple period ordering in GaInP. Applied Physics Letters , 2000, 76(11): 1440-1442
10 Chapman D C, Howard A D, Stringfellow G B. Zn enhancement during surfactant-mediated growth of GaInP and GaP. Journal of Crystal Growth , 2006, 287(2): 647-651
11 Howard A D, Chapman D C, Stringfellow G B. Effects of surfactants Sb and Bi on the incorporation of zinc and carbon in III/V materials grown by organometallic vapor-phase epitaxy. Journal of Applied Physics , 2006, 100(4): 044904(8 pages)
12 Zhu J Y, Liu F, Stringfellow G B. Dual-surfactant effect to enhance p-type doping in III-V semiconductor thin films. Physical Review Letters , 2008, 101(19): 196103 (4 pages)
13 Zhu J, Liu F, Stringfellow G B. Enhanced cation-substituted p-type doping in GaP from dual surfactant effects. Journal of Crystal Growth , 2010, 312(2): 174-179
14 Zhang L, Yan Y, Wei S-H. Enhancing dopant solubility via epitaxial surfactant growth. Physical Review B , 2009, 80(7): 073305 (4 pages)
15 Sadigh B, Lenosky T J, Caturla M-J, . Large enhancement of boron solubility in silicon due to biaxial stress. Applied Physics Letters , 2002, 80(25): 4738-4740
16 Zhu J, Liu F, Stringfellow G B, . Strain-enhanced doping in semiconductors: Effects of dopant size and charge state. Physical Review Letters , 2010, 105(19): 195503 (4 pages)
17 Zhu J, Wei S-H. Tuning doping site and type by strain: Enhanced p-type doping in Li doped ZnO. Solid State Communications , 2011, 151(20): 1437-1439
18 Ahn C, Bennett N, Dunham S T, . Stress effects on impurity solubility in crystalline materials: A general model and density-functional calculations for dopants in silicon. Physical Review B , 2009, 79(7): 073201 (4 pages)
19 Bennett N S, Smith A J, Gwilliam R M, . Antimony for n-type metal oxide semiconductor ultrashallow junctions in strained Si: A superior dopant to arsenic? Journal of Vacuum Science and Technology B , 2008, 26(1): 391-395
20 Kahwaji S, Roorda S, Xiao S Q F, . The influence of a Pb surfactant on Mn delta-doped layers on Si(001). APS March Meeting , 2010, 55(2): H25.6
21 Sato T, Mitsuhara M, Iga R, . Influence of Sb surfactant on carrier concentration in heavily Zn-doped InGaAs grown by metalorganic vapor phase epitaxy. Journal of Crystal Growth , 2011, 315(1): 64-67
22 Lu G-H, Liu F. Towards quantitative understanding of formation and stability of Ge hut islands on Si(001). Physical Review Letters , 2005, 94(17): 176103 (4 pages)
23 Chen G, Cheng S F, Tobin D J, . Direct evidence for a hydrogen-stabilized surface indium phosphide (001)-(2×1): reconstruction. Physical Review B , 2003, 68(12): 121303(R) (3 pages)
24 Larsen P K, Chadi D J. Surface structure of As-stabilized GaAs(001): 2×4, c(2×8), and domain structures. Physical Review B , 1988, 37(14): 8282-8288
25 McCluskey M D, Haller E E, Walker J, . Spectroscopy of hydrogen-related complexes in GaP:Zn. Applied Physics Letters , 1994, 65(17): 2191-2192
26 Rao E V K, Theys B, Gottesman Y, . In: Proceedings of the 11th International Conference on Indium Phosphide and Related Materials. New York: IEEE, 1999
27 Chen C H, Stockman S A, Peanasky M J, . In: Stringfellow G B, Craford M G, eds. Semiconductors and Semimetals. New York: Academic Press, 1997, 48: 122
28 Jiao W, . Electronic Materials Conference 2011
29 Van Vechten J A, Phillips J C. New set of tetrahedral covalent radii. Physical Review B , 1970, 2(6): 2160-2167
30 Duclere J-R, Novotny M, Meaney A, . Properties of Li-, P- and N-doped ZnO thin films prepared by pulsed laser deposition. Superlattices and Microstructures , 2005, 38(4-6): 397-405
31 Oral A Y, Bahsi Z B, Aslan M H. Microstructure and optical properties of nanocrystalline ZnO and ZnO:(Li or Al) thin films. Applied Surface Science , 2007, 253(10): 4593-4598
32 Majumdar S, Banerji P. Effect of Li incorporation on the structural and optical properties of ZnO. Superlattices and Microstructures , 2009, 45(6): 583-589
33 Poizot P, Laruelle S, Grugeon S, . Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature , 2000, 407(6803): 496-499
34 Hu Y-S, Guo Y-G, Sigle W, . Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nature Materials , 2006, 5(9): 713-717
35 Koudriachova M V, Harrison N M, de Leeuw S W. Effect of diffusion on lithium intercalation in titanium dioxide. Physical Review Letters , 2001, 86(7): 1275-1278
[1] Dong ZHANG, Jingxin CHEN, Chunyu DU, Bingjun ZHU, Qingru WANG, Qiang SHI, Shouxin CUI, Wenjun WANG. Enhancement of red emission assigned to inversion defects in ZnAl2O4:Cr3+ hollow spheres[J]. Front. Mater. Sci., 2020, 14(1): 73-80.
[2] Elias ASSAYEHEGN, Ananthakumar SOLAIAPPAN, Yonas CHEBUDIE, Esayas ALEMAYEHU. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
[3] Yuqiao CHENG, Yang YANG, Chunrong NIU, Zhe FENG, Wenhui ZHAO, Shuang LU. Progress in synthesis and application of zwitterionic Gemini surfactants[J]. Front. Mater. Sci., 2019, 13(3): 242-257.
[4] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[5] Meng LIU, Lei LIU, Yifeng YU, Haijun LV, Aibing CHEN, Senlin HOU. Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 156-164.
[6] Weimin MAO. The currently predominant Taylor principles should be disregarded in the study of plastic deformation of metals[J]. Front. Mater. Sci., 2018, 12(3): 322-326.
[7] Wang YANG, Wu YANG, Lina KONG, Shuanlong DI, Xiujuan QIN. Nitrogen--oxygen co-doped corrugation-like porous carbon for high performance supercapacitor[J]. Front. Mater. Sci., 2018, 12(3): 283-291.
[8] Xiaoxiao WANG, Wanwan WANG, Baichuan ZHU, Fangfang QIAN, Zhen FANG. Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode[J]. Front. Mater. Sci., 2018, 12(1): 53-63.
[9] Kepi CHEN,Yanlin JIAO. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics[J]. Front. Mater. Sci., 2017, 11(1): 59-65.
[10] Yajing ZHAO,Yan CHEN,Kepi CHEN. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping[J]. Front. Mater. Sci., 2016, 10(4): 422-427.
[11] Dongthanh NGUYEN,Wei WANG,Haibo LONG,Hongqiang RU. Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2[J]. Front. Mater. Sci., 2016, 10(1): 23-30.
[12] Thomas MAURER,Joseph MARAE-DJOUDA,Ugo CATALDI,Arthur GONTIER,Guillaume MONTAY,Yazid MADI,Benoît PANICAUD,Demetrio MACIAS,Pierre-Michel ADAM,Gaëtan LÉVÊQUE,Thomas BÜRGI,Roberto CAPUTO. The beginnings of plasmomechanics: towards plasmonic strain sensors[J]. Front. Mater. Sci., 2015, 9(2): 170-177.
[13] Sunil Jagannath PATIL,Arun Vithal PATIL,Chandrakant Govindrao DIGHAVKAR,Kashinath Shravan THAKARE,Ratan Yadav BORASE,Sachin Jayaram NANDRE,Nishad Gopal DESHPANDE,Rajendra Ramdas AHIRE. Semiconductor metal oxide compounds based gas sensors: A literature review[J]. Front. Mater. Sci., 2015, 9(1): 14-37.
[14] Ying-Jun GAO,Qian-Qian DENG,Si-Long QUAN,Wen-Quan ZHOU,Chuang-Gao HUANG. Phase field crystal simulation of grain boundary movement and dislocation reaction[J]. Front. Mater. Sci., 2014, 8(2): 176-184.
[15] Zhong-Bing HUANG,Guang-Fu YIN,Xiao-Ming LIAO,Jian-Wen GU. Conducting polypyrrole in tissue engineering applications[J]. Front. Mater. Sci., 2014, 8(1): 39-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed