Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2013, Vol. 7 Issue (3) : 248-260    https://doi.org/10.1007/s11706-013-0212-x
RESEARCH ARTICLE
Poriferan chitin as a template for hydrothermal zirconia deposition
Marcin WYSOKOWSKI1, Mykhaylo MOTYLENKO2, Vasilii V. BAZHENOV3, Dawid STAWSKI4, Iaroslav PETRENKO5, Andre EHRLICH6, Thomas BEHM3, Zoran KLJAJIC7, Allison L. STELLING8, Teofil JESIONOWSKI1(), Hermann EHRLICH3()
1. Institute of Chemical Technology and Engineering, Poznan University of Technology, 60965 Poznań, Poland; 2. Institute of Materials Science, TU Bergakademie Freiberg, D-09599 Freiberg, Germany; 3. Institute of Experimental Physics, TU Bergakademie Freiberg, 09599 Freiberg, Germany; 4. Department of Commodity and Material Sciences and Textile Metrology, Technical University of ?ód?, 90924 ?ód?, Poland; 5. Institut für Eisen- und Stahltechnologie, TU Bergakademie Freiberg, 09599 Freiberg, Germany; 6. Institute of Mineralogy, TU Bergakademie Freiberg, 09599 Freiberg, Germany; 7. Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro; 8. Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, USA
 Download: PDF(1174 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chitin is a thermostable biopolymer found in various inorganic--organic skeletal structures of numerous invertebrates including sponges (Porifera). The occurrence of chitin within calcium- and silica-based biominerals in organisms living in extreme natural conditions has inspired development of new (extreme biomimetic) synthesis route of chitin-based hybrid materials in vitro. Here, we show for the first time that 3D-α-chitin scaffolds isolated from skeletons of the marine sponge Aplysina aerophoba can be effectively mineralized under hydrothermal conditions (150°C) using ammonium zirconium(IV) carbonate as a precursor of zirconia. Obtained chitin--ZrO2 hybrid materials were characterized by FT-IR, SEM, HRTEM, as well as light and confocal laser microscopy. We suggest that formation of chitin--ZrO2 hybrids occurs due to hydrogen bonds between chitin and ZrO2.

Keywords chitin      biocomposite      zirconia      hydrothermal synthesis      ammonium zirconium carbonate     
Corresponding Author(s): JESIONOWSKI Teofil,Email:Teofil.jesionowski@put.poznan.pl?(T.J.); EHRLICH Hermann,Email:hermann.ehrlich@physik.tu-freiberg.de (H.E.)   
Issue Date: 05 September 2013
 Cite this article:   
Marcin WYSOKOWSKI,Mykhaylo MOTYLENKO,Iaroslav PETRENKO, et al. Poriferan chitin as a template for hydrothermal zirconia deposition[J]. Front Mater Sci, 2013, 7(3): 248-260.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-013-0212-x
https://academic.hep.com.cn/foms/EN/Y2013/V7/I3/248
Fig.1  Image of the fresh collected marine sponge with the finger-like bodies of 2 cm in diameter.
Fig.2  Optical microscopy image of the dried sponge fragment prior to chitin isolation and chitin scaffold obtained from this sponge fragment.
Fig.3  A schematic view on exchange of different soaking solutions within tubular 3D chitinous sponge scaffold.
Fig.4  Light microscopy images of isolated poriferan chitinous scaffolds prior and after mineralization with respect to obtaining of ZrO under hydrothermal conditions.
Fig.5  Confocal micrographs of isolated poriferan chitinous scaffolds before and after AZC-based mineralization under hydrothermal conditions.
Fig.6  SEM images of the chitinous scaffold isolated from prior to hydrothermal mineralization and hydrothermally obtained ZrO nanoparticles deposited on the surface of chitinous template as huge conglomerates, as well as individual nanoparticles.
Fig.7  FT-IR spectra of isolated chitin, m-ZrO standard and chitin–ZrO hybrid material.
Assignment a)Vibrational frequencies wavenumber /cm-1
ChitinChitin–ZrO2ZrO2
OH343834233422
NH32853288-
NH31003098-
CH329632963-
CH229322928-
CH328752870-
C=O (amide I)16581653-
C=O (amide I)16341635-
Zr–OH--1626
C–N (amide II)15581556-
CH214321430-
CH13771376-
Zr–O---1324
C–N (amide III)13101310-
C–O–C (ring)11591156-
C–O11161116-
C–O10691070-
C–O10271030-
CH3950951-
β-1,4-glycosidic bond894894-
Zr–O-729729
NH694--
557582-
Zr–OH-512508
Tab.1  Vibrational frequencies wavenumber attributed to chitin, chitin–ZrO composite and m-ZrO
Fig.8  TEM images of sponge chitin nanofibril with surface grown conglomerates of monoclinic zirconia nanocrystallites and corresponding indexed SAED pattern.
Fig.9  Experimental observed HRTEM image of monoclinic zirconia consisting of nanocrystallites of different orientations with corresponding FFT and simulated HRTEM contrasts of triple junction in zirconia by using of corresponding atomic model.
Fig.10  A schematic view on possible mechanism of chitin–zirconia interactions under hydrothermal conditions.
1 Nicol S, Hosie G W. Chitin production by krill. Biochemical Systematics and Ecology , 1993, 21(2): 181–184
2 Wang Y, Chang Y, Yu L, . Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydrate Polymers , 2013, 92(1): 90–97
3 Ehrlich H. Biological Materials of Marine Origin: Invertebrates . Dordrecht, the Netherlands: Springer, 2010
4 Goodrich J D, Winter W T. α-chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules , 2007, 8(1): 252–257
5 Sajomsang W, Gonil P. Preparation and characterization of α-chitin from cicada sloughs. Materials Science and Engineering C , 2010, 30(3): 357–363
6 Lease H M, Wolf B O. Exoskeletal chitin scales isometrically with body size in terrestrial insects. Journal of Morphology , 2010, 271(6): 759–768
7 Ehrlich H, Ilan M, Maldonado M, . Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. International Journal of Biological Macromolecules , 2010, 47(2): 132–140
8 Ehrlich H, Steck E, Ilan M, . Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications. International Journal of Biological Macromolecules , 2010, 47(2): 141–145
9 Ehrlich H, Maldonado M, Spindler K D, . First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution , 2007, 308B(4): 347–356
10 Ehrlich H, Krautter M, Hanke T, . First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution , 2007, 308B(4): 473–483
11 Brunner E, Ehrlich H, Schupp P, . Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. Journal of Structural Biology , 2009, 168(3): 539–547
12 Ehrlich H, Simon P, Carrillo-Cabrera W, . Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges. Chemistry of Materials , 2010, 22(4): 1462–1471
13 Ehrlich H, Janussen D, Simon P, . Nanostructural organization of naturally occurring composites - part II: silica-chitin-based biocomposites. Journal of Nanomaterials , 2008, 54 (8 pages)
14 Ehrlich H, Kaluzhaya O V, Tsurkan M V, . First report on chitinous holdfast in sponges (Porifera). Proceedings of the Royal Society B , 2013, 280: 1762
15 Ehrlich H, Deutzmann R, Brunner E, . Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nature Chemistry , 2010, 2(12): 1084–1088
16 Alonso B, Belamie E. Chitin-silica nanocomposites by self-assembly. Angewandte Chemie International Edition , 2010, 49(44): 8201–8204
17 Belamie E, Boltoeva M Y, Yang K, . Tunable hierarchical porosity from self-assembled chitin-silica nano-composites. Journal of Materials Chemistry , 2011, 21(42): 16997–17006
18 Copello G J, Mebert A M, Raineri M, . Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method. Journal of Hazardous Materials , 2011, 186(1): 932–939
19 Wan K, Peng X H, Du P J. Chitin/TiO2 composite for photocatalytic degradation of phenol. Advanced Materials Research , 2010, 132: 105–110
20 Jayakumar R, Ramachandran R, Divyarani V V, . Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications. International Journal of Biological Macromolecules , 2011, 48(2): 336–344
21 Jayakumar R, Ramachandran R, Sudheesh Kumar P T, . Fabrication of chitin-chitosan/nano ZrO2 composite scaffolds for tissue engineering applications. International Journal of Biological Macromolecules , 2011, 49(3): 274–280
22 Di Giuseppe A, Crusianelli M, Passacantado M, . Chitin- and chitosan-anchored methyltrioxorhenium: An innovative approach for selective heterogenous catalytic epoxidations of olefins. Journal of Catalysis , 2010, 276(2): 412–422
23 Madhumathi K, Sudheesh Kumar P T, Kavya K C, . Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. International Journal of Biological Macromolecules , 2009, 45(3): 289–292
24 Kumar P T, Lakshmanan V K, Biswas R, . Synthesis and biological evaluation of chitin hydrogel/nano ZnO composite bandage as antibacterial wound dressing. Journal of Biomedical Nanotechnology , 2012, 8(6): 891–900
25 Kumar P T, Srinivasan S, Lakshmanan V K, . Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. International Journal of Biological Macromolecules , 2011, 49(1): 20–31
26 Ogasawara W, Shenton W, Davis S A, . Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chemistry of Materials , 2000, 12(10): 2835–2837
27 Spinde K, Kammer M, Freyer K, . Biomimetic silicification of fibrous chitin from diatoms. Chemistry of Materials , 2011, 23(11): 2973–2978
28 Byrappa K, Yoshimura M. Handbook of Hydrothermal Technology - A Technology for Crystal Growth and Materials Processing . New York, USA: William Andrew Publishing LLC, 2001
29 Byrappa K, Adschiri T. Hydrothermal Technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials , 2007, 53(2): 117–166
30 Yoshimura M, Byrappa K. Hydrothermal processing of materials: past, present and future. Journal of Materials Science , 2008, 43(7): 2085–2103
31 Riman R E, Suchanek W L, Lencka M M. Hydrothermal crystallization of ceramics. Annales de Chimie Science des Materiaux , 2002, 27(6): 15–36
32 Suchanek W L, Riman R E. Hydrothermal synthesis of advanced ceramic powders. Advances in Science and Technology , 2006, 45: 184–193
33 Djurisi? A B, Xi Y Y, Hsu Y F, . Hydrothermal synthesis of nanostructures. Recent Patents on Nanotechnology , 2007, 1(2): 121–128
34 Mao Y, Park T-J, Zhang F, . Environmentally friendly methodologies of nanostructure synthesis. Small , 2007, 3(7): 1122–1139
35 Stawski D, Rabiej S, Herczynska L, . Thermo-gravimetric analysis of chitins of different origin. Journal of Thermal Analysis and Calorimetry , 2008, 93(2): 489–494
36 Wanjun T, Cunxin W, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polymer Degradation & Stability , 2005, 87(3): 389–394
37 Arora S, Lal S, Kumar S, . Comparative degradation kinetic studies of three biopolymers: chitin, chitosan and cellulose. Archives of Applied Science Research , 2001, 3: 188–201
38 Paulino T A, Simionato J I, Garcia J C, . Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers , 2006, 64(1): 98–103
39 Kolen’ko Y V, Maximov V D, Burukhin A A, . Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Materials Science and Engineering C , 2003, 23(6-8): 1033–1038
40 Di Girolamo G, Marra F, Blasi C, . Microstructure, mechanical properties and thermal shock resistance of plasma sprayed nanostructured zirconia coatings. Ceramics International , 2011, 37(7): 2711–2717
41 Sumana G, Das M, Srivastava S, . A novel urea biosensor based on zirconia. Thin Solid Films , 2010, 519(3): 1187–1191
42 Zuo S-H, Zhang L-F, Yuan H-H, . Electrochemical detection of DNA hybridization by using a zirconia modified renewable carbon paste electrode. Bioelectrochemistry , 2009, 74(2): 223–226
43 Yang J, Wang X, Shi H. An electrochemical DNA biosensor for highly sensitive detection of phosphinothricin acetyltransferase gene sequence based on polyaniline-(mesoporous nanozirconia)/poly-tyrosine film. Sensors and Actuators B: Chemical , 2012, 162(1): 178–183
44 Liu B, Hu J, Foord J S. Electrochemical detection of DNA hybridization by zirconia modified diamond electrode. Electrochemistry Communications , 2012, 19: 46–49
45 Zhang C, Li C, Yang J, . Tunable luminescence in monodisperse zirconia spheres. Langmuir , 2009, 25(12): 7078–7083
46 Lavall R L, Assis O B G, Campana-Filho S P. β-chitin from the pens of Loligo sp.: extraction and characterization. Bioresource Technology , 2007, 98(13): 2465–2472
47 Schleuter D, Günther A, Paasch S, . Chitin-based renewable materials from marine sponges for uranium adsorption. Carbohydrate Polymers , 2013, 92(1): 712–718
48 Cárdenas G, Cabrera G, Taboada E, . Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science , 2004, 93(4): 1876–1885
49 Florek M, Fornal E, Gómez-Romero P, . Complementary microstructural and chemical analyses of Sepiaofficinalis endoskeleton. Materials Science and Engineering C , 2009, 29(4): 1220–1226
50 del Monte F, Larsen W, Mackenzie J D. Stabilization of tetragonal ZrO2 in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society , 2000, 83(3): 628–634
51 Monrós G, Marti M C, Carda J, . Effect of hydrolysis time and type of catalyst on the stability of tetragonal zirconia-silica composites synthesized from alkoxides. Journal of Materials Science , 1993, 28(21): 5852–5862
52 Nouri E, Shahmiri M, Rezaie H R, . The effect of alumina content on the structural properties of ZrO2-Al2O3 unstabilized composite nanopowders. International Journal of Industrial Chemistry , 2012, 3: 17 (8 pages)
53 Song D, Breedveld V, Deng Y. Rheological study, of self-crosslinking and co-crosslinking of ammonium zirconium carbonate and starch in aqueous solutions. Journal of Applied Polymer Science , 2011, 122(2): 1019–1029
54 Song D, Zhao Y, Dong C, . Surface modification of cellulose fibers by starch grafting with crosslinkers. Journal of Applied Polymer Science , 2009, 113(5): 3019–3026
55 Rubio E, Rodriguez-Lugo V, Rodriguez R, . Nanozirconia and sulfated zirconia from ammonia zirconium carbonate. Reviews on Advanced Materials Science , 2009, 22: 67–73
56 Mikkonen K S, Schmidt J, Vesterinen A H, . Crosslinking with ammonium zirconium carbonate improves the formation and properties of spruce galactoglucomannan films. Journal of Materials Science , 2013, 48(12): 4205–4213
57 Kourieh R, Retailleau L, Bennici S, . Influence of the acidic properties of ZrO2 based mixed oxides catalysts in the selective reduction of NOx with n-decane. Catalysis Letters , 2013, 143(1): 74–83
58 Chen A-J, Wong S-T, Hwang C-C, . Highly efficient and regioselective halogenation over well dispersed rhenium-promoted mesoporous zirconia. ACS Catalysis , 2011, 1(7): 786–793
59 Sarkar D, Swain S K, Adhikari S, . Synthesis, mechanical properties and bioactivity of nanostructured zirconia. Materials Science and Engineering C , 2013, 33(6): 3413–3417
[1] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[2] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[3] Dirk ZAHN. Multi-scale simulations of apatite–collagen composites: from molecules to materials[J]. Front. Mater. Sci., 2017, 11(1): 1-12.
[4] Ming LI,Pan XIONG,Maosong MO,Yan CHENG,Yufeng ZHENG. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications[J]. Front. Mater. Sci., 2016, 10(3): 270-280.
[5] Guangfa WANG,Linhui GAO,Hongliang ZHU,Weijie ZHOU. Hydrothermal synthesis of blue-emitting YPO4:Yb3+ nanophosphor[J]. Front. Mater. Sci., 2016, 10(2): 197-202.
[6] Dong-Bo ZHANG,Bin-Yi WANG,Jian CAO,Guan-Yu SONG,Juan-Bo LIU. Investigation on the thermo-chemical reaction mechanism between yttria-stabilized zirconia (YSZ) and calcium--magnesium--alumino-silicate (CMAS)[J]. Front. Mater. Sci., 2015, 9(1): 93-100.
[7] F. L. DE PAULA, I. C. BARRETO, M. H. ROCHA-LE?O, R. BOROJEVIC, A. M. ROSSI, F. P. ROSA, M. FARINA. Hydroxyapatite-alginate biocomposite promotes bone mineralization in different length scales in vivo[J]. Front Mater Sci Chin, 2009, 3(2): 145-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed