Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (2) : 230639    https://doi.org/10.1007/s11706-023-0639-7
RESEARCH ARTICLE
A diluent protective organic additive electrolyte of hydrophilic hyperbranched polyester for long-life reversible aqueous zinc manganese oxide batteries
Hengxin Xu1, Song Yang1, Yufeng Chen1, Junle Xiong2, Shengtao Zhang1, Fang Gao1(), Zhengyong Huang1,3(), Hongru Li1()
1. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
2. Chongqing Kunding Environmental Protection Technology, Co. Ltd., Chongqing 400044, China
3. State Key Laboratory of Power Transmission Equipments and System Security and New Technology, Chongqing University, Chongqing 400044, China
 Download: PDF(5961 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A hydrophilic hyperbranched polyester (poly (tetramethylol acetylenediurea (TA)-CO-succinyl chloride) (PTS)) was proposed to be used as an organic additive in aqueous ZnSO4 electrolyte to achieve a highly reversible zinc/manganese oxide battery. It is found that the zinc symmetric battery based on the 2.0 wt.% PTS/ZnSO4 electrolyte showed a long cycle stability of more than 2400 h at 1.0 mA·cm−2, which is much longer than that including the blank ZnSO4 electrolyte (140 h). Furthermore, the capacity retention of the Zn||MnO2 full cells employing the 2.0 wt.% PTS/ZnSO4 electrolyte remained 85% after 100 cycles at 0.2 A·g−1, which is much higher than 20% capacity retention of the cell containing the blank ZnSO4 electrolyte, and also greater than 59.6% capacity retention of the cell including the 10.0 wt.% TA/ZnSO4 electrolyte. By using 2.0 wt.% PTS/ZnSO4 electrolytes, the capacity retention of the Zn||MnO2 full cells even reached 65% after 2000 cycles at a higher current density of 1.0 A·g−1. It is further demonstrated that the PTS was firmly adsorbed on the zinc anode surface to form a protective layer.

Keywords aqueous zinc-ion battery      hydrophilic branched polyester      Zn anode protection      Zn dendrite      adsorption     
Corresponding Author(s): Fang Gao,Zhengyong Huang,Hongru Li   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Issue Date: 07 March 2023
 Cite this article:   
Hengxin Xu,Song Yang,Yufeng Chen, et al. A diluent protective organic additive electrolyte of hydrophilic hyperbranched polyester for long-life reversible aqueous zinc manganese oxide batteries[J]. Front. Mater. Sci., 2023, 17(2): 230639.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0639-7
https://academic.hep.com.cn/foms/EN/Y2023/V17/I2/230639
  Scheme1 Molecular structure and preparation route of the target PTS.
Fig.1  Electrochemical performance of Zn||MnO2 full cells in different electrolytes at 0.2 A·g?1: (a) ZnSO4; (b) 1.0 wt.% PTS/ZnSO4; (c) 2.0 wt.% PTS/ZnSO4; (d) 3.0 wt.% PTS/ZnSO4; (e) 5.0 wt.% TA/ZnSO4; (f) 10.0 wt.% TA/ZnSO4; (g) 15.0 wt.% TA/ZnSO4. (h) Cycling performance of the Zn||MnO2 full cell at 1.0 A·g?1. (i) Digital photo of two Zn||MnO2 pouch cells with the PTS/ZnSO4 electrolyte powering the LED light.
Fig.2  (a) The Nyquist plots and (b) the CV curves of Zn||MnO2 full cells by using the PTS/ZnSO4 electrolyte and the ZnSO4 electrolyte.
Fig.3  Electrochemical performance of symmetric Zn||Zn cells in different electrolytes: voltage profiles under (a) 1.0 mA·cm?2 with a capacity of 1 mA·h·cm?2, (b) 5.0 mA·cm?2 with a capacity of 2.0 mA·h·cm?2, (c) 10.0 mA·cm?2 with a capacity of 1.0 mA·h·cm?2, and (d) different current densities with a capacity of 1.0 mA·h·cm?2.
Fig.4  SEM images of the Zn anode after 50 cycles in symmetric Zn||Zn cells based on different electrolytes: (a) PTS/ZnSO4; (b) ZnSO4. (c) The cycling performance comparison of symmetric Zn||Zn cells using the PTS/ZnSO4 electrolyte in this work with recent reports in references.
Fig.5  SEM images: (a) the polished bare Zn; the Zn foils immersed for a week in different electrolytes of (b) PTS/ZnSO4 and (c) ZnSO4. Insets: digital photos.
Fig.6  (a) XRD patterns of the zinc plate immersed in ZnSO4 and PTS/ZnSO4 electrolytes for 7 d. XPS spectra of the Zn anode after 20 cycles in symmetric Zn||Zn cells with the additive PTS: (b) the whole survey; (c) Zn 2p; (d) C 1s; (e) N 1s. (f) ATR-IR spectra of the pristine Zn and Zn anode after 20 cycles in symmetric Zn||Zn cells with the PTS/ZnSO4 electrolyte.
Fig.7  (a) Mapping images of the X-ray EDS of the zinc electrode surface after the recycles of cells. (b) Tafel plots of the Zn electrode tested in ZnSO4 and PTS/ZnSO4 electrolytes at a scan rate of 10 mV·s?1.
1 L, Lin L, Suo Y, Hu et al.. Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery.Advanced Energy Materials, 2021, 11(9): 2003709
https://doi.org/10.1002/aenm.202003709
2 Y, Liu X, Tao Y, Wang et al.. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries.Science, 2022, 375(6582): 739–745
https://doi.org/10.1126/science.abn1818 pmid: 35175797
3 P, Cao X, Zhou A, Wei et al.. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries.Advanced Functional Materials, 2021, 31(20): 2100398
https://doi.org/10.1002/adfm.202100398
4 S, Wu S, Zhang Y, Chu et al.. Stacked lamellar matrix enabling regulated deposition and superior thermo-kinetics for advanced aqueous Zn-ion system under practical conditions.Advanced Functional Materials, 2021, 31(49): 2107397
https://doi.org/10.1002/adfm.202107397
5 R, Zhao Y, Yang G, Liu et al.. Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes.Advanced Functional Materials, 2021, 31(2): 2001867
https://doi.org/10.1002/adfm.202001867
6 X, Zeng J, Mao J, Hao et al.. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions.Advanced Materials, 2021, 33(11): e2007416
https://doi.org/10.1002/adma.202007416 pmid: 33576130
7 X, Jia C, Liu Z G, Neale et al.. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry.Chemical Reviews, 2020, 120(15): 7795–7866
https://doi.org/10.1021/acs.chemrev.9b00628 pmid: 32786670
8 L, Cao D, Li F A, Soto et al.. Highly reversible aqueous zinc batteries enabled by zincophilic‒zincophobic interfacial layers and interrupted hydrogen-bond electrolytes.Angewandte Chemie International Edition in English, 2021, 60(34): 18845–18851
https://doi.org/10.1002/anie.202107378 pmid: 34196094
9 Q, Yang Q, Li Z, Liu et al.. Dendrites in Zn-based batteries.Advanced Materials, 2020, 32(48): e2001854
https://doi.org/10.1002/adma.202001854 pmid: 33103828
10 D, Chao W, Zhou C, Ye et al.. An electrolytic Zn‒MnO2 battery for high-voltage and scalable energy storage.Angewandte Chemie International Edition in English, 2019, 58(23): 7823–7828
https://doi.org/10.1002/anie.201904174 pmid: 30972886
11 C, Deng X, Xie J, Han et al.. Stabilization of Zn metal anode through surface reconstruction of a cerium-based conversion film.Advanced Functional Materials, 2021, 31(51): 2103227
https://doi.org/10.1002/adfm.202103227
12 P, Liang J, Yi X, Liu et al.. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries.Advanced Functional Materials, 2020, 30(13): 1908528
https://doi.org/10.1002/adfm.201908528
13 J Y, Kim G, Liu G Y, Shim et al.. Functionalized Zn@ZnO hexagonal pramid array for dendrite-free and ultrastable zinc metal anodes.Advanced Functional Materials, 2020, 30(36): 2004210
https://doi.org/10.1002/adfm.202004210
14 X, Liu F, Yang W, Xu et al.. Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes.Advanced Science, 2020, 7(21): 2002173
https://doi.org/10.1002/advs.202002173 pmid: 33173741
15 L, Wang W, Huang W, Guo et al.. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries.Advanced Functional Materials, 2022, 32(1): 2108533
https://doi.org/10.1002/adfm.202108533
16 S B, Wang Q, Ran R Q, Yao et al.. Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries.Nature Communications, 2020, 11(1): 1634
https://doi.org/10.1038/s41467-020-15478-4 pmid: 32242024
17 Y, Jin K S, Han Y, Shao et al.. Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes.Advanced Functional Materials, 2020, 30(43): 2003932
https://doi.org/10.1002/adfm.202003932
18 Y, Xu J, Zhu J, Feng et al.. A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive.Energy Storage Materials, 2021, 38: 299–308
https://doi.org/10.1016/j.ensm.2021.03.019
19 H, Dong J, Li S, Zhao et al.. Investigation of a biomass hydrogel electrolyte naturally stabilizing cathodes for zinc-ion batteries.ACS Applied Materials & Interfaces, 2021, 13(1): 745–754
https://doi.org/10.1021/acsami.0c20388 pmid: 33370108
20 X, Guo Z, Zhang J, Li et al.. Alleviation of dendrite formation on zinc anodes via electrolyte additives.ACS Energy Letters, 2021, 6(2): 395–403
https://doi.org/10.1021/acsenergylett.0c02371
21 F, Ding W, Xu G L, Graff et al.. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism.Journal of the American Chemical Society, 2013, 135(11): 4450–4456
https://doi.org/10.1021/ja312241y pmid: 23448508
22 W, Xu K, Zhao W, Huo et al.. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries.Nano Energy, 2019, 62: 275–281
https://doi.org/10.1016/j.nanoen.2019.05.042
23 L, Cao D, Li E, Hu et al.. Solvation structure design for aqueous Zn metal batteries.Journal of the American Chemical Society, 2020, 142(51): 21404–21409
https://doi.org/10.1021/jacs.0c09794 pmid: 33290658
24 H, Qiu X, Du J, Zhao et al.. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation.Nature Communications, 2019, 10(1): 5374
https://doi.org/10.1038/s41467-019-13436-3 pmid: 31772177
25 A, Naveed H, Yang Y, Shao et al.. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries.Advanced Materials, 2019, 31(36): e1900668
https://doi.org/10.1002/adma.201900668 pmid: 31328835
26 C, Zhang J, Holoubek X, Wu et al.. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode.Chemical Communications, 2018, 54(100): 14097–14099
https://doi.org/10.1039/C8CC07730D pmid: 30488907
27 A, Bayaguud X, Luo Y, Fu et al.. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries.ACS Energy Letters, 2020, 5(9): 3012–3020
https://doi.org/10.1021/acsenergylett.0c01792
28 Q, Zhang J, Luan Y, Tang et al.. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries.Angewandte Chemie International Edition in English, 2020, 59(32): 13180–13191
https://doi.org/10.1002/anie.202000162 pmid: 32124537
29 Q, Zhang J, Luan L, Fu et al.. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive.Angewandte Chemie International Edition in English, 2019, 58(44): 15841–15847
https://doi.org/10.1002/anie.201907830 pmid: 31437348
30 F, Wan L, Zhang X, Dai et al.. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers.Nature Communications, 2018, 9(1): 1656
https://doi.org/10.1038/s41467-018-04060-8 pmid: 29695711
31 Q, Chen J, Jin Z, Kou et al.. Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density.Small, 2020, 16(14): e2000091
https://doi.org/10.1002/smll.202000091 pmid: 32174015
32 R, Wang D, Wang H, Nagaumi et al.. Understanding the corrosion behavior by passive film evolution in Zn-containing Al‒Si‒Cu cast alloy.Corrosion Science, 2022, 205: 110468
https://doi.org/10.1016/j.corsci.2022.110468
33 B, Tan S, Zhang Y, Qiang et al.. Experimental and theoretical studies on the inhibition properties of three diphenyl disulfide derivatives on copper corrosion in acid medium.Journal of Molecular Liquids, 2020, 298: 111975
https://doi.org/10.1016/j.molliq.2019.111975
34 J, Wang Z, Cai R, Xiao et al.. A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries.ACS Applied Materials & Interfaces, 2020, 12(20): 23028–23034
https://doi.org/10.1021/acsami.0c05661 pmid: 32329612
35 Q, Qiu X, Chi J, Huang et al.. Highly stable plating/stripping behavior of zinc metal anodes in aqueous zinc batteries regulated by quaternary ammonium cationic salts.ChemElectroChem, 2021, 8(5): 858–865
https://doi.org/10.1002/celc.202001426
36 Z, Zhao J, Zhao Z, Hu et al.. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase.Energy & Environmental Science, 2019, 12(6): 1938–1949
https://doi.org/10.1039/C9EE00596J
37 Z, Cai Y, Ou J, Wang et al.. Chemically resistant Cu‒Zn/Zn composite anode for long cycling aqueous batteries.Energy Storage Materials, 2020, 27: 205–211
https://doi.org/10.1016/j.ensm.2020.01.032
38 T, Liu J, Hong J, Wang et al.. Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan.Energy Storage Materials, 2022, 45: 1074–1083
https://doi.org/10.1016/j.ensm.2021.11.002
39 Z, Cao X, Zhu D, Xu et al.. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery.Energy Storage Materials, 2021, 36: 132–138
https://doi.org/10.1016/j.ensm.2020.12.022
40 Y, Tang C, Liu H, Zhu et al.. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode.Energy Storage Materials, 2020, 27: 109–116
https://doi.org/10.1016/j.ensm.2020.01.023
41 P, Sun L, Ma W, Zhou et al.. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive.Angewandte Chemie International Edition in English, 2021, 60(33): 18247–18255
https://doi.org/10.1002/anie.202105756 pmid: 34036748
42 Q, Zhang Y, Ma Y, Lu et al.. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode.Angewandte Chemie International Edition in English, 2021, 60(43): 23357–23364
https://doi.org/10.1002/anie.202109682 pmid: 34382322
43 M, Yan C, Xu Y, Sun et al.. Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive.Nano Energy, 2021, 82: 105739
https://doi.org/10.1016/j.nanoen.2020.105739
44 C, Liu Y, Tian Y, An et al.. Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries.Chemical Engineering Journal, 2022, 298: 132748
https://doi.org/10.1016/j.cej.2021.132748
45 Y, Chu S, Zhang S, Wu et al.. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes.Energy & Environmental Science, 2021, 14(6): 3609–3620
https://doi.org/10.1039/D1EE00308A
46 Y, Zeng X, Zhang R, Qin et al.. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries.Advanced Materials, 2019, 31(36): e1903675
https://doi.org/10.1002/adma.201903675 pmid: 31342572
47 Y, An Y, Tian C, Liu et al.. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries.ACS Nano, 2021, 15(9): 15259–15273
https://doi.org/10.1021/acsnano.1c05934 pmid: 34435782
48 X, Zhao X, Liang Y, Li et al.. Challenges and design strategies for high performance aqueous zinc ion batteries.Energy Storage Materials, 2021, 42: 533–569
https://doi.org/10.1016/j.ensm.2021.07.044
49 C, Xu B, Li H, Du et al.. Energetic zinc ion chemistry: the rechargeable zinc ion battery.Angewandte Chemie International Edition in English, 2012, 51(4): 933–935
https://doi.org/10.1002/anie.201106307 pmid: 22170816
50 H, Pan Y, Shao P, Yan et al.. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions.Nature Energy, 2016, 1(5): 1–7
https://doi.org/10.1038/nenergy.2016.39
51 W, Sun F, Wang S, Hou et al.. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion.Journal of the American Chemical Society, 2017, 139(29): 9775–9778
https://doi.org/10.1021/jacs.7b04471 pmid: 28704997
52 P, Karami B, Khorshidi L, Shamaei et al.. Nanodiamond-enabled thin-film nanocomposite polyamide membranes for high-temperature water treatment.ACS Applied Materials & Interfaces, 2020, 12(47): 53274–53285
https://doi.org/10.1021/acsami.0c15194 pmid: 33170622
53 H, Jia M, Qiu C, Lan et al.. Advanced zinc anode with nitrogen-doping interface induced by plasma surface treatment.Advanced Science, 2022, 9(3): e2103952
https://doi.org/10.1002/advs.202103952 pmid: 34825781
54 D, Han S, Wu S, Zhang et al.. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems.Small, 2020, 16(29): e2001736
https://doi.org/10.1002/smll.202001736 pmid: 32567230
[1] FMS-23639-OF-Xhx_suppl_1 Download
[1] Rajesh K. JENA, Himadri Tanaya DAS, Braja N. PATRA, Nigamananda DAS. MXene-based nanomaterials as adsorbents for wastewater treatment: a review on recent trends[J]. Front. Mater. Sci., 2022, 16(1): 220592-.
[2] Chunfu HUANG, Cong WU, Zilu ZHANG, Yunyun XIE, Yang LI, Caihong YANG, Hai WANG. Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries[J]. Front. Mater. Sci., 2021, 15(2): 202-215.
[3] Yue ZHANG, Yihong YU, Xiankai FU, Zhisen LIU, Yinglei LIU, Song LI. Light-switchable catalytic activity of Cu for oxygen reduction reaction[J]. Front. Mater. Sci., 2020, 14(4): 481-487.
[4] Yajun ZHENG, Liyun CAO, Gaoxuan XING, Zongquan BAI, Hongyan SHEN, Jianfeng HUANG, Zhiping ZHANG. Influence and its mechanism of temperature variation in a muffle furnace during calcination on the adsorption performance of rod-like MgO to Congo red[J]. Front. Mater. Sci., 2018, 12(3): 304-321.
[5] Qian WANG, Guihua MENG, Jianning WU, Yixi WANG, Zhiyong LIU, Xuhong GUO. Novel robust cellulose-based foam with pH and light dual-response for oil recovery[J]. Front. Mater. Sci., 2018, 12(2): 118-128.
[6] Bin ZHANG,Chen LIU,Weiping KONG,Chenze QI. Magnetic motive, ordered mesoporous carbons with partially graphitized framework and controllable surface wettability: preparation, characterization and their selective adsorption of organic pollutants in water[J]. Front. Mater. Sci., 2016, 10(2): 147-156.
[7] Minh Thi TRAN,Thi Huyen Trang NGUYEN,Quoc Trung VU,Minh Vuong NGUYEN. Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater[J]. Front. Mater. Sci., 2016, 10(1): 56-65.
[8] Punuri Jayasekhar BABU, Pragya SHARMA, Mohan Chandra KALITA, Utpal BORA. Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract[J]. Front Mater Sci, 2011, 5(4): 379-387.
[9] ZHANG Zhi-sen, PAN Hai-hua, TANG Rui-kang. Molecular dynamics simulations of the adsorption of amino acids on the hydroxyapatite {100}-water interface[J]. Front. Mater. Sci., 2008, 2(3): 239-245.
[10] SUN Gang-zheng, CHEN Xi-guang, LI Yan-yan, ZHENG Bo, GONG Zheng-hui, SUN Jian-jun, CHEN Heng, LI Jie, LIN Wen-xing. Preparation of H-oleoyl-carboxymethyl-chitosan and the function as a coagulation agent for residual oil in aqueous system[J]. Front. Mater. Sci., 2008, 2(1): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed