Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (2) : 190-196    https://doi.org/10.1007/s11706-017-0378-8
RESEARCH ARTICLE
Microstructure and mechanical properties of tungsten composite reinforced by fibre network
Linhui ZHANG1,2, Yan JIANG1, Qianfeng FANG1,2(), Zhuoming XIE1,2, Shu MIAO1,2, Longfei ZENG1,2, Tao ZHANG1, Xianping WANG1, Changsong LIU1
1. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2. Graduate School, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(421 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper the tungsten-fibre-net-reinforced tungsten composites were produced by spark plasma sintering (SPS) using fine W powders and commercial tungsten fibres. The relative density of the samples is above 95%. It was found that the recrystallization area in the fibres became bigger with increasing sintering temperature and pressure. The tungsten grains of fibres kept stable when sintered at 1350°C/16 kN while grown up when sintered at 1800°C/16 kN. The composite sintered at 1350°C/16 kN have a Vickers-hardness of ~610 HV, about 2 times that of the 1800°C/16 kN sintered one. Tensile tests imply that the temperature at which the composites (1350°C/16 kN) begin to exhibit plastic deformation is about 200°C–250°C, which is 400°C lower than that of SPSed pure W. The tensile fracture surfaces show that the increasing fracture ductility comes from pull-out, interface debonding and fracture of fibres.

Keywords tungsten-fibre-net      spark plasma sintering      recrystallization      tensile test     
Corresponding Author(s): Qianfeng FANG   
Online First Date: 08 May 2017    Issue Date: 26 May 2017
 Cite this article:   
Linhui ZHANG,Yan JIANG,Qianfeng FANG, et al. Microstructure and mechanical properties of tungsten composite reinforced by fibre network[J]. Front. Mater. Sci., 2017, 11(2): 190-196.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0378-8
https://academic.hep.com.cn/foms/EN/Y2017/V11/I2/190
Fig.1  SEM images of Wf/W samples sintered at different temperatures/pressures: (a) 1500°C/14 kN; (b) 1500°C/15 kN; (c) 1500°C/16 kN; (d) 1600°C/16 kN; (e) 1700°C/16 kN; (f) 1800°C/16 kN.
Fig.2  EBSD images of Wf/W-1400-16: (a) EBSD of fibre, grain growth of fibre and matrix; (b) aspect ratio of fibre; (c) grain size of fibre with grain growth; (d) grain size of matrix.
ElementChemical composition (mass fraction) corresponding to different grain sizes /ppm
200 nm500 nm
Na35
Mo1516
O46002200
Bi11
Cd11
Cu11
Pb11
Sn11
Al55
As55
Ca55
Co55
Cr55
Ti55
Ni55
Sb55
Si55
V55
Mn55
Mg55
S55
P55
K66
Fe1010
Win balancein balance
Tab.1  The chemical compositions of as-received tungsten powders
Fig.3  The schematic pictures of recrystallization process in fibres: (a) the fabrication process of fibres; (b) the influence of tungsten powders; (c) the grain growth in fibres.
SampleMass fraction of fibre /%Relative density /%Vickers hardness/HV0.2
Fibre10099.8668±11
Wf/W-1350-1622.3±0.195.7±0.2612±9 (fibre)
616±8 (matrix)
Wf/W-1800-1622.5±0.295.2±0.3384±8 (fibre)
300±6 (matrix)
Tab.2  Mass fraction of fibre, relative density, and Vickers hardness on fibre and matrix
Fig.4  SEM images of the fracture surface of Wf/W-1350-16 samples at RT: (a) fracture surface; (b) fibre; (c) interface; (d) matrix.
Fig.5  Tensile strength and total elongation of the Wf/W-1350-16 composites tested at different temperatures.
Fig.6  SEM images of the fracture surface in Wf/W composites tensile-tested at the temperature of (a) 200°C and (b) 300°C, showing characteristics of a single fibre: (c) pull-out; (d) necking; (e) splitting; (f) fracture surface of fibre.
21 Du J, Höschen T, Rasinski M, et al.. Interfacial fracture behavior of tungsten wire/tungsten matrix composites with copper-coated interfaces. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2010, 527(6): 1623–1629
https://doi.org/10.1016/j.msea.2009.10.046
1 Liu L, Liu D P, Hong Y, et al.. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions. Journal of Nuclear Materials, 2016, 471: 1–7
https://doi.org/10.1016/j.jnucmat.2016.01.001
2 Li X W, Zhang M N, Zheng D H, et al.. The oxidation behavior of the WC–10 wt.% Ni3Al composite fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2015, 629: 148–154
https://doi.org/10.1016/j.jallcom.2015.01.010
3 Dai S Y, Wang L, Kirschner A, et al.. Kinetic modelling of material erosion and impurity transport in edge localized modes in EAST. Nuclear Fusion, 2015, 55(4): 043003 (8 pages) 
https://doi.org/10.1088/0029-5515/55/4/043003
4 Palacios T, Monge M A, Pastor J Y. Tungsten–vanadium–yttria alloys for fusion power reactors (I): Microstructural characterization. International Journal of Refractory Metals and Hard Materials, 2016, 54: 433–438
https://doi.org/10.1016/j.ijrmhm.2015.07.032
5 Ekbom L B. Tungsten heavy-metals. Scandinavian Journal of Metallurgy, 1991, 20(3): 190–197
6 Giannattasio A, Yao Z, Tarleton E, et al.. Brittle-ductile transitions in polycrystalline tungsten. Philosophical Magazine, 2010, 90(30): 3947–3959
https://doi.org/10.1080/14786435.2010.502145
7 Miao S, Xie Z M, Yang X D, et al.. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W–0.5 wt.% TaC alloys. International Journal of Refractory Metals & Hard Materials, 2016, 56: 8–17
https://doi.org/10.1016/j.ijrmhm.2015.12.004
8 Xie Z M, Zhang T, Liu R, et al.. Grain growth behavior and mechanical properties of zirconium microalloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys. International Journal of Refractory Metals & Hard Materials, 2015, 51: 180–187
https://doi.org/10.1016/j.ijrmhm.2015.03.019
22 Du J, Höschen T, Rasinski M, et al.. Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings. Composites Science and Technology, 2010, 70(10): 1482–1489
https://doi.org/10.1016/j.compscitech.2010.04.028
23 Du J, Höschen T, Rasinski M, et al.. Shear debonding behavior of a carbon-coated interface in a tungsten fiber-reinforced tungsten matrix composite. Journal of Nuclear Materials, 2011, 417(1–3): 472–476
https://doi.org/10.1016/j.jnucmat.2010.12.254
9 Liu S L, Ye X X, Jiang L, et al.. Effect of tungsten content on the microstructure and tensile properties of Ni–xW–6Cr alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2016, 655: 269–276
https://doi.org/10.1016/j.msea.2016.01.010
10 Wang S, Chen C, Jia Y L, et al.. Effects of grain size on the microstructure and texture of cold-rolled Ta–2.5W alloy. International Journal of Refractory Metals & Hard Materials, 2016, 58: 125–136
https://doi.org/10.1016/j.ijrmhm.2016.04.018
11 Sinclair R, Preuss M, Maire E, et al.. The effect of fibre fractures in the bridging zone of fatigue cracked Ti–6Al–4V/SiC fibre composites. Acta Materialia, 2004, 52(6): 1423–1438
https://doi.org/10.1016/j.actamat.2003.11.024
12 Kimmig S, Allen I, You J H. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers. Journal of Nuclear Materials, 2013, 440(1–3): 272–277
https://doi.org/10.1016/j.jnucmat.2013.05.017
13 Conner R D, Dandliker R B, Johnson W L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Materialia, 1998, 46(17): 6089–6102
https://doi.org/10.1016/S1359-6454(98)00275-4
14  Carvalho P A, Livramento V, Nunes D, et al.. Tungsten–tantalum composites for plasma facing applications. Materials for Energy, 2010, 4–8
15 Pemberton S R, Oberg E K, Dean J, et al.. The fracture energy of metal fibre reinforced ceramic composites (MFCs). Composites Science and Technology, 2011, 71(3): 266–275
https://doi.org/10.1016/j.compscitech.2010.10.011
16 Son C Y, Kim G S, Lee S B, et al.. Dynamic compressive properties of Zr-based amorphous matrix composites reinforced with tungsten continuous fibers or porous foams. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43(6): 1911–1920
https://doi.org/10.1007/s11661-011-1066-4
17 Zhang B, Fu H M, Sha P F, et al.. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2013, 566: 16–21
https://doi.org/10.1016/j.msea.2012.12.080
18 Riesch J, Buffiere J Y, Hoschen T, et al.. In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system. Acta Materialia, 2013, 61(19): 7060–7071
https://doi.org/10.1016/j.actamat.2013.07.035
19 Riesch J, Aumann M, Coenen J W, et al.. Chemically deposited tungsten fibre-reinforced tungsten − The way to a mock-up for divertor applications. Nuclear Materials and Energy, 2016, 9: 75–83
20 Zhang L H, Jiang Y, Fang Q F, et al.. Toughness and microstructure of tungsten fibre net-reinforced tungsten composite produced by spark plasma sintering. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2016, 659: 29–36
https://doi.org/10.1016/j.msea.2016.02.034
24 Xie Z M, Liu R, Fang Q F, et al.. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. Journal of Nuclear Materials, 2014, 444(1–3): 175–180
https://doi.org/10.1016/j.jnucmat.2013.09.045
25 Asrar N, Meshkov L L, Sokolovskaya E M. Interdiffusional effects in tungsten fiber reinforced nickel-matrix composites. Transactions of the Indian Institute of Metals, 1990, 43(6): 364–367
26 Lee M H, Das J, Sordelet D J, et al.. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites. Applied Physics Letters, 2012, 101(12): 124103
[1] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[2] Yan JIANG,Jun-Feng YANG,Qian-Feng FANG. Effect of chromium content on microstructure and corrosion behavior of W--Cr--C coatings prepared on tungsten substrate[J]. Front. Mater. Sci., 2015, 9(1): 77-84.
[3] Yun-Xia GAO, Xian-Ping WANG, Qin-Xing SUN, Zhong ZHUANG, Qian-Feng FANG. Electrical properties of garnet-like lithium ionic conductors Li5+xSrxLa3--xBi2O12 fabricated by spark plasma sintering method[J]. Front Mater Sci, 2012, 6(3): 216-224.
[4] Cheng-Liang MIAO, Cheng-Jia SHANG, Guo-Dong ZHANG, Guo-Hui ZHU, Hatem ZUROB, Sundaresa SUBRAMANIAN, . Studies on softening kinetics of niobium microalloyed steel using stress relaxation technique[J]. Front. Mater. Sci., 2010, 4(2): 197-201.
[5] Hai-long WANG, Chang-an WANG. Preparation and mechanical properties of laminated zirconium diboride/molybdenum composites sintered by spark plasma sintering[J]. Front Mater Sci Chin, 2009, 3(3): 273-280.
[6] MAO Wei-min, AN Zhi-guo, LI Yang. Challenges of the study on precipitation behaviors of MnS in oriented electrical steels[J]. Front. Mater. Sci., 2008, 2(3): 233-238.
[7] LIU Dan-min, HAO Fei, ZHANG Jiu-xing, HU Yan-cao, ZHOU Mei-ling. Investigation of cube-textured Ni-7at.%W alloy substrates for YBaCuO coated superconductors[J]. Front. Mater. Sci., 2008, 2(3): 295-300.
[8] ZHU Guohui, S. V. Subramanian. Effect of Mn on strain accumulation in Nb microalloying steels[J]. Front. Mater. Sci., 2007, 1(3): 274-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed