|
|
Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping |
Yajing ZHAO1,Yan CHEN2,Kepi CHEN1( ) |
1. School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China 2. Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA |
|
|
Abstract In this paper, the effects of doping with GeO2 on the synthesis temperature, phase structure and morphology of (K0.5Na0.5)NbO3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900°C for 2 h. Introducing 0.5 mol.% GeO2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800°C, which can be ascribed to the formation of the liquid phase during the synthesis.
|
Keywords
lead-free piezoelectrics
potassium sodium niobate
synthesis
acceptor doping
|
Corresponding Author(s):
Kepi CHEN
|
Online First Date: 16 November 2016
Issue Date: 24 November 2016
|
|
1 |
Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. New York: Academic Press, 1971
|
2 |
Safari A, Akdogan E K, eds. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer, 2008
|
3 |
Tichý J, Erhart J, Kittinger E, . Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Berlin: Springer, 2010
|
4 |
Uchino K. Ferroelectric Devices. 2nd ed. New York: CRC Press, 2009
|
5 |
Saito Y, Takao H, Tani T, . Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87
https://doi.org/10.1038/nature03028
pmid: 15516921
|
6 |
Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126
https://doi.org/10.1007/s10832-007-9047-0
|
7 |
Panda P K. Review: environmental friendly lead-free piezoelectric materials. Journal of Materials Science, 2009, 44(19): 5049–5062
https://doi.org/10.1007/s10853-009-3643-0
|
8 |
Rodel J, Jo W, Seifert K T P, . Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177
https://doi.org/10.1111/j.1551-2916.2009.03061.x
|
9 |
Rodel J, Webber K G, Dittmer R, . Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 2015, 35(6): 1659–1681
https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
|
10 |
Li J F, Wang K, Zhu F Y, . (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696
https://doi.org/10.1111/jace.12715
|
11 |
Wu J, Xiao D, Zhu J. Potassium‒sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595
https://doi.org/10.1021/cr5006809
pmid: 25792114
|
12 |
Wang X, Wu J, Xiao D, . Giant piezoelectricity in potassium‒sodium niobate lead-free ceramics. Journal of the American Chemical Society, 2014, 136(7): 2905–2910
https://doi.org/10.1021/ja500076h
pmid: 24499419
|
13 |
Wang X, Wu J, Xiao D, . Large d33 in (K,Na)(Nb,Ta,Sb)O3‒(Bi,Na,K)ZrO3 lead-free ceramics. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(12): 4122–4126
https://doi.org/10.1039/c3ta15075e
|
14 |
Matsubara M, Yamaguchi T, Kikuta K, . Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Japanese Journal of Applied Physics, 2004, 43(10): 7159–7163
https://doi.org/10.1143/JJAP.43.7159
|
15 |
Park S H, Ahn C W, Nahm S, . Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(8B): L1072–L1074
https://doi.org/10.1143/JJAP.43.L1072
|
16 |
Matsubara M, Yamaguchi T, Kikuta K, . Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Japanese Journal of Applied Physics, 2005, 44(1A): 258–263
https://doi.org/10.1143/JJAP.44.258
|
17 |
Matsubara M, Yamaguchi T, Sakamoto W, . Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190–1196
https://doi.org/10.1111/j.1551-2916.2005.00229.x
|
18 |
Park H Y, Choi J Y, Choi M K, . Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2008, 91(7): 2374–2377
https://doi.org/10.1111/j.1551-2916.2008.02408.x
|
19 |
Rubio-Marcos F, Romero J J, Navarro-Rojero M G, . Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009, 29(14): 3045–3052
https://doi.org/10.1016/j.jeurceramsoc.2009.04.026
|
20 |
Alkoy E M, Papila M. Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics. Ceramics International, 2010, 36(6): 1921–1927
https://doi.org/10.1016/j.ceramint.2010.03.018
|
21 |
Rubio-Marcos F, Marchet P, Vendrell X, . Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. Journal of Alloys and Compounds, 2011, 509(35): 8804–8811
https://doi.org/10.1016/j.jallcom.2011.06.080
|
22 |
Chen K P, Zhang F L, Zhou J Q, . Effect of borax addition on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Ceramics International, 2015, 41(8): 10232–10236
https://doi.org/10.1016/j.ceramint.2015.04.131
|
23 |
Chen K P, Zhou J Q, Zhang F L, . Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701
https://doi.org/10.1111/jace.13583
|
24 |
Chen K P, Zhang F L, Jiao Y L, . Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686
https://doi.org/10.1111/jace.14162
|
25 |
Feizpour M, Ebadzadeh T, Jenko D. Synthesis and characterization of lead-free piezoelectric (K0.50Na0.50)NbO3 powder produced at lower calcination temperatures: A comparative study with a calcination temperature of 850°C. Journal of the European Ceramic Society, 2016, 36(7): 1595–1603
https://doi.org/10.1016/j.jeurceramsoc.2016.01.014
|
26 |
Chen K P, Tang J, Chen Y. Compositional inhomogeneity and segregation in (K0.5Na0.5)NbO3 ceramics. Ceramics International, 2016, 42(8): 9949–9954
https://doi.org/10.1016/j.ceramint.2016.03.096
|
27 |
Chen K P, Zhang F L, Li D S, . Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903
https://doi.org/10.1016/j.ceramint.2015.11.016
|
28 |
Murthy M K, Aguayo J. Studies in germanium oxide systems: II, phase equilibria in the system Na2O‒GeO2. Journal of the American Ceramic Society, 1964, 47(9): 444–447
https://doi.org/10.1111/j.1151-2916.1964.tb14433.x
|
29 |
Murthy M K, Long L, Ip J. Studies in germanium oxide systems: IV, phase equilibria in the system K2O‒GeO2. Journal of the American Ceramic Society, 1968, 51(11): 661–662
https://doi.org/10.1111/j.1151-2916.1968.tb12640.x
|
30 |
Bomlai P, Wichianrat P, Muensit S, . Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. Journal of the American Ceramic Society, 2007, 90(5): 1650–1655
https://doi.org/10.1111/j.1551-2916.2007.01629.x
|
31 |
Guo Y P, Kakimoto K, Ohsato H. Structure and electrical properties of lead-free (Na0.5K0.5)NbO3‒BaTiO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(9B): 6662–6666
https://doi.org/10.1143/JJAP.43.6662
|
32 |
Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3‒LiTaO3 ceramics. Applied Physics Letters, 2007, 90(26): 262903
https://doi.org/10.1063/1.2751607
|
33 |
Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties of K1−xNaxNbO3 lead-free ceramics. Applied Physics Letters, 2009, 94(4): 042905
https://doi.org/10.1063/1.3076105
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|