Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2011, Vol. 5 Issue (4) : 379-387    https://doi.org/10.1007/s11706-011-0153-1
RESEARCH ARTICLE
Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract
Punuri Jayasekhar BABU1,2, Pragya SHARMA3, Mohan Chandra KALITA3, Utpal BORA1,2()
1. Biotech Hub, Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India; 2. Biomaterials and Tissue Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam-781039, India; 3. Department of Biotechnology, Gauhati University, Guwahati, Assam-781039, India
 Download: PDF(490 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This report describes the use of ethnolic extract of Fagopyrum esculentum leaves for the synthesis of gold nanoparticles. UV-visible spectroscopy analysis indicated the successful formation of gold nanoparticles. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and were found to be spherical, hexagonal and triangular in shape with an average size of 8.3 nm. The crystalline nature of the gold nanoparticles was confirmed from X-ray diffraction (XRD) and selected-area electron diffraction (SAED) patterns. Fourier transform infrared (FT-IR) and energy-dispersive X-ray analysis (EDX) suggested the presence of organic biomolecules on the surface of the gold nanoparticles. Cytotoxicity tests against human HeLa, MCF-7 and IMR-32 cancer cell lines revealed that the gold nanoparticles were non-toxic and thus have potential for use in various biomedical applications.

Keywords biomaterials      crystal growth      electron microscopy      Fourier transform infrared spectroscopy      adsorption     
Corresponding Author(s): BORA Utpal,Email:ubora@iitg.ernet.in, ubora@rediffmail.com   
Issue Date: 05 December 2011
 Cite this article:   
Punuri Jayasekhar BABU,Pragya SHARMA,Mohan Chandra KALITA, et al. Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract[J]. Front Mater Sci, 2011, 5(4): 379-387.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-011-0153-1
https://academic.hep.com.cn/foms/EN/Y2011/V5/I4/379
Fig.1  UV-visible absorption spectra of GNPs synthesized by different concentrations of FLE (a —0.1%, b — 0.2%, c —0.3%, d —0.4%, e —0.5%) for 15 s against 1 mmol/L HAuCl and at varying MW irradiation time (a—12 s, b —14 s, c — 16 s, d —18 s, e— 20 s) with 0.4% FLE and 1 mmol/L HAuCl.
Fig.2  Tentative mechanisms of flavonoids and phenolic compounds.
Fig.3  TEM image of GNPs synthesized with 0.4% and 1 mmol/L HAuCl for 16 s; SAED pattern; HRTEM and size distribution histograms.
Fig.4  XRD pattern of GNPs synthesized with 0.4% FLE, 1 mmol/L HAuCl and 16 s as MW irradiation time.
Fig.5  FT-IR spectra of lyophilized FLE (a) and GNPs (b).
Fig.6  H NMR spectra of GNPs.
Fig.7  EDX pattern of GNPs synthesized with 0.4% FLE, 1 mmol/L HAuCl and 16 s MW irradiation time.
Fig.8  Cytotoxicity assay: cell viability of HeLa, MCF-7 and IMR-32 cells exposed to different concentrations of GNPs (10-100 μmol/L) over a period of 24 h treatment.
1 Azzazy H M, Mansour M M, Kazmierczak S C. Nanodiagnostics: a new frontier for clinical laboratory medicine. Clinical Chemistry , 2006, 52(7): 1238–1246
2 Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews , 2008, 60(11): 1289–1306
3 Han G, Ghosh P, Rotello V M. Multi-functional gold nanoparticles for drug delivery. Advances in Experimental Medicine and Biology , 2007, 620: 48–56
4 Han G, Ghosh P, Rotello V M. Functionalized gold nanoparticles for drug delivery. Nanomedicine , 2007, 2(1): 113–123
5 Jain K K. Role of nanobiotechnology in developing personalized medicine for cancer. Technology in Cancer Research and Treatment , 2005, 4(6): 645–650
6 Jain K K. Nanotechnology in clinical laboratory diagnostics. Clinica Chimica Acta , 2005, 358(1-2): 37–54
7 Jain K K. Applications of nanobiotechnology in clinical diagnostics. Clinical Chemistry , 2007, 53(11): 2002–2009
8 Longmire M, Choyke P L, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine , 2008, 3(5): 703–717
9 Sonvico F, Dubernet C, Colombo P, . Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Current Pharmaceutical Design , 2005, 11(16): 2091–2105
10 Sperling R A, Gil P R, Zhang F, . Biological applications of gold nanoparticles. Chemical Society Reviews , 2008, 37(9): 1896–1908
11 Yang D-P, Cui D-X. Advances and prospects of gold nanorods. Chemistry- An Asian Journal , 2008, 3(12): 2010–2022
12 Walsh D, Arcelli L, Ikoma T, . Dextran templating for the synthesis of metallic and metal oxide sponges. Nature Materials , 2003, 2(6): 386–390
13 Yang M D, Liu Y K, Shen J L, . Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters. Optics Express , 2008, 16(20): 15754–15758
14 Kim W B, Voitl T, Rodriguez-Rivera G J, . Powering fuel cells with CO via aqueous polyoxometalates and gold catalysts. Science , 2004, 305(5688): 1280–1283
15 Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews , 2004, 104(1): 293–346
16 Esumi K, Suzuki K A, Torigoe K. Preparation of gold nanoparticles in formamide and N,N dimethylformamide in the presence of poly(amidoamine) dendrimers with surface methyl ester groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2001, 189(1-3): 155–161
17 Feitz A G J, Waite D. Process for producing a nanoscale zero-valent metal by reduction of inorganic salts with dithionite or borohydride. Australia: CRC for Waste Management and Pollution Control Limited, 2004, 36
18 Lin J, Zhou W, O’Connor C J. Formation of ordered arrays of gold nanaoparticles from CTAB reverse micelles. Materials Letters , 2001, 49(5): 282–286
19 Beveridge T J, Murray R G. Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology , 1980, 141(2): 876–887
20 Konish Y, Deshmukh N, Tsukiyama T, . Microbial preparation of gold nanoparticles by anaerobic bacterium. Transactions of the Materials Research Society of Japan , 2004, 29(5): 2341–2343
21 Mukherjee P, Ahmad A, Mandal M, . Bioreduction of AuCl4- ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angewandte Chemie International Edition , 2001, 40(19): 3585–3588
22 Huang J, Li Q, Sun D, . Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology , 2007, 18(10): 105104
23 Kasthuri J, Kathiravan K, Rajendiran N. Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. Journal of Nanoparticle Research , 2009, 11(5): 1075–1085
24 Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids and Surfaces B: Biointerfaces , 2009, 68(1): 55–60
25 Shankar S S, Rai A, Ahmad A, . Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science , 2004, 275(2): 496–502
26 Ihme N, Kiesewetter H, Jung F, . Leg oedema protection from a buckwheat herb tea in patients with chronic venous insufficiency: a single-centre, randomised, double-blind, placebo-controlled clinical trial. European Journal of Clinical Pharmacology , 1996, 50(6): 443–447
27 Nestler J E, Jakubowicz D J, Reamer P, . Ovulatory and metabolic effects of d-chiro-inositol in the polycystic ovary syndrome. The New England Journal of Medicine , 1999, 340(17): 1314–1320
28 Iuorno M J, Jakubowicz D J, Baillargeon J-P, . Effects of D-chiro-inositol in lean women with the polycystic ovary syndrome. Endocrine Practice , 2002, 8(6): 417–423
29 Tomotake H, Shimaoka I, Kayashita J, . Stronger suppression of plasma cholesterol and enhancement of the fecal excretion of steroids by a buckwheat protein product than by a soy protein isolate in rats fed on a cholesterol-free diet. Bioscience, Biotechnology, and Biochemistry , 2001, 65(6): 1412–1414
30 Bonafaccia G, Marocchini M, Kreft I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry , 2003, 80(1): 9–15
31 Kreft S, Knapp M, Kreft I. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. Journal of Agricultural and Food Chemistry , 1999, 47(11): 4649–4652
32 Horbowicz M, Brenac P, Obendorf R L. Fagopyritol B1, O-α-D-galactopyranosyl-(1→2)-D-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta , 1998, 205(1): 1–11
33 Kreft S, Strukelj B, Gaberscik A, . Rutin in buckwheat herbs grown at different UV-B radiation levels: comparison of two UV spectrophotometric and an HPLC method. Journal of Experimental Botany , 2002, 53(375): 1801–1804
34 Patel K, Kapoor S, Dave D P, . Synthesis of nanosized silver colloids by microwave dielectric heating. Journal of Chemical Sciences , 2005, 117(1): 53–60
35 Yin H B, Yamamoto T, Wada Y J, . Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Materials Chemistry and Physics , 2004, 83(1): 66–70
36 Quettier-Deleu C, Gressier B, Vasseur J, . Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology , 2000, 72(1–2): 35–42
37 Raghunandan D, Basavaraja S, Mahesh B, et al. Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. Nanobiotechnology , 2009,5(1–4): 34–41
38 Babu P J, Sharma P, Borthakur B B, . Synthesis of gold nanoparticles using Mentha arvensis leaf extract. International Journal of Green Nanotechnology: Physics and Chemistry , 2010, 2(2): 62–68
39 Das R K, Borthakur B B, Bora U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Materials Letters , 2010, 64(13): 1445–1447
40 Babu P J, Das R K, Kumar A, . Microwave-mediated synthesis of gold nanoparticles using coconut water. International Journal of Green Nanotechnology , 2011, 3(1): 13–21
41 Brugnerotto J, Lizardi J, Goycoolea F M, . An infrared investigation in relation with chitin and chitosan characterization. Polymer , 2001, 42(8): 3569–3580
[1] Yue ZHANG, Yihong YU, Xiankai FU, Zhisen LIU, Yinglei LIU, Song LI. Light-switchable catalytic activity of Cu for oxygen reduction reaction[J]. Front. Mater. Sci., 2020, 14(4): 481-487.
[2] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
[3] Yajun ZHENG, Liyun CAO, Gaoxuan XING, Zongquan BAI, Hongyan SHEN, Jianfeng HUANG, Zhiping ZHANG. Influence and its mechanism of temperature variation in a muffle furnace during calcination on the adsorption performance of rod-like MgO to Congo red[J]. Front. Mater. Sci., 2018, 12(3): 304-321.
[4] Qian WANG, Guihua MENG, Jianning WU, Yixi WANG, Zhiyong LIU, Xuhong GUO. Novel robust cellulose-based foam with pH and light dual-response for oil recovery[J]. Front. Mater. Sci., 2018, 12(2): 118-128.
[5] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[6] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[7] Bin ZHANG,Chen LIU,Weiping KONG,Chenze QI. Magnetic motive, ordered mesoporous carbons with partially graphitized framework and controllable surface wettability: preparation, characterization and their selective adsorption of organic pollutants in water[J]. Front. Mater. Sci., 2016, 10(2): 147-156.
[8] Minh Thi TRAN,Thi Huyen Trang NGUYEN,Quoc Trung VU,Minh Vuong NGUYEN. Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater[J]. Front. Mater. Sci., 2016, 10(1): 56-65.
[9] Michael Tanner CAMERON,Jordan A. ROGERSON,Douglas A. BLOM,Albert D. DUKES III. Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature[J]. Front. Mater. Sci., 2016, 10(1): 8-14.
[10] Bing TENG,Weijin KONG,Ke FENG,Fei YOU,Lifeng CAO,Degao ZHONG,Lun HAO,Qing SUN,Sander van SMAALEN,Wenhui GONG. Synthesis, crystal structure and thermal analysis of a new stilbazolium salt crystal[J]. Front. Mater. Sci., 2015, 9(2): 147-150.
[11] M. JAMESH, T. S. N. SANKARA NARAYANAN, Paul K. CHU, Il Song PARK, Min Ho LEE. Effect of surface mechanical attrition treatment of titanium using alumina balls: surface roughness, contact angle and apatite forming ability[J]. Front Mater Sci, 2013, 7(3): 285-294.
[12] Zhen-Hua CHEN, Xiu-Li REN, Hui-Hui ZHOU, Xu-Dong LI. The role of hyaluronic acid in biomineralization[J]. Front Mater Sci, 2012, 6(4): 283-296.
[13] Punuri Jayasekhar BABU, Sibyala SARANYA, Pragya SHARMA, Ranjan TAMULI, Utpal BORA. Gold nanoparticles: sonocatalytic synthesis using ethanolic extract of Andrographis paniculata and functionalization with polycaprolactone–gelatin composites[J]. Front Mater Sci, 2012, 6(3): 236-249.
[14] Shun-Feng WANG, Xiao-Hong WANG, Lu GAN, Matthias WIENS, Heinz C. SCHR?DER, Werner E. G. MüLLER. Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis][J]. Front Mater Sci, 2011, 5(3): 266-281.
[15] Masashi TAKAHASHI, Shin-Ichi GOTO, Kazuhisa MORI, Izumi MATAGA, . Relationship between histological complexity and elemental composition of the cuspal enamels among human deciduous teeth[J]. Front. Mater. Sci., 2010, 4(2): 175-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed