Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2015, Vol. 9 Issue (1) : 14-37    https://doi.org/10.1007/s11706-015-0279-7
REVIEW ARTICLE
Semiconductor metal oxide compounds based gas sensors: A literature review
Sunil Jagannath PATIL1,2,Arun Vithal PATIL2,Chandrakant Govindrao DIGHAVKAR2,Kashinath Shravan THAKARE3,Ratan Yadav BORASE3,Sachin Jayaram NANDRE4,Nishad Gopal DESHPANDE5,*(),Rajendra Ramdas AHIRE1,*()
1. Department of Physics, S. G. Patil Arts, Science & Commerce College, Sakri-424304, Dist. Dhule, India
2. Department of Physics, L. V. H. College, Panchavati, Nashik-422003, India
3. Thin and Thick film Laboratory, M. S. G. College, Malegaon Camp, Malegaon-423105, Dist. Nashik, India
4. Department of Physics, Uttamrao Patil College Dahivel, Dist-Dhule, India
5. Department of Physics, Shivaji University, Kolhapur-416004, India
 Download: PDF(628 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper gives a statistical view about important contributions and advances on semiconductor metal oxide (SMO) compounds based gas sensors developed to detect the air pollutants such as liquefied petroleum gas (LPG), H2S, NH3, CO2, acetone, ethanol, other volatile compounds and hazardous gases. Moreover, it is revealed that the alloy/composite made up of SMO gas sensors show better gas response than their counterpart single component gas sensors, i.e., they are found to enhance the 4S characteristics namely speed, sensitivity, selectivity and stability. Improvement of such types of sensors used for detection of various air pollutants, which are reported in last two decades, is highlighted herein.

Keywords gas sensor      semiconductor metal oxide (SMO)      sensitivity      air pollutant      gas response     
Corresponding Author(s): Nishad Gopal DESHPANDE,Rajendra Ramdas AHIRE   
Online First Date: 10 February 2015    Issue Date: 02 March 2015
 Cite this article:   
Sunil Jagannath PATIL,Arun Vithal PATIL,Chandrakant Govindrao DIGHAVKAR, et al. Semiconductor metal oxide compounds based gas sensors: A literature review[J]. Front. Mater. Sci., 2015, 9(1): 14-37.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-015-0279-7
https://academic.hep.com.cn/foms/EN/Y2015/V9/I1/14
Fig.1  Scheme 1 Classification of SMOs.
Fig.2  Schematics of (a) small region on the uniform thin film, (b) microstructure studies (i.e., usually done by SEM/AFM/TEM etc. techniques), and (c) grains, grain boundary region and negatively charged chemisorbed oxygen species.
Fig.3  Schematics of (a) band diagram compared with the grain boundary model (Note: energy scale and the distance along the grains and grain boundaries are not to the scale) and (b)(c) gas sensing phenomena when sensor surface is exposed to reducing gas and oxidizing gas, respectively.
Material Top /°C Sensitivity Concentration /ppm Refs.
TiO2 425 35.8 0.08 vol.% [31]
ZnO–CuO 400 3.8025 1000 [47]
Co–SnO2 350 35 1600 [70]
ZnO–Cu 300 87.3 1000 [80]
TiO2–Pd 240 35 1000 [93]
ZnO–Al 325 89 1 vol.% [94]
NiFe2O4–CO–Mn 180 100 1000 [95]
ZnO–Cr2O3 350 46 100 [96]
BiFeO3–Mn 250 7.2 1000 [97]
Pd–SnO2 325 98 1.6 vol.% [98]
SnO2 190 340 400 [99]
SnO2 350 25 600 [100]
Al–Ni–SnO2 300 16 600 [100]
SnO2 350 30 1000 [101]
SnO2 325 14.4 1000 [102]
SnO2–Cu 264 0.79 500 [103]
SnO2 274 0.511 500 [104]
CuFe2O4 300 43 150 [105]
ZnO–Cu 500 0.9 400 [106]
Tab.1  LPG sensor materials with different operating temperatures, concentrations and gas response/sensitivity
Material Top /°C Sensitivity Concentration /ppm Refs.
CuO–WO3 100 40.85 1 [22]
Ba–Sr–TiO2 350 45 1000 [49]
TiO2–Al2O3–Pd 225 88 200 [50]
Ba–Sr–TiO3 300 114 300 [56]
Ni–Ba2CrMoO6 200 0.8 1000 [59]
WO3 400 50 1000 [61]
WO3–CuO R.T. 726 1 [61]
CuO–BaSrSnTiO3 R.T. 13 50 [63]
TiO2–Nb2O5 200 98.78 1000 [68]
ZnO–Cr2O3 300 99.12 1000 [69]
Al–TiO2 200 99.23 1000 [78]
WO3–Cr2O3 250 230 280 [79]
ZnO 250 25.01 100 [81]
SnO2 100 96 80 [82]
Cr–BaZrO3 300 15.48 100 [85]
CdO–In2O3 150 89.71 10 [86]
MoO3 350 12.72 1000 [89]
BaTiO3 350 53 100 [107]
SnO2 250 33 10 [108]
SnO2 200 2.5 100 [109]
SnO2–CuO 160 25 100 [109]
SnO2–NiO 180 150 100 [109]
SnO2 100 0.03 100 [110]
SnO2–CuO 100 0.95 100 [110]
SnO2 200 7.8 50 [111]
SnO2–CuO 200 35 50 [111]
SnO2–CuO 350 10 300 [112]
SnO2 350 10 300 [112]
SnO2–CuO 150 73 20 [113]
SnO2–CuO 90 210 50 [114]
SnO2 200 25 50 [115]
Tab.2  H2S gas sensor materials with different operating temperatures, concentration and gas response/sensitivity
Material Top /°C Sensitivity Concentration /ppm Refs.
CrTiO3 300 70 500 [23]
Ti–SnO2 550 90 1000 [46]
ZnO–RuO2 250 3.86 1000 [51]
BaSrTiO3 300 84 300 [56]
Polypyrol R.T. 20 40 [62]
TiO2–Cr2O3 250 88.23 1000 [67]
BaZrO3 300 11.33 100 [85]
CO3O4 R.T. 2.557 121 [87]
ZrO2 300 7.17 100 [90]
ZnO–CuO 400 35 1000 [116]
Au–MoO3–WO3 400–500 11 1–50 [117]
ZnO–Fe2O3 350 5.73 300 [118]
Tab.3  NH3 gas sensor materials with different operating temperatures, concentration and gas response/sensitivity
Material Top /°C Sensitivity Concentration /ppm Refs.
Ag–CuO–BaTiO3 430 1.59 5000 [33]
CuO–BaTiO3 450 80 100 [119]
Li2CO3 400–450 40–2000 [120]
Lithium solid electrolyte 650 80 [121]
TiO2–Pt R.T. high 5000 [122]
Tab.4  CO2 gas sensor materials with different operating temperatures, concentration and gas response/sensitivity
Material Top /°C Sensitivity Concentration /ppm Refs.
TiO2 350 1.02 20 [18]
Pt–TiO2 190 14 100 [19]
Nb–TiO2 600 high 100 [25]
Nb–TiO2 420 1.5 10 [26]
TiO2–Cr2O3 500 1.35 50 [38]
WO3 200 57 0.5 [43]
ZnO 250 23 1000 [71]
Tab.5  NO2 gas sensor materials with different operating temperatures, concentration and gas response/sensitivity
Material Top /°C Sensitivity Concentration /ppm Refs.
TiO2 400 36 2000 [16]
WO3 200 60 1000 [30]
Cr–TiO3 575 3.08 80 [39]
WO3 400 1424.6% 50 [55]
Cu–TiO2 300 84.16 1000 [77]
ZnO 380 8.8 100 [83]
Nb2O5–ZnO 300 84 1000 [84]
In2O3 350 90 100 [86]
MoO3 200 11.1 1000 [89]
Fe2O3 350 180 250 [92]
CoFe2OPd 100 0.9 100 [123]
Al2O3–ZnO 300 73 1000 [124]
SnO2–Pd-Pt 450 560% 1000 [125]
Tab.6  Ethanol gas sensor materials with different operating temperatures, concentration and gas response/sensitivity
AFMatomic force microscopy
ARanalytical reagent
BCAbutyl carbitol acetate
BSSTBaSrSnTiO3
BSTBa0.67Sr0.33TiO3
CNGcompressed natural gas
DCdirect current
FIBfocused ion beam
IRinfrared
LPGliquefied petroleum gas
MEMSmicro-electro-mechanical systems
MICmethyl isocyanate
MOCVDmetal organic chemical vapor deposition
NCnanocrystalline
NTCnegative temperature coefficient
PLDpulsed laser deposition
PVDphysical vapor deposition
RFradio frequency
RHrelative humidity
R.T.room temperature
SCCMsquare cubic centimeter per minute
SEMscanning electron microscopy
SMOsemiconductor metal oxide
SPDspray pyrolysis deposition
TCRtemperature coefficient of resistance
TEMtransmission electron microscopy
Tab.1  
1 Kuwabara M, Ide T. CO gas sensitivity in porous semiconducting barium–titanate ceramics. American Ceramic Society Bulletin, 1987, 66(9): 1401–1405
2 Chiu C M, Chang Y H. The structure, electrical and sensing properties for CO of the La0.8Sr0.2Co1-xNixO3-δ system. Materials Science and Engineering A, 1999, 266(1–2): 93–98
3 Patil D R. Everyman’s Science, 2011, XLVI(3): 155
4 Azad A M, Akbar S A, Mhaisalkar S G, . Solid-state gas sensors: a review. Journal of the Electrochemical Society, 1992, 139(12): 3690–3704
5 Moseley P T. Material and Mechanism in Semiconducting Gas Sensor, Sensor Technology, System and Application. IOP Publishing, 1990
6 Joseph B, Gopchandran K G, Manoj P K, . Optical and electrical properties of zinc oxide films prepared by spray pyrolysis. Bulletin of Materials Science, 1999, 22(5): 921–926
7 Dayan N J, Sainkar S R, Karekar R N, . Formulation and characterization of ZnO:Sb thick-film gas sensors. Thin Solid Films, 1998, 325(1–2): 254–258
8 Krishnan B, Nampoori V P N. Screen printed nanosized ZnO thick film. Bulletin of Materials Science, 2005, 28(3): 239–242
9 Licari J J, Enlow L R. Hybrid Microcircuit Technology Handbook. 2nd ed. Park Ridge, NJ, USA: Noyes Publications, 1998
10 Patil A V, Dighavkar C G, Borse R Y. NO2 gas sensing properties of screen printed ZnO thick films. Sensors & Transducers Journal, 2009, 101(2): 96–103
11 Moseley P T, Williams D E, Norris J O W, . Electrical conductivity and gas sensitivity of some transition metal tantalates. Sensors and Actuators, 1988, 14(1): 79–91
12 Moseley P T, Williams D E. A selective ammonia sensor. Sensors and Actuators B: Chemical, 1990, 1(1–6): 113–115
13 Moseley P T. Materials selection for semiconductor gas sensors. Sensors and Actuators B: Chemical, 1992, 6(1–3): 149–156
14 Matsuura S. New developments and applications of gas sensors in Japan. Sensors and Actuators B: Chemical, 1993, 13(1–3): 7–11
15 Bernasik A, Radecka M, Rekas M, . Electrical properties of Cr-doped and Nb-doped TiO2 thin films. Applied Surface Science, 1993, 65–66: 240–245
16 Tang H, Prasad K, Sanjines R, . TiO2 anatase thin films as gas sensors. Sensors and Actuators B: Chemical, 1995, 26(1–3): 71–75
17 Mizsei J. How can sensitive and selective semiconductor gas sensors be made? Sensors and Actuators B: Chemical, 1995, 23(2–3): 173–176
18 Ferroni M, Guidi V, Martinelli G, . Characterization of a nanosized TiO2 gas sensor. Nanostructured Materials, 1996, 7(7): 709–718
19 Lin H M, Keng C H, Tung C Y. Gas-sensing properties of nanocrystalline TiO2. Nanostructured Materials, 1997, 9(1–8): 747–750
20 Zakrzewska K, Radecka M, Rekas M. Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 thin films. Thin Solid Films, 1997, 310(1–2): 161–166
21 Sharma R K, Bhatnagar M C, Sharma G L. Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor. Sensors and Actuators B: Chemical, 1997, 45(3): 209–215
22 Sharma R K, Bhatnagar M C. Improvement of the oxygen gas sensitivity in doped TiO2 thick films. Sensors and Actuators B: Chemical, 1999, 56(3): 215–219
23 Jayaraman V, Gnanasekar K I, Prabhu E, . Preparation and characterisation of Cr2-xTixO3<?A3B2 h=-0.2h?>+<?A3B2 h=-0.2h?>δ and its sensor properties. Sensors and Actuators B: Chemical, 1999, 55(2–3): 175–179
24 Carotta M C, Ferroni M, Gnani D, . Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring. Sensors and Actuators B: Chemical, 1999, 58(1–3): 310–317
25 Yamada Y, Seno Y, Masuoka Y, . NO2 sensing characteristics of Nb doped TiO2 thin films and their electronic properties. Sensors and Actuators B: Chemical, 2000, 66(1–3): 164–166
26 Ferroni M, Carotta M C, Guidi V, . Structural characterization of Nb–TiO2 nanosized thick-films for gas sensing application. Sensors and Actuators B: Chemical, 2000, 68(1–3): 140–145
27 Gao L, Li Q, Song Z, . Preparation of nano-scale titania thick film and its oxygen sensitivity. Sensors and Actuators B: Chemical, 2000, 71(3): 179–183
28 Rothschild A, Edelman F, Komem Y, . Sensing behavior of TiO2 thin films exposed to air at low temperatures. Sensors and Actuators B: Chemical, 2000, 67(3): 282–289
29 Sberveglieri G, Comini E, Faglia G, . Titanium dioxide thin films prepared for alcohol microsensor applications. Sensors and Actuators B: Chemical, 2000, 66(1–3): 139–141
30 Wang Y D, Chen Z X, Li Y F, . Electrical and gas-sensing properties of WO3 semiconductor material. Solid-State Electronics, 2001, 45(5): 639–644
31 Savage N O, Akbar S A, Dutta P K. Titanium dioxide based high temperature carbon monoxide selective sensor. Sensors and Actuators B: Chemical, 2001, 72(3): 239–248
32 Savage N O, Chwieroth B, Ginwalla A, . Composite n–p semiconducting titanium oxides as gas sensors. Sensors and Actuators B: Chemical, 2001, 79(1): 17–27
33 Jiao Z, Chen F, Su R, . Study on the characteristics of Ag doped CuO–BaTiO3 CO2 sensors. Sensors, 2002, 2(9): 366–373
34 Guidi V, Butturi M A, Carotta M C, . Gas sensing through thick film technology. Sensors and Actuators B: Chemical, 2002, 84(1): 72–77
35 Li Y, Wlodarski W, Galatsis K, . Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin films. Sensors and Actuators B: Chemical, 2002, 83(1–3): 160–163
36 Karunagaran B, Kumar R T R, Mangalaraj D, . Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films. Crystal Research and Technology, 2002, 37(12): 1285–1292
37 Arbiol J, Cerda J, Dezanneau G, . Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. Journal of Applied Physics, 2002, 92(2): 853–861
38 Ruiz A M, Sakai G, Cornet A, . Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sensors and Actuators B: Chemical, 2003, 93(1–3): 509–518
39 Shaw G A, Parkin I P, Williams D E. Atmospheric pressure chemical vapour deposition of Cr2-xTixO3 (CTO) thin films (≤ 3 mμm) on to gas sensing substrates. Journal of Materials Chemistry, 2003, 13(12): 2957–2962
40 Fergus J W. Doping and defect association in oxides for use in oxygen sensors. Journal of Materials Science, 2003, 38(21): 4259–4270
41 Li W, Ni C, Lin H, . Size dependence of thermal stability of TiO2 nanoparticles. Journal of Applied Physics, 2004, 96(11): 6663–6668
42 Baraton M I, Merhari L. Surface chemistry of TiO2 nanoparticles: influence on electrical and gas sensing properties. Journal of the European Ceramic Society, 2004, 24(6): 1399–1404
43 Tamaki J, Miyaji A, Makinodan J, . Effect of micro-gap electrode on detection of dilute NO2 using WO3 thin film microsensors. Sensors and Actuators B: Chemical, 2005, 108(1–2): 202–206
44 Obida M Z, Afify H H, Abou-Helal M O, . Egyptian Journal of Solids, 2005, 28(1): 35
45 San Andres E, Lique M T, Prado A D, . Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005, 23(6): 1523
46 Patil S A, Patil L A. Surface modified TTO thick film resistors for NH3 gas sensing. Sensors & Transducers Journal, 2006, 71(9): 721–728
47 Patil D R, Patil L A, Jain G H, . Surface activated ZnO thick film resistors for LPG gas sensing. Sensors & Transducers Journal, 2006, 74(12): 874–883
48 Kagata M, Abe Y. CARTS USA, 2006, 3
49 Jain G H, Patil L A. Gas sensing properties of Cu and Cr activated BST thick films. Bulletin of Materials Science, 2006, 29(4): 403–411
50 Chaudhari G N, Bambole D R, Bodade A B, . Characterization of nanosized TiO2 based H2S gas sensor. Journal of Materials Science, 2006, 41(15): 4860–4864
51 Wagh M S, Jain G H, Patil D R, . Modified zinc oxide thick film resistors as NH3 gas sensor. Sensors and Actuators B: Chemical, 2006, 115(1): 128–133
52 Viricelle J P, Pijolat C, Riviere B, . Compatibility of screen-printing technology with micro-hotplate for gas sensor and solid oxide micro fuel cell development. Sensors and Actuators B: Chemical, 2006, 118(1–2): 263–268
53 Maso N, Beltran H, Cordoncillo E, . Synthesis and electrical properties of Nb-doped BaTiO3. Journal of Materials Chemistry, 2006, 16(30): 3114–3119
54 Khadayate R S, Sali J V, Patil P P. Acetone vapor sensing properties of screen printed WO3 thick films. Talanta, 2007, 72(3): 1077–1081
55 Khadayate R S, Waghulde R B, Wankhede M G, . Ethanol vapour sensing properties of screen printed WO3 thick films. Bulletin of Materials Science, 2007, 30(2): 129–133
56 Jain G H, Patil L A, Patil P P, . Studies on gas sensing performance of pure and modified barium strontium titanate thick film resistors. Bulletin of Materials Science, 2007, 30(1): 9–17
57 Al-Homoudi I A, Thakur J S, Naik R, . Anatase TiO2 films based CO gas sensor: Film thickness, substrate and temperature effects. Applied Surface Science, 2007, 253(21): 8607–8614
58 Alessandri I, Comini E, Bontempi E, . Cr-inserted TiO2 thin films for chemical gas sensors. Sensors and Actuators B: Chemical, 2007, 128(1): 312–319
59 Kadu A V, Gedam N N, Chaudhari G N. Detection of hydrogen sulphide gas sensor based nanostructured Ba2CrMoO6 thick films. Sensors & Transducers Journal, 2007, 85(11): 1728–1738
60 Fang X, Oh J T. Microstructure and electrical properties of Nb2O5 doped titanium dioxide. Materials Science and Engineering B, 2007, 136(1): 15–19
61 Sonawane N B, Patil D R, Patil L A. CuO-modified WO3 sensor for the detection of a ppm level H2S gas at room temperature. Sensors & Transducers Journal, 2008, 93(6): 82–91
62 Joshi A, Gangal S A, Padma N, . BARC Newsletters, 2008, 297: 236
63 Baviskar H M, Deo V V, Patil D R, . Study of room temperature H2S gas sensing behavior of CuO-modified BSST thick film resistors. Sensors & Transducers Journal, 2008, 92(5): 24–31
64 More A M, Gunjakar J L, Lokhande C D. Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films. Sensors and Actuators B: Chemical, 2008, 129(2): 671–677
65 Dighavkar C G, Patil A V, Borse R Y, . Effect of firing temperature on electrical and structural characteristics of screen printed TiO2 thick films. Optoelectronics and Advanced Materials – Rapid Communication, 2009, 3(10): 1013–1017
66 Patil A V, Dighavkar C G, Sonawane S K, . Effect of firing temperature on electrical and structural characteristics of screen printed ZnO thick films. Optoelectronics and Advanced Materials – Rapid Communication, 2009, 3(9): 879–883
67 Dighavkar C G, Patil A V, Patil S J, . Ammonia gas sensing performance of Cr2O3-loaded TiO2 thick film resistors. Solid State Science and Technology, 2009, 17(2): 197–207
68 Dighavkar C G, Patil A V, Patil S J, . Effect on H2S gas sensing performance of Nb2O5 addition to TiO2 thick films. Sensors & Transducers Journal, 2009, 109(10): 117–125
69 Patil A V, Dighavkar C G, Sonawane S K, . Formulation and characterization of Cr2O3 doped ZnO thick films as H2S gas sensor. Sensors & Transducers Journal, 2009, 108(9): 189–197
70 Kumar V, Srivastava S K, Jain K. Cobalt doped SnO2 thick film gas sensors: conductance and gas response characteristics for LPG and CNG gas. Sensors & Transducers Journal, 2009, 101(2): 60–72
71 Patil A V, Dighavkar C G, Borse R Y. NO2 gas sensing properties of screen printed ZnO thick films. Sensors & Transducers Journal, 2009, 101(2): 96–103
72 Dighavkar C G, Patil A V, Patil S J, . Invertis Journal of Science & Technology, 2010, 3(3): 184
73 Patil A V, Dighavkar C G, Sonawane S K, . Study of microstructural parameters of screen printed ZnO thick film sensors. Sensors & Transducers Journal, 2010, 117(6): 62–70
74 Khadayate R S, Patil P P. Invertis Journal of Science & Technology, 2010, 3(3): 194
75 Abadi M H S, Hamidon M N, Shaari A H, . Characterization of mixed xWO3(1-x)Y2O3 nanoparticle thick film for gas sensing application. Sensors, 2010, 10(5): 5074–5089
76 Khadayate R S, Patil P P. CO gas sensing properties of screen printed SnO2 thick films. Journal of Optoelectronics and Advanced Materials, 2010, 12(6): 1338–1342
77 Dighavkar C G, Patil A V, Patil S J, . Effect on ethanol gas sensing performance of cu addition to TiO2 thick films. Sensors & Transducers Journal, 2010, 116(5): 28–37
78 Dighavkar C, Patil A, Patil S, . Al-doped TiO2 thick film resistors as H2S gas sensor. Sensors & Transducers Journal, 2010, 9(Special Issue): 39–47
79 Gaikwad V B, Patil R L, Deore M K, . Gas sensing properties of pure and Cr activated WO3 thick film resistors. Sensors & Transducers Journal, 2010, 120(9): 38–52
80 Patil A V, Dighavkar C G, Sonawane S K, . Formulation and characterization of Cu doped ZnO thick films as LPG gas sensor. Sensors & Transducers Journal, 2010, 9(Special Issue): 11–20
81 Deore M K, Gaikwad V B, Pawar N K, . Preparation and study the electrical, structural and gas sensing properties of ZnO thick film resistor. Sensors & Transducers Journal, 2010, 119(8): 117–128
82 Patil G E, Kajale D D, Shinde S D, . Effect of annealing temperature on gas sensing performance of SnO2 thin films prepared by spray pyrolysis. Sensors & Transducers Journal, 2010, 9(Special Issue): 96–108
83 Wang C, Yin L, Zhang L, . Metal oxide gas sensors: sensitivity and influencing factors. Sensors, 2010, 10(3): 2088–2106
84 Patil A V, Dighavkar C G, Sonawane S K, . Influence of Nb2O5 doping on ZnO thick film gas sensors. Journal of Optoelectronics and Advanced Materials, 2010, 12(6): 1255–1261
85 Chaudhari R M, Gaikwad V B, Hire P D, . Studies of gas sensing performance of barium zirconate (BaZrO3). Sensors & Transducers Journal, 2011, 127(4): 76–87
86 Chavan D N, Gaikwad V B, Patil G E, . CdO doped indium oxide thick film as a low temperature H2S gas sensor. Sensors & Transducers Journal, 2011, 129(6): 122–134
87 Shelke P N, Jadkar S R, Khollam Y B, . Journal of Nano- and Electronic Physics, 2011, 3(1): 859
88 Rao M C, Hussain O M. Research Journal of Chemical Sciences, 2011, 1(7): 76
89 Ahire D V, Shinde S D, Patil G E, . Preparation of MoO3 thin films by spray pyrolysis and ITS gas sensing performance. International Journal on Smart Sensing and Intelligent Systems, 2012, 5(3): 592–605
90 Deshmukh S B, Bari R H, Patil G E, . Preparation and characterization of zirconia based thick film resistor as an ammonia gas sensor. International Journal on Smart Sensing and Intelligent Systems, 2012, 5(3): 540–558
91 Dunnill C W, Noimark S, Parkin I P. Silver loaded WO3-x/TiO2 composite multifunctional thin films. Thin Solid Films, 2012, 520(17): 5516–5520
92 Pawar N K, Kajale D D, Patil G E, . Nanostructured Fe2O3 thick film as an ethanol sensor. International Journal on Smart Sensing and Intelligent Systems, 2012, 5(2): 441–457
93 Iftimie N, Crisan M, Braileanu A, . On the sensing gas properties of titanium dioxide films. Journal of Optoelectronics and Advanced Materials, 2008, 10(9): 2363–2366
94 Sahay P P, Nath R K. Al-doped zinc oxide thin films for liquid petroleum gas (LPG) sensors. Sensors and Actuators B: Chemical, 2008, 133(1): 222–227
95 Satyanarayana L, Reddy K M, Manorama S V. Synthesis of nanocrystalline Ni1-xCoxMnxFe2-xO4: a material for liquefied petroleum gas sensing. Sensors and Actuators B: Chemical, 2003, 89(1–2): 62–67
96 Patil D R, Patil L A. Cr2O3-modified ZnO thick film resistors as LPG sensors. Talanta, 2009, 77(4): 1409–1414
97 Chaudhari G N. LPG-sensing properties of perovskite BiFe0.6Mn0.4O3 nanomaterials. Journal of Optoelectronics and Advanced Materials, 2007, 9(7): 2270–2274
98 Mitra P, Mondal S. Hydrogen and LPG sensing properties of SnO2 films obtained by direct oxidation of SILAR deposited SnS. Bulletin of the Polish Academy of Sciences-Technical Sciences, 2008, 56(3): 295–300
99 Garje A D, Aiyer R C. Effect of decomposition temperature on electrical and gas sensing properties of nano SnO2 based thick film resistors. Sensors Letters, 2006, 4(4): 380–387
100 Jain K, Pant R P, Lakshmikumar S T. Effect of Ni doping on thick film SnO2 gas sensor. Sensors and Actuators B: Chemical, 2006, 113(2): 823–829
101 Srivastava A, Jain K, Rashmi, . Study of structural and microstructural properties of SnO2 powder for LPG and CNG gas sensors. Materials Chemistry and Physics, 2006, 97(1): 85–90
102 Shrivastava A, Rashmi, Jain K. Study on ZnO-doped tin oxide thick film gas sensors. Materials Chemistry and Physics, 2007, 105(2–3): 385–390
103 Inamdar A D, Aiyer R C. Asian Journal of Physics, 2005, 9(1): 1
104 Niranjan R S, Mulla I S, Vijayamohanan K. National Seminar on Physics and Technology of Sensors (NSPTS), Pune, India, 2004
105 Tudorache F, Rezlescu E, Popa P D, . Study of some simple ferrites as reducing gas sensors. Journal of Optoelectronics and Advanced Materials, 2008, 10(7): 1889–1893
106 Raju A R, Rao C N. Gas-sensing characteristics of ZnO and copper-impregnated ZnO. Sensors and Actuators B: Chemical, 1991, 3(4): 305–310
107 Jain G H, Patil L A, Wagh M S, . Surface modified BaTiO3 thick film resistors as H2S gas sensors. Sensors and Actuators B: Chemical, 2006, 117(1): 159–165
108 Kersen U. Gas sensing properties of nanocrystalline metal oxide powders produced by thermal decomposition and mechanochemical processing. Dissertation for the Doctoral Degree. Otaniemi, Espoo, Finland: Helsinki University of Technology, 2003
109 Rumyantseva M, Labeau M, Delabouglise G, . Copper and nickel doping effect on interaction of SnO2 films with H2S. Journal of Materials Chemistry, 1997, 7(9): 1785–1790
110 Saraladevi G, Rao S M V J. Journal of the Electrochemical Society, 1995, 142: 8
111 Tamaki J, Maekawa T, Miura N, . CuO–SnO2 element for highly sensitive and selective detection of H2S. Sensors and Actuators B: Chemical, 1992, 9(3): 197–203
112 Patil L A, Patil D R. Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature. Sensors and Actuators B: Chemical, 2006, 120(1): 316–323
113 Chowdhuri A, Gupta V, Sreenivas K, . Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Applied Physics Letters, 2004, 84(7): 1180–1182
114 Wu Y, Tong M, He X, . Thin film sensors of SnO2–CuO–SnO2 sandwich structure to H2S. Sensors and Actuators B: Chemical, 2001, 79(2–3): 187–191
115 Katti V R, Debnath A K, Muthe K P, . Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation. Sensors and Actuators B: Chemical, 2003, 96(1–2): 245–252
116 Patil L A, Pathan I G. Journal of Nano- and Electronic Physics, 2011, 3(1): 433
117 Xu C N, Miura N, Ishida Y, . Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element. Sensors and Actuators B: Chemical, 2000, 65(1–3): 163–165
118 Patil D R, Patil L A. Preparation and study of NH3 gas sensing behavior of Fe2O3 doped ZnO thick film resistors. Sensors & Transducers Journal, 2006, 70(8): 661–670
119 Ishihara T, Kometani K, Mizuhara Y, . Mixed oxide capacitor of CuO-BaTiO3 as a new type CO2 gas sensor. Journal of the American Ceramic Society, 1992, 75(3): 613–618
120 Miura N, Yan Y, Sato M, . Solid-state potentiometric CO2 sensors using anion conductor and metal carbonate. Sensors and Actuators B: Chemical, 1995, 24(1–3): 260–265
121 Imanaka N, Murata T, Kawasato T, . CO2 detection with lithium solid electrolyte sensors. Sensors & Transducers B, 1993, 13(1–3): 476–479
122 Telipan G, Ignat M, Vlad A, . Lanthanum complex for gas sensing. Journal of Optoelectronics and Advanced Materials, 2008, 10(12): 3409–3412
123 Chaudhari G N, Pawar M J. Ethanol sensing performances of modified CoFe2O4 nanocrystals prepared by polymerizable complex route. Journal of Optoelectronics and Advanced Materials, 2008, 10(10): 2574–2577
124 Patil D R, Patil L A, Amalnerkar D P. Ethanol gas sensing properties of Al2O3-doped ZnO thick film resistors. Bulletin of Materials Science, 2007, 30(6): 553–559
125 Ivanov P T. Design, fabrication and characterization of thick film gas sensors. Dissertation for the Doctoral Degree. Tarragona, Spain: Rovira i Virgili University, 2004
[1] Weiwei FAN, Jilu WANG, Jiajun FENG, Yong WANG. Facile preparation of acid/CO2 stimuli-responsive sheddable nanoparticles based on carboxymethylated chitosan[J]. Front. Mater. Sci., 2019, 13(3): 296-304.
[2] Chao WANG, Wu WANG, Ke HE, Shantang LIU. Pr-doped In2O3 nanocubes induce oxygen vacancies for enhancing triethylamine gas-sensing performance[J]. Front. Mater. Sci., 2019, 13(2): 174-185.
[3] Shaoming SHU, Chao WANG, Shantang LIU. Facile synthesis of perfect ZnSn(OH)6 octahedral microcrystallines with controlled size and high sensing performance towards ethanol[J]. Front. Mater. Sci., 2018, 12(2): 176-183.
[4] Wenyan ZHAO, Chuanjin TIAN, Zhipeng XIE, Changan WANG, Wuyou FU, Haibin YANG. Hydrothermal growth of symmetrical ZnO nanorod arrays on nanosheets for gas sensing applications[J]. Front. Mater. Sci., 2017, 11(3): 271-275.
[5] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[6] C. HEINZE, C. SCHWENK, M. RETHMEIER, J. CARON. Numerical sensitivity analysis of welding-induced residual stress depending on variations in continuous cooling transformation behavior[J]. Front Mater Sci, 2011, 5(2): 168-178.
[7] Wei-Guo LI, Ding-Yu LI, Xue-Feng YAO, Dai-Ning FANG, . Damage mode effects on fracture strength of ultra-high temperature ceramics[J]. Front. Mater. Sci., 2010, 4(3): 255-258.
[8] ZHANG Yinhong, HE Yunqiu. Micro-structure of graphite-intercalated tin oxide and its influence on SnO2-based gas sensors[J]. Front. Mater. Sci., 2007, 1(3): 297-303.
[9] WANG Cong, WANG Cong, HAN Enhou, HAN Enhou, XU Yongbo, XU Yongbo. Portevin-Le Chatelier effect of LA41 magnesium alloys[J]. Front. Mater. Sci., 2007, 1(1): 105-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed