|
|
Microstructure and mechanical properties of tungsten composite reinforced by fibre network |
Linhui ZHANG1,2, Yan JIANG1, Qianfeng FANG1,2( ), Zhuoming XIE1,2, Shu MIAO1,2, Longfei ZENG1,2, Tao ZHANG1, Xianping WANG1, Changsong LIU1 |
1. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China 2. Graduate School, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract In this paper the tungsten-fibre-net-reinforced tungsten composites were produced by spark plasma sintering (SPS) using fine W powders and commercial tungsten fibres. The relative density of the samples is above 95%. It was found that the recrystallization area in the fibres became bigger with increasing sintering temperature and pressure. The tungsten grains of fibres kept stable when sintered at 1350°C/16 kN while grown up when sintered at 1800°C/16 kN. The composite sintered at 1350°C/16 kN have a Vickers-hardness of ~610 HV, about 2 times that of the 1800°C/16 kN sintered one. Tensile tests imply that the temperature at which the composites (1350°C/16 kN) begin to exhibit plastic deformation is about 200°C–250°C, which is 400°C lower than that of SPSed pure W. The tensile fracture surfaces show that the increasing fracture ductility comes from pull-out, interface debonding and fracture of fibres.
|
Keywords
tungsten-fibre-net
spark plasma sintering
recrystallization
tensile test
|
Corresponding Author(s):
Qianfeng FANG
|
Online First Date: 08 May 2017
Issue Date: 26 May 2017
|
|
21 |
Du J, Höschen T, Rasinski M, et al.. Interfacial fracture behavior of tungsten wire/tungsten matrix composites with copper-coated interfaces. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2010, 527(6): 1623–1629
https://doi.org/10.1016/j.msea.2009.10.046
|
1 |
Liu L, Liu D P, Hong Y, et al.. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions. Journal of Nuclear Materials, 2016, 471: 1–7
https://doi.org/10.1016/j.jnucmat.2016.01.001
|
2 |
Li X W, Zhang M N, Zheng D H, et al.. The oxidation behavior of the WC–10 wt.% Ni3Al composite fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2015, 629: 148–154
https://doi.org/10.1016/j.jallcom.2015.01.010
|
3 |
Dai S Y, Wang L, Kirschner A, et al.. Kinetic modelling of material erosion and impurity transport in edge localized modes in EAST. Nuclear Fusion, 2015, 55(4): 043003 (8 pages)
https://doi.org/10.1088/0029-5515/55/4/043003
|
4 |
Palacios T, Monge M A, Pastor J Y. Tungsten–vanadium–yttria alloys for fusion power reactors (I): Microstructural characterization. International Journal of Refractory Metals and Hard Materials, 2016, 54: 433–438
https://doi.org/10.1016/j.ijrmhm.2015.07.032
|
5 |
Ekbom L B. Tungsten heavy-metals. Scandinavian Journal of Metallurgy, 1991, 20(3): 190–197
|
6 |
Giannattasio A, Yao Z, Tarleton E, et al.. Brittle-ductile transitions in polycrystalline tungsten. Philosophical Magazine, 2010, 90(30): 3947–3959
https://doi.org/10.1080/14786435.2010.502145
|
7 |
Miao S, Xie Z M, Yang X D, et al.. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W–0.5 wt.% TaC alloys. International Journal of Refractory Metals & Hard Materials, 2016, 56: 8–17
https://doi.org/10.1016/j.ijrmhm.2015.12.004
|
8 |
Xie Z M, Zhang T, Liu R, et al.. Grain growth behavior and mechanical properties of zirconium microalloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys. International Journal of Refractory Metals & Hard Materials, 2015, 51: 180–187
https://doi.org/10.1016/j.ijrmhm.2015.03.019
|
22 |
Du J, Höschen T, Rasinski M, et al.. Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings. Composites Science and Technology, 2010, 70(10): 1482–1489
https://doi.org/10.1016/j.compscitech.2010.04.028
|
23 |
Du J, Höschen T, Rasinski M, et al.. Shear debonding behavior of a carbon-coated interface in a tungsten fiber-reinforced tungsten matrix composite. Journal of Nuclear Materials, 2011, 417(1–3): 472–476
https://doi.org/10.1016/j.jnucmat.2010.12.254
|
9 |
Liu S L, Ye X X, Jiang L, et al.. Effect of tungsten content on the microstructure and tensile properties of Ni–xW–6Cr alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2016, 655: 269–276
https://doi.org/10.1016/j.msea.2016.01.010
|
10 |
Wang S, Chen C, Jia Y L, et al.. Effects of grain size on the microstructure and texture of cold-rolled Ta–2.5W alloy. International Journal of Refractory Metals & Hard Materials, 2016, 58: 125–136
https://doi.org/10.1016/j.ijrmhm.2016.04.018
|
11 |
Sinclair R, Preuss M, Maire E, et al.. The effect of fibre fractures in the bridging zone of fatigue cracked Ti–6Al–4V/SiC fibre composites. Acta Materialia, 2004, 52(6): 1423–1438
https://doi.org/10.1016/j.actamat.2003.11.024
|
12 |
Kimmig S, Allen I, You J H. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers. Journal of Nuclear Materials, 2013, 440(1–3): 272–277
https://doi.org/10.1016/j.jnucmat.2013.05.017
|
13 |
Conner R D, Dandliker R B, Johnson W L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Materialia, 1998, 46(17): 6089–6102
https://doi.org/10.1016/S1359-6454(98)00275-4
|
14 |
Carvalho P A, Livramento V, Nunes D, et al.. Tungsten–tantalum composites for plasma facing applications. Materials for Energy, 2010, 4–8
|
15 |
Pemberton S R, Oberg E K, Dean J, et al.. The fracture energy of metal fibre reinforced ceramic composites (MFCs). Composites Science and Technology, 2011, 71(3): 266–275
https://doi.org/10.1016/j.compscitech.2010.10.011
|
16 |
Son C Y, Kim G S, Lee S B, et al.. Dynamic compressive properties of Zr-based amorphous matrix composites reinforced with tungsten continuous fibers or porous foams. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43(6): 1911–1920
https://doi.org/10.1007/s11661-011-1066-4
|
17 |
Zhang B, Fu H M, Sha P F, et al.. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2013, 566: 16–21
https://doi.org/10.1016/j.msea.2012.12.080
|
18 |
Riesch J, Buffiere J Y, Hoschen T, et al.. In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system. Acta Materialia, 2013, 61(19): 7060–7071
https://doi.org/10.1016/j.actamat.2013.07.035
|
19 |
Riesch J, Aumann M, Coenen J W, et al.. Chemically deposited tungsten fibre-reinforced tungsten − The way to a mock-up for divertor applications. Nuclear Materials and Energy, 2016, 9: 75–83
|
20 |
Zhang L H, Jiang Y, Fang Q F, et al.. Toughness and microstructure of tungsten fibre net-reinforced tungsten composite produced by spark plasma sintering. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2016, 659: 29–36
https://doi.org/10.1016/j.msea.2016.02.034
|
24 |
Xie Z M, Liu R, Fang Q F, et al.. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. Journal of Nuclear Materials, 2014, 444(1–3): 175–180
https://doi.org/10.1016/j.jnucmat.2013.09.045
|
25 |
Asrar N, Meshkov L L, Sokolovskaya E M. Interdiffusional effects in tungsten fiber reinforced nickel-matrix composites. Transactions of the Indian Institute of Metals, 1990, 43(6): 364–367
|
26 |
Lee M H, Das J, Sordelet D J, et al.. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites. Applied Physics Letters, 2012, 101(12): 124103
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|