Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (1) : 8-14    https://doi.org/10.1007/s11706-016-0319-y
RESEARCH ARTICLE
Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature
Michael Tanner CAMERON1,Jordan A. ROGERSON1,Douglas A. BLOM2,Albert D. DUKES III1,*()
1. Department of Physical Sciences, Lander University, 320 Stanley Avenue, CPO Box 6030, Greenwood, SC 29649, USA
2. NanoCenter and Electron Microscopy Center, University of South Carolina, Columbia, SC 29208, USA
 Download: PDF(787 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Controlling the morphology of semiconductor nanocrystals has typically relied on controlling the concentration and species of surface ligands utilized in synthesis. Specific shapes, such as branched structures are of particular interest as the light harvesting and charge separating layer in a photovoltaic device. In this work we quantify how changes in the reaction temperature affect the resulting morphology of the nanocrystals. The narrowness of the temperature range over which the morphological transition occurred provides guidance to the tolerances necessary in the synthesis of CdSe utilized in commercial devices on a large scale.

Keywords CdSe      nanocrystals      morphology control      synthesis      electron microscopy     
Corresponding Author(s): Albert D. DUKES III   
Online First Date: 22 December 2015    Issue Date: 15 January 2016
 Cite this article:   
Michael Tanner CAMERON,Jordan A. ROGERSON,Douglas A. BLOM, et al. Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature[J]. Front. Mater. Sci., 2016, 10(1): 8-14.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0319-y
https://academic.hep.com.cn/foms/EN/Y2016/V10/I1/8
Fig.1  The electron micrographs of CdSe nanocrystals that exhibit the bipod morphology. These images are from samples synthesized by injecting 0.1 mol/L Se precursor when the reactive cadmium precursor is at 250°C.
Fig.2  The lattice-resolved image of CdSe bipods reveals that the bipod structure is a single crystal and not the result of two rods that have fused together during the growth process.
Fig.3  Electron micrographs of CdSe at (a)(b) 280°C and (c)(d) 310°C. When the temperature of the reactive cadmium precursor is 280°C or higher, the dot morphology was predominantly observed.
Fig.4  As the temperature of the reactive cadmium precursor is increased at the time of the Se precursor injection, the morphology shifts from predominantly bipods to predominantly dots. At 280°C, the dot morphology is the dominate morphology observed with only a few bipods observed.
Fig.5  The UV-visible absorption spectrum and the fluorescence spectrum were measured for nanocrystals with (a) the bipod morphology and (b) the dot morphology.
ACalternative current
CEOSCorrected Electron Optical Systems
FEGfield emission gun
HAADFhigh angle annular dark-field
ODE1-octadecene
STEMscanning transmission electron microscopy
TBPtri-n-butylphosphine
TEMtransmission electron microscopy
UVultraviolet
Tab.1  
1 El-Sayed  M A. Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Accounts of Chemical Research, 2004, 37(5): 326–333
2 Burda  C, Chen  X, Narayanan  R, . Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025–1102
3 Meyns  M, Iacono  F, Palencia  C, . Shape evolution of CdSe nanoparticles controlled by halogen compounds. Chemistry of Materials, 2014, 26(5): 1813–1821
4 Li  Z, Peng  X. Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. Journal of the American Chemical Society, 2011, 133(17): 6578–6586
5 Liu  L, Zhuang  Z, Xie  T, . Shape control of CdSe nanocrystals with zinc blende structure. Journal of the American Chemical Society, 2009, 131(45): 16423–16429
6 Dayal  S, Reese  M O, Ferguson  A J, . The effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of poly(3-hexylthiophene):CdSe nanoparticle bulk heterojunction solar cells. Advanced Functional Materials, 2010, 20(16): 2629–2635
7 Wang  W, Banerjee  S, Jia  S, . Ligand control of growth, morphology, and capping structure of colloidal CdSe nanorods. Chemistry of Materials, 2007, 19(10): 2573–2580
8 Cao  X, Zhao  C, Lan  X, . Rapid phosphine-free growth of diverse CdSe multipods via microwave irradiation route. Journal of Alloys and Compounds, 2009, 474(1–2): 61–67
9 Yu  W W, Peng  X. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angewandte Chemie International Edition, 2007, 41(15): 2368–2371
10 Shiang  J J, Kadavanich  A V, Grubbs  R K, . Symmetry of annealed wurtzite CdSe nanocrystals: Assignment to the C3v point group. The Journal of Physical Chemistry, 1995, 99(48): 17417–17422
11 Rosenthal  S J, McBride  J, Pennycook  S J, . Synthesis, surface studies, composition and structural characterization of CdSe, core/shell, and biologically active nanocrystals. Surface Science Reports, 2007, 62(4): 111–157
12 Manna  L, Scher  E C, Alivisatos  A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. Journal of the American Chemical Society, 2000, 122(51): 12700–12706
13 Young  J A. Chemical laboratory information profile: Oleic acid. Journal of Chemical Education, 2002, 79(1): 24
14 Du  Y, Zeng  F. Solvothermal route to CdS nanocrystals. Journal of Experimental Nanoscience, 2013, 8(7–8): 965–970
15 Yu  W W, Qu  L, Guo  W, . Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 2003, 15(14): 2854–2860
16 Dukes  A D 3rd, Schreuder  M A, Sammons  J A, . Pinned emission from ultrasmall cadmium selenide nanocrystals. The Journal of Chemical Physics, 2008, 129(12): 121102
17 Underwood  D F, Kippeny  T, Rosenthal  S J. Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy. The Journal of Physical Chemistry B, 2001, 105(2): 436–443
18 Pokrant  S, Whaley  K B. Tight-binding studies of surface effects on electronic structure of CdSe nanocrystals: the role of organic ligands, surface reconstruction, and inorganic capping shells. The European Physical Journal D, 1999, 6(2): 255–267
19 Jasieniak  J, Mulvaney  P. From Cd-rich to Se-rich — the manipulation  of  CdSe  nanocrystal surface  stoichiometry. Journal of the American Chemical Society, 2007, 129(10): 2841–2848
[1] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[2] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[3] Pengzhang LI, Chuanjin TIAN, Wei YANG, Wenyan ZHAO, Zhe LÜ. LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc--air batteries[J]. Front. Mater. Sci., 2019, 13(3): 277-287.
[4] Yuqiao CHENG, Yang YANG, Chunrong NIU, Zhe FENG, Wenhui ZHAO, Shuang LU. Progress in synthesis and application of zwitterionic Gemini surfactants[J]. Front. Mater. Sci., 2019, 13(3): 242-257.
[5] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[6] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
[7] Yajing ZHAO,Yan CHEN,Kepi CHEN. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping[J]. Front. Mater. Sci., 2016, 10(4): 422-427.
[8] Bin ZHANG,Chen LIU,Weiping KONG,Chenze QI. Magnetic motive, ordered mesoporous carbons with partially graphitized framework and controllable surface wettability: preparation, characterization and their selective adsorption of organic pollutants in water[J]. Front. Mater. Sci., 2016, 10(2): 147-156.
[9] Guangfa WANG,Linhui GAO,Hongliang ZHU,Weijie ZHOU. Hydrothermal synthesis of blue-emitting YPO4:Yb3+ nanophosphor[J]. Front. Mater. Sci., 2016, 10(2): 197-202.
[10] Ying WANG,Hong ZHANG,Zhiyuan MA,Gaomin WANG,Zhicheng LI. Li-ion storage performance and electrochemically induced phase evolution of layer-structured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material[J]. Front. Mater. Sci., 2016, 10(2): 187-196.
[11] C. Selene CORIA-MONROY,Mérida SOTELO-LERMA,Hailin HU. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution[J]. Front. Mater. Sci., 2016, 10(2): 168-177.
[12] Cheng-Zhen WEI,Hai-Feng MA,Feng GAO. Green synthesis of metal/C and metal oxide/C films by using natural membrane as support[J]. Front. Mater. Sci., 2014, 8(2): 150-156.
[13] M. JAMESH, T. S. N. SANKARA NARAYANAN, Paul K. CHU, Il Song PARK, Min Ho LEE. Effect of surface mechanical attrition treatment of titanium using alumina balls: surface roughness, contact angle and apatite forming ability[J]. Front Mater Sci, 2013, 7(3): 285-294.
[14] Marcin WYSOKOWSKI, Mykhaylo MOTYLENKO, Vasilii V. BAZHENOV, Dawid STAWSKI, Iaroslav PETRENKO, Andre EHRLICH, Thomas BEHM, Zoran KLJAJIC, Allison L. STELLING, Teofil JESIONOWSKI, Hermann EHRLICH. Poriferan chitin as a template for hydrothermal zirconia deposition[J]. Front Mater Sci, 2013, 7(3): 248-260.
[15] Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties[J]. Front Mater Sci, 2013, 7(3): 203-226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed