Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (1) : 53-63    https://doi.org/10.1007/s11706-018-0414-3
RESEARCH ARTICLE
Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode
Xiaoxiao WANG1, Wanwan WANG1, Baichuan ZHU2, Fangfang QIAN1, Zhen FANG1()
1. College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, China
2. Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(612 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

NASICON-type Na3V2(PO4)3 (NVP) with superior electrochemical performance has attracted enormous attention with the development of sodium ion batteries. The structural aggregation as well as poor conductivity of NVP hinder its application in high rate perforamance cathode with long stablity. In this paper, Na3V2−xMox(PO4)3@C was successfully prepared through two steps method, including sol–gel and solid state thermal reduction. The optimal doping amount of Mo was defined by experiment. When x was 0.15, the Na3V1.85Mo0.15(PO4)3@C sample has the best cycle performance and rate performance. The discharge capacity of Na3V1.85Mo0.15(PO4)3@C could reach 117.26 mA·h·g−1 at 0.1 C. The discharge capacity retention was found to be 94.5% after 600 cycles at 5 C.

Keywords energy storage materials      doping      electrochemical reactions      Na ion battery     
Corresponding Author(s): Zhen FANG   
Online First Date: 26 February 2018    Issue Date: 07 March 2018
 Cite this article:   
Xiaoxiao WANG,Wanwan WANG,Baichuan ZHU, et al. Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode[J]. Front. Mater. Sci., 2018, 12(1): 53-63.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0414-3
https://academic.hep.com.cn/foms/EN/Y2018/V12/I1/53
Fig.1  Rietveld refined XRD patterns of Na3V1.85Mo0.15(PO4)3.
Fig.2  XPS spectra of (a) Mo 3d, (b) V 2p, (c) C 1s, and (d) P 2p.
Fig.3  EDS spectra of prepared Mo-NVP@C samples and atomic percentage of Mo in as-prepared Mo-NVP@C samples.
Fig.4  SEM images of as-prepared Na3V2−xMox(PO4)3@C samples in (a)(b)(c)(d)(e)(f) high magnification and (g)(h)(i)(j)(k)(l) low magnification.
Fig.5  (a) TEM image and (b)(c)(d) HRTEM images of as-prepared Mo-NVP@C sample (x = 0.15).
Fig.6  Raman spectra of as-prepared Mo-Na3V2−x(PO4)3@C samples with the x value of (a) 0, (b) 0.05, (c) 0.10, (d) 0.15, (e) 0.20 and (f) 0.25 (black lines: experimental curves; red lines: fitted curves; green line: deconvoluted curves).
Fig.7  (a) CV curves of as-prepared Mo-NVP@C samples with the potential window range of 2.2–3.8 V and the scan rate at 0.1 mV·s−1. (b) Charge–discharge curves of as-prepared Mo-NVP@C samples at 0.2 C with the potential window range of 2.2–3.8 V.
Fig.8  Long cycle performance at the current rate of (a) 1 C for 200 cycles and (b) 5 C for 600 cycles of as-prepared Mo-NVP@C samples.
Value of x 1 C 5 C
Capacity/(mA·h·g−1) Capacity retention/% Capacity/(mA·h·g−1) Capacity retention/%
0 112.26 87.4 100.32 67.3
0.05 114.81 96.5 102.57 88.9
0.10 114.02 97.6 102.77 90.9
0.15 113.65 97.9 104.62 94.5
0.20 112.58 97.0 102.48 80.7
0.25 112.46 95.6 101.40 74.1
Tab.1  Capacity retention of as-prepared Mo-NVP@C samples at 1 and 5 C for 200 and 600 cycles
Fig.9  (a) Rate performance of as-prepared Mo-NVP@C samples between 2.2 and 3.8 V at the current rates of 0.5, 1, 2, 5, 10, 20, 40, 20, 10, 5, 2, 1 and 0.5 C. (b) Nyquist plots of as-prepared Mo-NVP@C samples for fresh cells.
  Fig. S1&chsp;?(a) XRD spectra of as-prepared Mo-NVP@C samples. (b) High resolution diffraction peaks of the (113) plane of Mo-NVP@C samples.
Mo content a c V3 Mo occupancy
0 8.7224 21.8060 1436.762 0.0000
0.05 8.7220 21.8060 1436.607 0.0571
0.10 8.7210 21.8043 1436.173 0.1200
0.15 8.7223 21.8060 1436.710 0.1533
0.20 8.7240 21.8018 1437.025 0.2009
0.25 8.7256 21.8088 1437.988 0.2551
  Table S1&chsp;?Lattice parameters in the R-3c space group for Mo-NVP@C samples
  Fig. S2&chsp;?Crystal structure of NASICON-type NVP.
  Fig. S3&chsp;?Equivalent electrical circuit applied to the fitting of the EIS. Rs is the ohmic resistance of the electrolyte and electrode; Rct is the charge transfer resistance; Wo is the Warburg impedance; CPE represents the double layer capacitance and passivation film capacitance.
Mo content/% Rs Rct
0 11.44 119.79
0.05 12.11 102.22
0.1 5.547 103.5
0.15 12.09 61.7
0.2 5.656 104.8
0.25 11.84 101.31
  Table S2&chsp;Fitting results of Nyquist plots for Mo-NVP@C samples
1 Jian Z, Sun  Y, Ji X. A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries. Chemical Communications, 2015, 51(29): 6381–6383
https://doi.org/10.1039/C5CC00944H pmid: 25762199
2 Cheng F, Liang  J, Tao Z, et al.. Functional materials for rechargeable batteries. Advanced Materials, 2011, 23(15): 1695–1715
https://doi.org/10.1002/adma.201003587 pmid: 21394791
3 Goodenough J B,  Kim Y. Challenges for rechargeable Li batteries. Chemistry of Materials, 2010, 22(3): 587–603
https://doi.org/10.1021/cm901452z
4 Tao S, Huang  W F, Wu  G X, et al.. Performance enhancement of lithium-ion battery with LiFePO4@C/RGO hybrid electrode. Electrochimica Acta, 2014, 144: 406–411
https://doi.org/10.1016/j.electacta.2014.08.092
5 Huang W F, Tao  S, Zhou J, et al.. Phase separations in LiFe1−xMnxPO4: A random stack model for efficient cathode materials. The Journal of Physical Chemistry C, 2014, 118(2): 796–803
https://doi.org/10.1021/jp4081564
6 Slater M D, Kim  D, Lee E, et al.. Sodium-ion batteries. Advanced Functional Materials, 2013, 23(8): 947–958
https://doi.org/10.1002/adfm.201200691
7 Yabuuchi N, Kubota  K, Dahbi M, et al.. Research development on sodium-ion batteries. Chemical Reviews, 2014, 114(23): 11636–11682
https://doi.org/10.1021/cr500192f pmid: 25390643
8 Ellis B L, Nazar  L F. Sodium and sodium-ion energy storage batteries. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168–177
https://doi.org/10.1016/j.cossms.2012.04.002
9 Palomares V, Serras  P, Villaluenga I, et al.. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science, 2012, 5(3): 5884–5901
https://doi.org/10.1039/c2ee02781j
10 Kim S W, Seo  D H, Ma  X H, et al.. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Advanced Energy Materials, 2012, 2(7): 710–721
https://doi.org/10.1002/aenm.201200026
11 Wang L, Lu  Y, Liu J, et al.. A superior low-cost cathode for a Na-ion battery. Angewandte Chemie International Edition, 2013, 52(7): 1964–1967
https://doi.org/10.1002/anie.201206854 pmid: 23319239
12 Ong S P, Chevrier  V L, Hautier  G, et al.. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy & Environmental Science, 2011, 4(9): 3680–3688
https://doi.org/10.1039/c1ee01782a
13 Palomares V, Casas-Cabanas  M, Castillo-Martinez E, et al.. Update on Na-based battery materials. A growing research path. Energy & Environmental Science, 2013, 6(8): 2312–2337
https://doi.org/10.1039/c3ee41031e
14 Pan H L, Hu  Y S, Chen  L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 2013, 6(8): 2338–2360
https://doi.org/10.1039/c3ee40847g
15 Yabuuchi N, Kajiyama  M, Iwatate J, et al.. P2-type Nax[Fe1/2Mn1/2]-O2 made from earth-abundant elements for rechargeable Na batteries. Nature Materials, 2012, 11(6): 512–517
https://doi.org/10.1038/nmat3309 pmid: 22543301
16 Jung Y H, Lim  C H, Kim  D K. Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(37): 11350–11354
https://doi.org/10.1039/c3ta12116j
17 Jian Z, Yuan  C, Han W, et al.. Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Advanced Functional Materials, 2014, 24(27): 4265–4272
https://doi.org/10.1002/adfm.201400173
18 Zhou Y, Wu  X, Wu W, et al.. Synthesis and electrochemical performance of Na0.7Fe0.7Mn0.3O2 as a cathode material for Na-ion battery. Ceramics International, 2014, 40(8): 13679–13682
https://doi.org/10.1016/j.ceramint.2014.04.126
19 Berthelot R, Carlier  D, Delmas C. Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nature Materials, 2011, 10(1): 74–80
https://doi.org/10.1038/nmat2920 pmid: 21151162
20 Prosini P P, Cento  C, Masci A, et al.. Sodium extraction from sodium iron phosphate with a Maricite structure. Solid State Ionics, 2014, 263(10): 1–8
https://doi.org/10.1016/j.ssi.2014.04.019
21 Shibata T, Kobayashi  W, Moritomo Y. Sodium ion diffusion in layered NaxMnO2 (0.49≤x≤0.75): Comparison with NaxCoO2. Applied Physics Express, 2014, 7(6): 067101
https://doi.org/10.7567/APEX.7.067101
22 Jian Z, Han  W, Lu X, et al.. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Advanced Energy Materials, 2013, 3(2): 156–160
https://doi.org/10.1002/aenm.201200558
23 Jian Z, Zhao  L, Pan H, et al.. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochemistry Communications, 2012, 14(1): 86–89
https://doi.org/10.1016/j.elecom.2011.11.009
24 Wang H, Jiang  D, Zhang Y, et al.. Self-combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries. Electrochimica Acta, 2015, 155: 23–28
https://doi.org/10.1016/j.electacta.2014.12.160
25 Kang J, Baek  S, Mathew V, et al.. High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. Journal of Materials Chemistry, 2012, 22(39): 20857–20860
https://doi.org/10.1039/c2jm34451c
26 Song W, Ji  X, Wu Z, et al.. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(15): 5358–5362
https://doi.org/10.1039/c4ta00230j
27 Lim S Y, Kim  H, Shakoor R A, et al.. Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study. Journal of the Electrochemical Society, 2012, 159(9): A1393–A1397
https://doi.org/10.1149/2.015209jes
28 Zhu C, Song  K, van Aken P A, et al.. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Letters, 2014, 14(4): 2175–2180
https://doi.org/10.1021/nl500548a pmid: 24678829
29 Liu J, Tang  K, Song K, et al.. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale, 2014, 6(10): 5081–5086
https://doi.org/10.1039/c3nr05329f pmid: 24595960
30 Lu Y H, Wang  L, Song J, et al.. Aluminum-stabilized NASICON-structured Li3V2(PO4)3. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(1): 68–72
https://doi.org/10.1039/C2TA00029F
31 Zhang Q, Wang  W, Wang Y, et al.. Controllable construction of 3D-skeleton-carbon coated Na3V2(PO4)3 for high-performance sodium ion battery cathode. Nano Energy, 2016, 20: 11–19
https://doi.org/10.1016/j.nanoen.2015.12.005
32 Yang J, Han  D W, Jo M R, et al.. Na3V2(PO4)3 particles partly embedded in carbon nanofibers with superb kinetics for ultra-high power sodium ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(3): 1005–1009
https://doi.org/10.1039/C4TA06001F
33 Chu Z, Yue  C. Graphene oxide wrapped Na3V2(PO4)3/C nanocomposite as superior cathode material for sodium-ion batteries. Ceramics International, 2016, 42(1): 820–827
https://doi.org/10.1016/j.ceramint.2015.09.003
34 Aragón M J,  Lavela P,  Ortiz G F, et al.. Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries. ChemElectroChem, 2015, 2(7): 995–1002
https://doi.org/10.1002/celc.201500052
35 Li H, Bai  Y, Wu F, et al.. Na-rich Na3+xV2−xNix(PO4)3/C for sodium ion batteries: controlling the doping site and improving the electrochemical performances. ACS Applied Materials & Interfaces, 2016, 8(41): 27779–27787
https://doi.org/10.1021/acsami.6b09898 pmid: 27669328
36 Li H, Yu  X, Bai Y, et al.. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(18): 9578–9586
https://doi.org/10.1039/C5TA00277J
37 Aragón M J,  Lavela P,  Ortiz G F, et al.. Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries. Journal of the Electrochemical Society, 2015, 162(2): A3077–A3083
https://doi.org/10.1149/2.0151502jes
38 Lalere F, Seznec  V, Courty M, et al.. Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(31): 16198–16205
https://doi.org/10.1039/C5TA03528G
39 Wang Q, Zhao  B, Zhang S, et al.. Superior sodium intercalation of honeycomb-structured hierarchical porous Na3V2(PO4)3/C microballs prepared by a facile one-pot synthesis. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(15): 7732–7740
https://doi.org/10.1039/C5TA00765H
40 Song W, Cao  X, Wu Z, et al.. A study into the extracted ion number for NASICON structured Na3V2(PO4)3 in sodium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16(33): 17681–17687
https://doi.org/10.1039/C4CP01821D pmid: 25028981
41 Huang W, Zhou  J, Li B, et al.. A new route toward improved sodium ion batteries: a multifunctional fluffy Na0.67FePO4/CNT nanocactus. Small, 2015, 11(18): 2170–2176
https://doi.org/10.1002/smll.201402246 pmid: 25641786
42 Ren W, Zhou  W, Zhang H, et al.. ALD TiO2-coated flower-like MoS2 nanosheets on carbon cloth as sodium ion battery anode with enhanced cycling stability and rate capability. ACS Applied Materials & Interfaces, 2017, 9(1): 487–495
https://doi.org/10.1021/acsami.6b13179 pmid: 27966859
43 Duan W, Zhu  Z, Li H, et al.. Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(23): 8668–8675
https://doi.org/10.1039/C4TA00106K
44 Li G, Jiang  D, Wang H, et al.. Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries. Journal of Power Sources, 2014, 265: 325–334
https://doi.org/10.1016/j.jpowsour.2014.04.054
45 Jiang Y, Yang  Z, Li W, et al.. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Advanced Energy Materials, 2015, 5(10): 1402104
https://doi.org/10.1002/aenm.201402104
46 Saravanan K, Mason  C W, Rudola  A, et al.. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Advanced Energy Materials, 2013, 3(4): 444–450
https://doi.org/10.1002/aenm.201200803
47 Zhang X, Guo  H, Li X, et al.. High tap-density Li3V2(PO4)3/C composite material synthesized by sol spray-drying and post-calcining method. Electrochimica Acta, 2012, 64: 65–70
https://doi.org/10.1016/j.electacta.2011.12.073
48 Tao S, Cui  P, Huang W, et al.. Sol–gel design strategy for embedded Na3V2(PO4)3 particles into carbon matrices for high-performance sodium-ion batteries. Carbon, 2016, 96: 1028–1033
https://doi.org/10.1016/j.carbon.2015.10.054
49 Gaubicher J, Wurm  C, Goward G, et al.. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chemistry of Materials, 2000, 12(11): 3240–3242
https://doi.org/10.1021/cm000345g
50 Guo J Z, Wu  X L, Wan  F, et al.. A superior Na3V2(PO4)3-based nanocomposite enhanced by both N-doped coating carbon and graphene as the cathode for sodium-ion batteries. Chemistry - A European Journal, 2015, 21(48): 17371–17378
https://doi.org/10.1002/chem.201502583 pmid: 26481446
51 Sadezky A, Muckenhuber  H, Grothe H, et al.. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 2005, 43(8): 1731–1742
https://doi.org/10.1016/j.carbon.2005.02.018
52 Zheng Q, Yi H, Liu W, et al.. Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization. Electrochimica Acta, 2017, 238: 288–297
https://doi.org/10.1016/j.electacta.2017.04.029
53 Kim W, Ryu  W, Han D, et al.. Fabrication of graphene embedded LiFePO4 using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries. ACS Applied Materials & Interfaces, 2014, 6(7): 4731–4736
https://doi.org/10.1021/am405335k pmid: 24621267
54 Zatovsky I V. NASICON-type Na3V2(PO4)3. Acta Crystallographica Section E: Structure Reports Online, 2010, 66(2): i12
https://doi.org/10.1107/S1600536810002801 pmid: 21579586
55 Naik A, Sajan  C P. Microwave synthesis of molybdenum doped LiFePO4/C and its electrochemical studies. Dalton Transactions, 2016, 45(19): 8021–8027
https://doi.org/10.1039/C6DT00331A pmid: 27071463
56 Jiang Y, Yu  S, Wang B, et al.. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Advanced Functional Materials, 2016, 26(29): 5315–5321
https://doi.org/10.1002/adfm.201600747
57 Fang J, Wang  S, Li Z, et al.. Porous Na3V2(PO4)3 nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(4): 1180–1185
https://doi.org/10.1039/C5TA08869K
58 Klee R, Lavela  P, Aragón M J, et al.. Enhanced high-rate performance of manganese substituted Na3V2(PO4)3/C as cathode for sodium-ion batteries. Journal of Power Sources, 2016, 313: 73–80
https://doi.org/10.1016/j.jpowsour.2016.02.066
59 Pivko M, Arcon  I, Bele M, et al.. A3V2(PO4)3 (A= Na or Li) probed by in situ X-ray absorption spectroscopy. Journal of Power Sources, 2012, 216: 145–151
https://doi.org/10.1016/j.jpowsour.2012.05.037
60 Ma Q, Wang  W, Zeng P, et al.. Amorphous Ge/C composite sponges: synthesis and application in a high-rate anode for lithium ion batteries. Langmuir, 2017, 33(9): 2141–2147
https://doi.org/10.1021/acs.langmuir.6b0444
61 Zeng P, Li  J, Ye M, et al.. In situ formation of Co9S8/N-C hollow nanospheres by pyrolysis and sulfurization of ZIF-67 for high-performance lithium-ion batteries. Chemistry - A European Journal, 2017, 23(40): 9517–9524
https://doi.org/10.1002/chem.201700881
62 Xu G, Sun  G. Mg2+-doped Na3V2(PO4)3/C decorated with graphene sheets: An ultrafast Na-storage cathode for advanced energy storage. Ceramics International, 2016, 42(13): 14774–14781
https://doi.org/10.1016/j.ceramint.2016.06.107
[1] Elias ASSAYEHEGN, Ananthakumar SOLAIAPPAN, Yonas CHEBUDIE, Esayas ALEMAYEHU. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
[2] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[3] Meng LIU, Lei LIU, Yifeng YU, Haijun LV, Aibing CHEN, Senlin HOU. Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 156-164.
[4] Wang YANG, Wu YANG, Lina KONG, Shuanlong DI, Xiujuan QIN. Nitrogen--oxygen co-doped corrugation-like porous carbon for high performance supercapacitor[J]. Front. Mater. Sci., 2018, 12(3): 283-291.
[5] Kepi CHEN,Yanlin JIAO. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics[J]. Front. Mater. Sci., 2017, 11(1): 59-65.
[6] Yajing ZHAO,Yan CHEN,Kepi CHEN. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping[J]. Front. Mater. Sci., 2016, 10(4): 422-427.
[7] Zhong-Bing HUANG,Guang-Fu YIN,Xiao-Ming LIAO,Jian-Wen GU. Conducting polypyrrole in tissue engineering applications[J]. Front. Mater. Sci., 2014, 8(1): 39-45.
[8] Junyi ZHU, Su-Huai WEI. Overcoming doping bottleneck by using surfactant and strain[J]. Front Mater Sci, 2011, 5(4): 335-341.
[9] WANG Hui, LEI Ming-kai. Effect of Y codoping on luminescence decays of the I level in Er-doped AlO powders prepared by a sol-gel method[J]. Front. Mater. Sci., 2008, 2(3): 286-290.
[10] JIANG Qi, QIAN Lan, YI Jing, ZHU Xiaotong, ZHAO Yong. Effects of boron-doping on the morphology and magnetic property of carbon nanotubes[J]. Front. Mater. Sci., 2007, 1(4): 379-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed