Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (4) : 422-427    https://doi.org/10.1007/s11706-016-0362-8
RESEARCH ARTICLE
Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping
Yajing ZHAO1,Yan CHEN2,Kepi CHEN1()
1. School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
2. Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
 Download: PDF(283 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the effects of doping with GeO2 on the synthesis temperature, phase structure and morphology of (K0.5Na0.5)NbO3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900°C for 2 h. Introducing 0.5 mol.% GeO2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800°C, which can be ascribed to the formation of the liquid phase during the synthesis.

Keywords lead-free piezoelectrics      potassium sodium niobate      synthesis      acceptor doping     
Corresponding Author(s): Kepi CHEN   
Online First Date: 16 November 2016    Issue Date: 24 November 2016
 Cite this article:   
Yajing ZHAO,Yan CHEN,Kepi CHEN. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping[J]. Front. Mater. Sci., 2016, 10(4): 422-427.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0362-8
https://academic.hep.com.cn/foms/EN/Y2016/V10/I4/422
Fig.1  XRD patterns of (a) KNN and (b) KNN-Ge powders calcined for 2 h at different temperatures.
Fig.2  XRD patterns of (a) KNN and (b) KNN-Ge powders calcined at different sintering temperatures in the 2θ range 44°?48°.
Fig.3  SEM images of (K0.5Na0.5)NbO3 powders calcined at 650°C?900°C for 2 h.
Fig.4  SEM images of (K0.5Na0.5)(Nb0.995Ge0.005)O3 powders calcined at 600°C?850 °C for 2 h.
Fig.5  DSC curves of (K0.5Na0.5)NbO3 and (K0.5Na0.5)(Nb0.995Ge0.005)O3 powders calcined at 850°C for 2 h.
Composition Density /(g·cm3) d33 /(pC·N1) kp /% Qm
KNN 4.47 110 35.9 80
KNN-Ge 4.44 99 30.5 81
Tab.1  Piezoelectric properties of KNN-based ceramic at room temperature
Fig.6  P?E hysteresis loops of KNN and KNN-Ge ceramics sintered at 1060°C.
1 Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. New York: Academic Press, 1971
2 Safari A, Akdogan E K, eds. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer, 2008
3 Tichý J, Erhart J, Kittinger E, . Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Berlin: Springer, 2010
4 Uchino K. Ferroelectric Devices. 2nd ed. New York: CRC Press, 2009
5 Saito Y, Takao H, Tani T, . Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87
https://doi.org/10.1038/nature03028 pmid: 15516921
6 Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126
https://doi.org/10.1007/s10832-007-9047-0
7 Panda P K. Review: environmental friendly lead-free piezoelectric materials. Journal of Materials Science, 2009, 44(19): 5049–5062
https://doi.org/10.1007/s10853-009-3643-0
8 Rodel J, Jo W, Seifert K T P, . Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177
https://doi.org/10.1111/j.1551-2916.2009.03061.x
9 Rodel J, Webber K G, Dittmer R, . Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 2015, 35(6): 1659–1681
https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
10 Li J F, Wang K, Zhu F Y, . (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696
https://doi.org/10.1111/jace.12715
11 Wu J, Xiao D, Zhu J. Potassium‒sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595
https://doi.org/10.1021/cr5006809 pmid: 25792114
12 Wang X, Wu J, Xiao D, . Giant piezoelectricity in potassium‒sodium niobate lead-free ceramics. Journal of the American Chemical Society, 2014, 136(7): 2905–2910
https://doi.org/10.1021/ja500076h pmid: 24499419
13 Wang X, Wu J, Xiao D, . Large d33 in (K,Na)(Nb,Ta,Sb)O3‒(Bi,Na,K)ZrO3 lead-free ceramics. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(12): 4122–4126
https://doi.org/10.1039/c3ta15075e
14 Matsubara M, Yamaguchi T, Kikuta K, . Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Japanese Journal of Applied Physics, 2004, 43(10): 7159–7163
https://doi.org/10.1143/JJAP.43.7159
15 Park S H, Ahn C W, Nahm S, . Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(8B): L1072–L1074
https://doi.org/10.1143/JJAP.43.L1072
16 Matsubara M, Yamaguchi T, Kikuta K, . Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Japanese Journal of Applied Physics, 2005, 44(1A): 258–263
https://doi.org/10.1143/JJAP.44.258
17 Matsubara M, Yamaguchi T, Sakamoto W, . Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190–1196
https://doi.org/10.1111/j.1551-2916.2005.00229.x
18 Park H Y, Choi J Y, Choi M K, . Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2008, 91(7): 2374–2377
https://doi.org/10.1111/j.1551-2916.2008.02408.x
19 Rubio-Marcos F, Romero J J, Navarro-Rojero M G, . Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009, 29(14): 3045–3052
https://doi.org/10.1016/j.jeurceramsoc.2009.04.026
20 Alkoy E M, Papila M. Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics. Ceramics International, 2010, 36(6): 1921–1927
https://doi.org/10.1016/j.ceramint.2010.03.018
21 Rubio-Marcos F, Marchet P, Vendrell X, . Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. Journal of Alloys and Compounds, 2011, 509(35): 8804–8811
https://doi.org/10.1016/j.jallcom.2011.06.080
22 Chen K P, Zhang F L, Zhou J Q, . Effect of borax addition on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Ceramics International, 2015, 41(8): 10232–10236
https://doi.org/10.1016/j.ceramint.2015.04.131
23 Chen K P, Zhou J Q, Zhang F L, . Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701
https://doi.org/10.1111/jace.13583
24 Chen K P, Zhang F L, Jiao Y L, . Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686
https://doi.org/10.1111/jace.14162
25 Feizpour M, Ebadzadeh T, Jenko D. Synthesis and characterization of lead-free piezoelectric (K0.50Na0.50)NbO3 powder produced at lower calcination temperatures: A comparative study with a calcination temperature of 850°C. Journal of the European Ceramic Society, 2016, 36(7): 1595–1603
https://doi.org/10.1016/j.jeurceramsoc.2016.01.014
26 Chen K P, Tang J, Chen Y. Compositional inhomogeneity and segregation in (K0.5Na0.5)NbO3 ceramics. Ceramics International, 2016, 42(8): 9949–9954
https://doi.org/10.1016/j.ceramint.2016.03.096
27 Chen K P, Zhang F L, Li D S, . Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903
https://doi.org/10.1016/j.ceramint.2015.11.016
28 Murthy M K, Aguayo J. Studies in germanium oxide systems: II, phase equilibria in the system Na2O‒GeO2. Journal of the American Ceramic Society, 1964, 47(9): 444–447
https://doi.org/10.1111/j.1151-2916.1964.tb14433.x
29 Murthy M K, Long L, Ip J. Studies in germanium oxide systems: IV, phase equilibria in the system K2O‒GeO2. Journal of the American Ceramic Society, 1968, 51(11): 661–662
https://doi.org/10.1111/j.1151-2916.1968.tb12640.x
30 Bomlai P, Wichianrat P, Muensit S, . Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. Journal of the American Ceramic Society, 2007, 90(5): 1650–1655
https://doi.org/10.1111/j.1551-2916.2007.01629.x
31 Guo Y P, Kakimoto K, Ohsato H. Structure and electrical properties of lead-free (Na0.5K0.5)NbO3‒BaTiO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(9B): 6662–6666
https://doi.org/10.1143/JJAP.43.6662
32 Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3‒LiTaO3 ceramics. Applied Physics Letters, 2007, 90(26): 262903
https://doi.org/10.1063/1.2751607
33 Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties of K1−xNaxNbO3 lead-free ceramics. Applied Physics Letters, 2009, 94(4): 042905
https://doi.org/10.1063/1.3076105
[1] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[2] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[3] Pengzhang LI, Chuanjin TIAN, Wei YANG, Wenyan ZHAO, Zhe LÜ. LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc--air batteries[J]. Front. Mater. Sci., 2019, 13(3): 277-287.
[4] Yuqiao CHENG, Yang YANG, Chunrong NIU, Zhe FENG, Wenhui ZHAO, Shuang LU. Progress in synthesis and application of zwitterionic Gemini surfactants[J]. Front. Mater. Sci., 2019, 13(3): 242-257.
[5] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[6] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
[7] Kepi CHEN,Yanlin JIAO. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics[J]. Front. Mater. Sci., 2017, 11(1): 59-65.
[8] Bin ZHANG,Chen LIU,Weiping KONG,Chenze QI. Magnetic motive, ordered mesoporous carbons with partially graphitized framework and controllable surface wettability: preparation, characterization and their selective adsorption of organic pollutants in water[J]. Front. Mater. Sci., 2016, 10(2): 147-156.
[9] Guangfa WANG,Linhui GAO,Hongliang ZHU,Weijie ZHOU. Hydrothermal synthesis of blue-emitting YPO4:Yb3+ nanophosphor[J]. Front. Mater. Sci., 2016, 10(2): 197-202.
[10] Ying WANG,Hong ZHANG,Zhiyuan MA,Gaomin WANG,Zhicheng LI. Li-ion storage performance and electrochemically induced phase evolution of layer-structured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material[J]. Front. Mater. Sci., 2016, 10(2): 187-196.
[11] Michael Tanner CAMERON,Jordan A. ROGERSON,Douglas A. BLOM,Albert D. DUKES III. Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature[J]. Front. Mater. Sci., 2016, 10(1): 8-14.
[12] Cheng-Zhen WEI,Hai-Feng MA,Feng GAO. Green synthesis of metal/C and metal oxide/C films by using natural membrane as support[J]. Front. Mater. Sci., 2014, 8(2): 150-156.
[13] Marcin WYSOKOWSKI, Mykhaylo MOTYLENKO, Vasilii V. BAZHENOV, Dawid STAWSKI, Iaroslav PETRENKO, Andre EHRLICH, Thomas BEHM, Zoran KLJAJIC, Allison L. STELLING, Teofil JESIONOWSKI, Hermann EHRLICH. Poriferan chitin as a template for hydrothermal zirconia deposition[J]. Front Mater Sci, 2013, 7(3): 248-260.
[14] Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties[J]. Front Mater Sci, 2013, 7(3): 203-226.
[15] Ke-Pi CHEN, Zhe ZHANG. BiCoO3-doped (K0.475Na0.475Li0.05)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics[J]. Front Mater Sci, 2012, 6(4): 311-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed