|
|
Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics |
Kepi CHEN( ),Yanlin JIAO |
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China |
|
|
Abstract Lead-free (K0.5Na0.5)(Nb1−xGex)O3 (KNN-xGe, where x = 0–0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature (TC) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.% can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.
|
Keywords
lead-free piezoelectric ceramics
potassium sodium niobate
doping
sintering
dielectric relaxation
piezoelectric properties
|
Corresponding Author(s):
Kepi CHEN
|
Online First Date: 12 January 2017
Issue Date: 22 January 2017
|
|
1 |
Uchino K. Ferroelectric Devices. New York: CRC Press, 2009
|
2 |
Ahmad Safari E K A. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer, 2008
|
3 |
Saito Y, Takao H, Tani T, . Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87
https://doi.org/10.1038/nature03028
pmid: 15516921
|
4 |
Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126
https://doi.org/10.1007/s10832-007-9047-0
|
5 |
Rodel J, Jo W, Seifert K T P, . Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177
https://doi.org/10.1111/j.1551-2916.2009.03061.x
|
6 |
Li J F, Wang K, Zhu F Y, . (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696
https://doi.org/10.1111/jace.12715
|
7 |
Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595
https://doi.org/10.1021/cr5006809
pmid: 25792114
|
8 |
Matsubara M, Yamaguchi T, Kikuta K, . Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Japanese Journal of Applied Physics, 2004, 43(10): 7159–7163
https://doi.org/10.1143/JJAP.43.7159
|
9 |
Matsubara M, Yamaguchi T, Kikuta K, . Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Japanese Journal of Applied Physics, 2005, 44(1A): 258–263
https://doi.org/10.1143/JJAP.44.258
|
10 |
Matsubara M, Yamaguchi T, Sakamoto W, . Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190–1196
https://doi.org/10.1111/j.1551-2916.2005.00229.x
|
11 |
Zuo R Z, Rodel J, Chen R Z, . Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. Journal of the American Ceramic Society, 2006, 89(6): 2010–2015
https://doi.org/10.1111/j.1551-2916.2006.00991.x
|
12 |
Lin D M, Kwok K W, Chan H L W. Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Applied Physics Letters, 2007, 90(23): 232903
https://doi.org/10.1063/1.2746087
|
13 |
Bernard J, Bencan A, Rojac T, . Low-temperature sintering of K0.5Na0.5NbO3 ceramics. Journal of the American Ceramic Society, 2008, 91(7): 2409–2411
https://doi.org/10.1111/j.1551-2916.2008.02447.x
|
14 |
Ahn C W, Nahm S, Karmarkar M, . Effect of CuO and MnO2 on sintering temperature, microstructure, and piezoelectric properties of 0.95(K0.5Na0.5)NbO3‒0.05BaTiO3 ceramics. Materials Letters, 2008, 62(20): 3594–3596
https://doi.org/10.1016/j.matlet.2008.03.062
|
15 |
Mgbemere H E, Herber R P, Schneider G A. Effect of MnO2 on the dielectric and piezoelectric properties of alkaline niobate based lead free piezoelectric ceramics. Journal of the European Ceramic Society, 2009, 29(9): 1729–1733
https://doi.org/10.1016/j.jeurceramsoc.2008.10.012
|
16 |
Rubio-Marcos F, Romero J J, Navarro-Rojero M G, . Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009, 29(14): 3045–3052
https://doi.org/10.1016/j.jeurceramsoc.2009.04.026
|
17 |
Zhou J J, Cheng L Q, Wang K, . Low-temperature sintering of (K,Na)NbO3-based lead-free piezoceramics with addition of LiF. Journal of the European Ceramic Society, 2014, 34(5): 1161–1167
https://doi.org/10.1016/j.jeurceramsoc.2013.11.029
|
18 |
Chen K P, Zhang F L, Zhou J Q, . Effect of borax addition on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Ceramics International, 2015, 41(8): 10232–10236
https://doi.org/10.1016/j.ceramint.2015.04.131
|
19 |
Chen K P, Zhou J Q, Zhang F L, . Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701
https://doi.org/10.1111/jace.13583
|
20 |
Chen K P, Zhang F L, Jiao Y L, . Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686
https://doi.org/10.1111/jace.14162
|
21 |
Zhao Y J, Chen Y, Chen K P. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping. Frontiers of Materials Science, 2016, 10(4): 422–427
|
22 |
Chen K P, Zhang F L, Li D S, . Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903
https://doi.org/10.1016/j.ceramint.2015.11.016
|
23 |
Uchino K, Nomura S. Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics, 1982, 44(1): 55–61
https://doi.org/10.1080/07315178208201875
|
24 |
Kumar P, Pattanaik M, Sonia. Synthesis and characterizations of KNN ferroelectric ceramics near 50/50 MPB. Ceramics International, 2013, 39(1): 65–69
https://doi.org/10.1016/j.ceramint.2012.05.093
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|