Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (3) : 276-283    https://doi.org/10.1007/s11706-017-0395-7
RESEARCH ARTICLE
Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline
Somdutta SINGHA(), Swapankumar GHOSH()
Project Management Division, CSIR-Central Glass & Ceramic Research Institute, Kolkata-700032, India
 Download: PDF(315 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon nanotubes in all forms are very much insoluble in both organic and inorganic solvents due to its high agglomeration and entangled morphology. General methods for dissolution of single-walled carbon nanotubes (SWNTs) are mostly associated with complexation or polymerization or addition of macromolecules which change the physical or chemical properties of SWNTs and the pristine nature of SWNTs is lost. Dissolution of SWNTs in a solvent like aniline is practiced here which is a very simple reaction method. Here aniline is capable to form a SWNT-aniline charge transfer complex without attachment of macromolecules or polymer which is also soluble in other organic solvents. Solvation of SWNTs by this method is also capable of maintaining the similarity between the structure of SWNTs before and after the dissolution, which means that the pristine nature of SWNTs is preserved. Formation of charge transfer complex in this reaction has been proven by UV-Vis/NIR absorption and photoluminescence spectroscopy. Raman spectroscopy and electron microscopy (FESEM and TEM) are the evidences for protection of the pristine nature of SWNTs even after high-temperature complexation reaction with aniline and also after solubilization in organic solvents.

Keywords single-walled carbon nanotubes      aniline      dissolution      organic solvent      spectroscopy     
Corresponding Author(s): Somdutta SINGHA,Swapankumar GHOSH   
Online First Date: 14 August 2017    Issue Date: 24 August 2017
 Cite this article:   
Somdutta SINGHA,Swapankumar GHOSH. Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline[J]. Front. Mater. Sci., 2017, 11(3): 276-283.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0395-7
https://academic.hep.com.cn/foms/EN/Y2017/V11/I3/276
Fig.1  Scheme&chsp;1&chsp;Formation of donor–acceptor complex by proton transfer between aniline and SWNT.
Fig.2  Digital images of concentrated solutions of (a) AR and (b) ARNT just after the reflux reaction and centrifugation. The same solutions after ×15 dilution of (c) AR and (d) ARNT with chloroform.
Fig.3  (a) UV-Vis spectra of AR and ARNT solutions after the same degree of dilution of both the sample with chloroform, where the solid line represents ARNT and dotted line represent AR. Inset graph is the UV-Vis spectra of pure aniline after the dilution with chloroform.(b) UV-Vis spectra of ARNT solutions as prepared (i) and after 1 month (ii) and 2 months (iii) ageing with the same ×15 diluted sample.
Fig.4  Photoluminescence spectra of aniline-SWNT complex along with aniline reflux at the same dilution made by chloroform after the excitation at 500 nm.
Fig.5  Raman spectra of as supplied SWNTs and ARNT solutions after drop casting them on glass slide. Inset is the digital picture of drop casted glass slide with(a) ARNT and (b) AR solution after dilution with chloroform.
Fig.6  FESEM picture of as supplied (a) SWNT and (b) ARNT after drop casting of solution on glass slides. TEM images of as supplied (c) SWNT and (d) ARNT on carbon grid.
Fig.7  Absorption spectra of ARNT and AR solutions, along with the SWNT dispersion in DMF (inset) in the Vis-NIR range.
Fig.8  (a) Particle size distribution and (b) correlation coefficients of ARNT and SWNT in aniline as obtained from photon scattering experiments.
33 Helttunen K, Galán  A, Ballester P , et al.. Solid lipid nanoparticles from amphiphilic calixpyrroles. Journal of Colloid and Interface Science, 2016, 464: 59–65
https://doi.org/10.1016/j.jcis.2015.11.012 pmid: 26609923
34 Kasuya A, Sasaki  Y, Saito Y , et al.. Evidence for size-dependent discrete dispersions in single-wall nanotubes. Physical Review Letters, 1997, 78(23): 4434–4437
https://doi.org/10.1103/PhysRevLett.78.4434
35 Chen G, Bandow  S, Margine E R , et al.. Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Physical Review Letters, 2003, 90(25): 257403
https://doi.org/10.1103/PhysRevLett.90.257403 pmid: 12857164
36 Duesberg G S, Loa  I, Burghard M , et al.. Polarized raman spectroscopy on isolated single-wall carbon nanotubes. Physical Review Letters, 2000, 85(25): 5436–5439
https://doi.org/10.1103/PhysRevLett.85.5436 pmid: 11136015
37 Kataura H, Kumazawa  Y, Maniwa Y , et al.. Diameter control of single-walled carbon nanotubes. Carbon, 2000, 38(11–12): 1691–1697
https://doi.org/10.1016/S0008-6223(00)00090-7
38 Ma J, Wang  N J. Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach. Chemistry of Materials, 2008, 20(9): 2895–2902
https://doi.org/10.1021/cm8001699
1 Iijima S, Ichihashi  T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363(6430): 603–605
https://doi.org/10.1038/363603a0
2 Treacy M M J ,  Ebbesen T W ,  Gibson J M . Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381(6584): 678–680
https://doi.org/10.1038/381678a0
3 Falvo M R, Clary  G J, Taylor  R M, et al.. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389(6651): 582–584
https://doi.org/10.1038/39282 pmid: 9335495
4 Wilder J W G ,  Venema L C ,  Rinzler A G , et al.. Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391(6662): 59–62
https://doi.org/10.1038/34139
5 Odom T W, Huang  J L, Kim  P, et al.. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391(6662): 62–64
https://doi.org/10.1038/34145
6 Baughman R H, Zakhidov  A A, de Heer  W A. Carbon nanotubes — the route toward applications. Science, 2002, 297(5582): 787–792
https://doi.org/10.1126/science.1060928 pmid: 12161643
7 Li H, Feng  L, Guan L , et al.. Synthesis and purification of single-walled carbon nanotubes in the cottonlike soot. Solid State Communications, 2004, 132(3–4): 219–224
https://doi.org/10.1016/j.ssc.2004.07.045
8 Jo J W, Jung  J W, Lee  J U, et al.. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano, 2010, 4(9): 5382–5388
https://doi.org/10.1021/nn1009837 pmid: 20735061
9 Lipomi D J, Vosgueritchian  M, Tee B C K , et al.. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology, 2011, 6(12): 788–792
https://doi.org/10.1038/nnano.2011.184 pmid: 22020121
10 Lee J Y, Connor  S T, Cui  Y, et al.. Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 2008, 8(2): 689–692
https://doi.org/10.1021/nl073296g pmid: 18189445
39 Sheng L, Shi  L, An K , et al.. Effective and efficient purification of single-wall carbon nanotubes based on hydrogen treatment. Chemical Physics Letters, 2011, 502(1–3): 101–106
https://doi.org/10.1016/j.cplett.2010.12.034
11 Peumans P, Yakimov  A, Forrest S R . Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 2003, 93(7): 3693–3723
https://doi.org/10.1063/1.1534621
12 Andersson A, Johansson  N, Broms P , et al.. Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Advanced Materials, 1998, 10(11): 859–863
https://doi.org/10.1002/(SICI)1521-4095(199808)10:11<859::AID-ADMA859>3.0.CO;2-1
13 Chen J, Hamon  M A, Hu  H, et al.. Solution properties of single-walled carbon nanotubes. Science, 1998, 282(5386): 95–98
https://doi.org/10.1126/science.282.5386.95 pmid: 9756485
14 Riggs J E, Guo  Z, Carroll D L , et al.. Strong luminescence of solubilized carbon nanotubes. Journal of the American Chemical Society, 2000, 122(24): 5879–5880
https://doi.org/10.1021/ja9942282
15 Sun Y P, Guduru  R, Lawson G E , et al.. Photophysical and electron-transfer properties of mono- and multiple-functionalized fullerene derivatives. The Journal of Physical Chemistry B, 2000, 104(19): 4625–4632
https://doi.org/10.1021/jp0000329
16 Tang B Z, Xu  H. Preparation, alignment and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules, 1999, 32(8): 2569–2576
https://doi.org/10.1021/ma981825k
17 O’Connell M J ,  Bachilo S M ,  Huffman C B , et al.. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297(5581): 593–596
https://doi.org/10.1126/science.1072631 pmid: 12142535
18 Chen R J, Zhang  Y, Wang D , et al.. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society, 2001, 123(16): 3838–3839
https://doi.org/10.1021/ja010172b pmid: 11457124
19 O’Connell M J ,  Boul P, Ericson  L M, et al.. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 2001, 342(3–4): 265–271
https://doi.org/10.1016/S0009-2614(01)00490-0
20 Star A, Stoddart  J F, Steuerman  D, et al.. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angewandte Chemie International Edition, 2001, 40(9): 1721–1725
https://doi.org/10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F pmid: 11353491
21 Boul P J, Liu  J, Mickelson E T , et al.. Reversible sidewall functionalization of buckytubes. Chemical Physics Letters, 1999, 310(3–4): 367–372
https://doi.org/10.1016/S0009-2614(99)00713-7
22 Chen J, Rao  A M, Lyuksyutov  S, et al.. Dissolution of full-length single-walled carbon nanotubes. The Journal of Physical Che-mistry B, 2001, 105(13): 2525–2528
https://doi.org/10.1021/jp002596i
23 Furtado C A, Kim  U J, Gutierrez  H R, et al.. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. Journal of the American Chemical Society, 2004, 126(19): 6095–6105
https://doi.org/10.1021/ja039588a pmid: 15137775
24 Ausman K D, Piner  R, Lourie O , et al.. Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes. The Journal of Physical Chemistry B, 2000, 104(38): 8911–8915
https://doi.org/10.1021/jp002555m
25 Sun Y, Wilson  S R, Schuster  D I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. Journal of the American Chemical Society, 2001, 123(22): 5348–5349
https://doi.org/10.1021/ja0041730 pmid: 11457398
26 He B, Tang  Q, Liang T , et al.. Efficient dye-sensitized solar cells from polyaniline–single wall carbon nanotube complex counter electrodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(9): 3119–3126
https://doi.org/10.1039/c3ta14167e
27 Allemand P M, Koch  A, Wudl F , et al.. Two different fullerenes have the same cyclic voltammetry. Journal of the American Chemical Society, 1991, 113(3): 1050–1051
https://doi.org/10.1021/ja00003a053
28 Sension R J, Szarka  A Z, Smith  G R, et al.. Ultrafast photoinduced electron transfer to C60. Chemical Physics Letters, 1991, 185(3–4): 179–183
https://doi.org/10.1016/S0009-2614(91)85043-V
29 Wang Y. Photophysical properties of fullerenes and fullerene/N,N-Diethylaniline charge-transfer complexes. The Journal of Physical Chemistry, 1992, 96(2): 764–767
https://doi.org/10.1021/j100181a044
30 Rao A M, Eklund  P C, Bandow  S, et al.. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 1997, 388(6639): 257–259
https://doi.org/10.1038/40827
31 Itkis M E, Perea  D E, Niyogi  S, et al.. Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Letters, 2003, 3(3): 309–314
https://doi.org/10.1021/nl025926e
32 Sen R, Rickard  S M, Itkis  M E, et al.. Controlled purification of single-walled carbon nanotube films by use of selective oxidation and near-IR spectroscopy. Chemistry of Materials, 2003, 15(22): 4273–4279
https://doi.org/10.1021/cm0342997
[1] Jun WU, Chentian SHI, Yupeng ZHANG, Qiang FU, Chunxu PAN. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies[J]. Front. Mater. Sci., 2017, 11(4): 358-365.
[2] Miriam ESTRADA FLORES,Patricia SANTIAGO JACINTO,Carmen M. REZA SAN GERMÁN,Luis RENDÓN VÁZQUEZ,Raúl BORJA URBY,Nicolás CAYETANO CASTRO. Surfactant-free synthesis of metallic bismuth spheres by microwave-assisted solvothermal approach as a function of the power level[J]. Front. Mater. Sci., 2016, 10(4): 394-404.
[3] Xujuan CHEN,Xiaoliang SUN,Cairong GONG,Gang LV,Chonglin SONG. Study on the mechanism of NH3-selective catalytic reduction over CuCexZr1--<?Pub Caret?>x/TiO2[J]. Front. Mater. Sci., 2016, 10(2): 211-223.
[4] Xin-Bo XIONG, Jian-Feng HUANG, Xie-Rong ZENG, Ping LIANG, Ji-Zhao ZOU. Coatings of needle/stripe-like fluoridated hydroxyapatite on H2O2-treated carbon/carbon composites prepared by induction heating and hydrothermal methods[J]. Front Mater Sci, 2012, 6(2): 160-167.
[5] Punuri Jayasekhar BABU, Pragya SHARMA, Mohan Chandra KALITA, Utpal BORA. Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract[J]. Front Mater Sci, 2011, 5(4): 379-387.
[6] Wen-can ZHOU, Zheng-cao LI, Zheng-jun ZHANG, Ken ONDA, Sho OGIHARA, Yoichi OKIMOTO, Shin-ya KOSHIHARA, . Nanostructured TiO 2 photocatalyst and pump-probe spectroscopic study[J]. Front. Mater. Sci., 2009, 3(4): 403-408.
[7] LI Zai-feng, LI Jin-yan, SUN Jian, SUN Bao-qun, WANG Jin-jing, SHEN Qiang. Investigation of kinetics and morphology development for polyurethane-urea extended by DMTDA[J]. Front. Mater. Sci., 2008, 2(2): 200-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed