Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (1) : 59-65    https://doi.org/10.1007/s11706-017-0371-2
RESEARCH ARTICLE
Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics
Kepi CHEN(),Yanlin JIAO
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
 Download: PDF(369 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lead-free (K0.5Na0.5)(Nb1−xGex)O3 (KNN-xGe, where x = 0–0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature (TC) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.% can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.

Keywords lead-free piezoelectric ceramics      potassium sodium niobate      doping      sintering      dielectric relaxation      piezoelectric properties     
Corresponding Author(s): Kepi CHEN   
Online First Date: 12 January 2017    Issue Date: 22 January 2017
 Cite this article:   
Kepi CHEN,Yanlin JIAO. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics[J]. Front. Mater. Sci., 2017, 11(1): 59-65.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0371-2
https://academic.hep.com.cn/foms/EN/Y2017/V11/I1/59
Fig.1  SEM images of KNN-xGe ceramics sintered at different temperatures.
Fig.2  XRD patterns of KNN-xGe ceramics sintered at 1020°C.
Fig.3  Variation of the dielectric constant as a function of temperature for KNN-xGe ceramics sintered at 1020°C.
Fig.4  Variation of the Curie temperature TC for KNN-xGe ceramics sintered at 1020°C.
Fig.5  Plots of ln(1/ϵ−1/ϵm) vs. ln(TTm) for KNN-xGe ceramics.
Fig.6  Variation of the degree of diffuseness γ for the KNN-xGe ceramics at 1020°C.
Fig.7  P?E hysteresis loops of KNN-xGe ceramics sintered at 1020°C (data were measured at 1 Hz and room temperature): (a)x = 0, 0.8%, 1.0%; (b)x = 0.2%, 0.4%, 0.6%.
Fig.8  Electrical properties of KNN-xGe ceramics sintered at 1020°C: (a)d33; (b)kp; (c)Qm; (d) tanδ.
1 Uchino K. Ferroelectric Devices. New York: CRC Press, 2009
2 Ahmad Safari E K A. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer, 2008
3 Saito Y, Takao H, Tani T, . Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87
https://doi.org/10.1038/nature03028 pmid: 15516921
4 Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126
https://doi.org/10.1007/s10832-007-9047-0
5 Rodel J, Jo W, Seifert K T P, . Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177
https://doi.org/10.1111/j.1551-2916.2009.03061.x
6 Li J F, Wang K, Zhu F Y, . (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696
https://doi.org/10.1111/jace.12715
7 Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595
https://doi.org/10.1021/cr5006809 pmid: 25792114
8 Matsubara M, Yamaguchi T, Kikuta K, . Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Japanese Journal of Applied Physics, 2004, 43(10): 7159–7163
https://doi.org/10.1143/JJAP.43.7159
9 Matsubara M, Yamaguchi T, Kikuta K, . Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Japanese Journal of Applied Physics, 2005, 44(1A): 258–263
https://doi.org/10.1143/JJAP.44.258
10 Matsubara M, Yamaguchi T, Sakamoto W, . Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190–1196
https://doi.org/10.1111/j.1551-2916.2005.00229.x
11 Zuo R Z, Rodel J, Chen R Z, . Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. Journal of the American Ceramic Society, 2006, 89(6): 2010–2015
https://doi.org/10.1111/j.1551-2916.2006.00991.x
12 Lin D M, Kwok K W, Chan H L W. Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Applied Physics Letters, 2007, 90(23): 232903
https://doi.org/10.1063/1.2746087
13 Bernard J, Bencan A, Rojac T, . Low-temperature sintering of K0.5Na0.5NbO3 ceramics. Journal of the American Ceramic Society, 2008, 91(7): 2409–2411
https://doi.org/10.1111/j.1551-2916.2008.02447.x
14 Ahn C W, Nahm S, Karmarkar M, . Effect of CuO and MnO2 on sintering temperature, microstructure, and piezoelectric properties of 0.95(K0.5Na0.5)NbO3‒0.05BaTiO3 ceramics. Materials Letters, 2008, 62(20): 3594–3596
https://doi.org/10.1016/j.matlet.2008.03.062
15 Mgbemere H E, Herber R P, Schneider G A. Effect of MnO2 on the dielectric and piezoelectric properties of alkaline niobate based lead free piezoelectric ceramics. Journal of the European Ceramic Society, 2009, 29(9): 1729–1733
https://doi.org/10.1016/j.jeurceramsoc.2008.10.012
16 Rubio-Marcos F, Romero J J, Navarro-Rojero M G, . Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009, 29(14): 3045–3052
https://doi.org/10.1016/j.jeurceramsoc.2009.04.026
17 Zhou J J, Cheng L Q, Wang K, . Low-temperature sintering of (K,Na)NbO3-based lead-free piezoceramics with addition of LiF. Journal of the European Ceramic Society, 2014, 34(5): 1161–1167
https://doi.org/10.1016/j.jeurceramsoc.2013.11.029
18 Chen K P, Zhang F L, Zhou J Q, . Effect of borax addition on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Ceramics International, 2015, 41(8): 10232–10236
https://doi.org/10.1016/j.ceramint.2015.04.131
19 Chen K P, Zhou J Q, Zhang F L, . Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701
https://doi.org/10.1111/jace.13583
20 Chen K P, Zhang F L, Jiao Y L, . Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686
https://doi.org/10.1111/jace.14162
21 Zhao Y J, Chen Y, Chen K P. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping. Frontiers of Materials Science, 2016, 10(4): 422–427
22 Chen K P, Zhang F L, Li D S, . Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903
https://doi.org/10.1016/j.ceramint.2015.11.016
23 Uchino K, Nomura S. Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics, 1982, 44(1): 55–61
https://doi.org/10.1080/07315178208201875
24 Kumar P, Pattanaik M, Sonia. Synthesis and characterizations of KNN ferroelectric ceramics near 50/50 MPB. Ceramics International, 2013, 39(1): 65–69
https://doi.org/10.1016/j.ceramint.2012.05.093
[1] Elias ASSAYEHEGN, Ananthakumar SOLAIAPPAN, Yonas CHEBUDIE, Esayas ALEMAYEHU. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
[2] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[3] Meng LIU, Lei LIU, Yifeng YU, Haijun LV, Aibing CHEN, Senlin HOU. Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 156-164.
[4] Wang YANG, Wu YANG, Lina KONG, Shuanlong DI, Xiujuan QIN. Nitrogen--oxygen co-doped corrugation-like porous carbon for high performance supercapacitor[J]. Front. Mater. Sci., 2018, 12(3): 283-291.
[5] Xiaoxiao WANG, Wanwan WANG, Baichuan ZHU, Fangfang QIAN, Zhen FANG. Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode[J]. Front. Mater. Sci., 2018, 12(1): 53-63.
[6] Wanyu ZHAO, Jian LI, Bingbing FAN, Gang SHAO, Hailong WANG, Bozhen SONG, Shengnan WEI, Rui ZHANG. Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth[J]. Front. Mater. Sci., 2017, 11(4): 353-357.
[7] Zhi TAN, Jie XING, Laiming JIANG, Jianguo ZHU, Bo WU. Ga2O3 doping and vacancy effect in KNN--LT lead-free piezoceramics[J]. Front. Mater. Sci., 2017, 11(4): 344-352.
[8] Linhui ZHANG, Yan JIANG, Qianfeng FANG, Zhuoming XIE, Shu MIAO, Longfei ZENG, Tao ZHANG, Xianping WANG, Changsong LIU. Microstructure and mechanical properties of tungsten composite reinforced by fibre network[J]. Front. Mater. Sci., 2017, 11(2): 190-196.
[9] Yajing ZHAO,Yan CHEN,Kepi CHEN. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping[J]. Front. Mater. Sci., 2016, 10(4): 422-427.
[10] Yan JIANG,Jun-Feng YANG,Qian-Feng FANG. Effect of chromium content on microstructure and corrosion behavior of W--Cr--C coatings prepared on tungsten substrate[J]. Front. Mater. Sci., 2015, 9(1): 77-84.
[11] Zhong-Bing HUANG,Guang-Fu YIN,Xiao-Ming LIAO,Jian-Wen GU. Conducting polypyrrole in tissue engineering applications[J]. Front. Mater. Sci., 2014, 8(1): 39-45.
[12] Wen-Guang GUO, Zhi-Ye QIU, Han CUI, Chang-Ming WANG, Xiao-Jun ZHANG, In-Seop LEE, Yu-Qi DONG, Fu-Zhai CUI. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics[J]. Front Mater Sci, 2013, 7(2): 190-195.
[13] Ke-Pi CHEN, Zhe ZHANG. BiCoO3-doped (K0.475Na0.475Li0.05)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics[J]. Front Mater Sci, 2012, 6(4): 311-318.
[14] Yun-Xia GAO, Xian-Ping WANG, Qin-Xing SUN, Zhong ZHUANG, Qian-Feng FANG. Electrical properties of garnet-like lithium ionic conductors Li5+xSrxLa3--xBi2O12 fabricated by spark plasma sintering method[J]. Front Mater Sci, 2012, 6(3): 216-224.
[15] Junyi ZHU, Su-Huai WEI. Overcoming doping bottleneck by using surfactant and strain[J]. Front Mater Sci, 2011, 5(4): 335-341.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed