Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2021, Vol. 15 Issue (2) : 202-215    https://doi.org/10.1007/s11706-021-0551-y
RESEARCH ARTICLE
Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries
Chunfu HUANG1, Cong WU1, Zilu ZHANG1, Yunyun XIE1, Yang LI1, Caihong YANG1, Hai WANG1,2()
1. College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
2. College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
 Download: PDF(2871 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Currently, δ-MnO2 is one of the popularly studied cathode materials for aqueous zinc-ion batteries (ZIBs) but impeded by the sluggish kinetics of Zn2+ and the Mn cathode dissolution. Here, we report our discovery in the study of crystalline/amorphous MnO2 (disordered MnO2), prepared by a simple redox reaction in the order/disorder engineering. This disordered MnO2 cathode material, having open framework with more active sites and more stable structure, shows improved electrochemical performance in 2 mol·L−1 ZnSO4/0.1 mol·L−1 MnSO4 aqueous electrolyte. It delivers an ultrahigh discharge specific capacity of 636 mA·h·g−1 at 0.1 A·g−1 and remains a large discharge capacity of 216 mA·h·g−1 even at a high current density of 1 A·g−1 after 400 cycles. Hence disordered MnO2 could be a promising cathode material for aqueous ZIBs. The storage mechanism of the disordered MnO2 electrode is also systematically investigated by structural and morphological examinations of ex situ, ultimately proving that the mechanism is the same as that of the δ-MnO2 electrode. This work may pave the way for the possibility of using the order/disorder engineering to introduce novel properties in electrode materials for high-performance aqueous ZIBs.

Keywords aqueous zinc-ion battery      open framework      cathode      δ-MnO2     
Corresponding Author(s): Hai WANG   
Online First Date: 14 May 2021    Issue Date: 08 June 2021
 Cite this article:   
Chunfu HUANG,Cong WU,Zilu ZHANG, et al. Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries[J]. Front. Mater. Sci., 2021, 15(2): 202-215.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-021-0551-y
https://academic.hep.com.cn/foms/EN/Y2021/V15/I2/202
Fig.1  Diagrams of (a) the preparation process and (b) the synthesis mechanism for disordered MnO2.
Fig.2  (a) XRD patterns, (b) Raman spectra and (c) FTIR results of δ-MnO2 and disordered MnO2. (d)(e)(f) HRTEM images in different observed areas and (g) SAED image of disordered MnO2.
Fig.3  XPS results of (a) Mn 2p and (b) O 1s for δ-MnO2 and disordered MnO2. FESEM images of (c)δ-MnO2 and (e) disordered MnO2. (d) Water contact angles of disordered MnO2 (left) and δ-MnO2 (right).
Fig.4  (a) CV curves of disordered MnO2 at 0.2 mV·s−1. (b) CV curves of δ-MnO2 and disordered MnO2 at 0.2 mV·s−1 (in the third cycle). (c) Charge/discharge curves of δ-MnO2 and disordered MnO2 at 0.1 A·g−1. (d) Cycling stability of δ-MnO2 and disordered MnO2 at 1 A·g−1. (e) Schematics of the zinc-ion diffusion in structures of δ-MnO2 (left) and disordered MnO2 (right).
Fig.5  (a) CV curves of disordered MnO2 at different scan rates. (b) Plots of lgi versus lgv at specific peak currents. (c) GITT curves at a current density of 0.07 A·g−1 (at the fourth cycle) for disordered MnO2. (d) Contribution ratios of the capacitive capacity and the diffusion-limited capacity at different scan rates. (e) Typical Nyquist plots for δ-MnO2 and disordered MnO2 cathodes after 30 min rest. (f) Diffusion coefficients calculated from GITT potential profiles for disordered MnO2.
Fig.6  (a) Ex situ XRD patterns of disordered MnO2 and (b) corresponding charge/discharge profiles at 0.1 A·g−1. (c) The galvanostatic discharge profile of disordered MnO2 at 0.1 A·g−1 (at the second cycle). (d) Schematic of the discharge reaction process.
Fig.7  (a)(b)(c)(d) Ex situ FESEM images of disordered MnO2 at different states (at the second cycle). (e)(f)(g)(h) Images of positive electrode plates from the B state to the E state.
  Fig. S1 (a)(b) TEM, (c) HRTEM and (d) SAED images of δ-MnO2.
  Fig. S2 CV curves of δ-MnO2 at 0.2 mV·s−1.
  Fig. S3 Capacity–potential profiles of (a)δ-MnO2 and (b) disordered MnO2 at 0.3 A·g−1. (c) Rate performances of δ-MnO2 and disordered MnO2.
  Fig. S4 CV curves of δ-MnO2 at different scan rates.
  Fig. S5 (a) GITT curves of δ-MnO2 at a current density of 0.07 A·g−1 (at the fourth cycle). (b) Diffusion coefficients calculated from GITT potential profiles for δ-MnO2.
  Fig. S6 (a) Ex situ XRD patterns of δ-MnO2. (b) Corresponding charge/discharge profiles of δ-MnO2 at 0.1 A·g−1.
  Fig. S7 Ex situ FESEM images of δ-MnO2 at different charge/discharge states: (a) B state; (b) C state; (c) D state; (d) E state.
Electrode material Electrolyte Specific capacity Ref.
δ-MnO2 1 mol·L−1 Zn(TFSI)2 + 0.1 mol·L−1 Mn(TFSI)2 238 mA·h·g−1 at 0.2 C [S1]
δ-MnO2 2 mol·L−1 ZnSO4 + 0.1 mol·L−1 MnSO4 358 mA·h·g−1 at 0.3 A·g−1 [S2]
δ-MnO2 1 mol·L−1 ZnSO4 252 mA·h·g−1 at 83 mA·g−1 [S3]
δ-MnO2/C 2 mol·L−1 ZnSO4 + 0.5 mol·L−1 MnSO4 279.7 mA·h·g−1 at 300 mA·g−1 [S4]
α-MnO2 1 mol·L−1 ZnSO4 270 mA·h·g−1 at 16 mA·g−1 [S5]
α-MnO2@PPy 1 mol·L−1 ZnSO4 + 0.1 mol·L−1 MnSO4 148 mA·h·g−1 at 85 mA·g−1 [S6]
β-MnO2 3 mol·L−1 ZnSO4 + 0.2 mol·L−1 MnSO4 288 mA·h·g−1 at 0.5 C [S7]
β-MnO2@C 3 mol·L−1 Zn(CF3SO3)2 + 0.1 mol·L−1 MnSO4 130 mA·h·g−1 at 300 mA·g−1 [S8]
γ-MnO2 1 mol·L−1 ZnSO4 285 mA·h·g−1 at 0.05 mA·cm−1 [S9]
γ-MnO2@graphene 2 mol·L−1 ZnSO4 + 0.4 mol·L−1 MnSO4 301 mA·h·g−1 at 0.5 A·g−1 [S10]
K1.33Mn8O16 2 mol·L−1 ZnSO4 + 0.1 mol·L−1 MnSO4 312 mA·h·g−1 at 1/10 C [S11]
ZnMn2O4 3 mol·L−1 Zn(CF3SO3)2 150 mA·h·g−1 at 500 mA·g−1 [S12]
δ-MnO2 2 mol·L−1 ZnSO4 + 0.1 mol·L−1 MnSO4 390 mA·h·g−1 at 0.1 A·g−1 this work
Disordered MnO2 2 mol·L−1 ZnSO4 + 0.1 mol·L−1 MnSO4 636 mA·h·g−1 at 0.1 A·g−1 this work
  Table S1 Comparison of the cathode performance in aqueous ZIBs between this work and other recent reports [S1–S12]
1 A M Omer. Energy, environment and sustainable development. Renewable & Sustainable Energy Reviews, 2008, 12(9): 2265–2300
https://doi.org/10.1016/j.rser.2007.05.001
2 G Fang, J Zhou, A Pan, et al.. Recent advances in aqueous zinc-ion batteries. ACS Energy Letters, 2018, 3(10): 2480–2501
https://doi.org/10.1021/acsenergylett.8b01426
3 C Xie, Y Li, Q Wang, et al.. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review. Carbon Energy, 2020, 2(4): 540–560
https://doi.org/10.1002/cey2.67
4 Y Zhao, Y Zhu, X Zhang. Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. InfoMat, 2020, 2(2): 237–260
https://doi.org/10.1002/inf2.12042
5 J Wang, Y Yang, Y Zhang, et al.. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Materials, 2021, 35: 19–46
https://doi.org/10.1016/j.ensm.2020.10.027
6 L Chen, Q An, L Mai. Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries. Advanced Materials Interfaces, 2019, 6(17): 1900387
https://doi.org/10.1002/admi.201900387
7 Y Jiao, L Kang, J Berry-Gair, et al.. Enabling stable MnO2 matrix for aqueous zinc-ion battery cathodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(42): 22075–22082
https://doi.org/10.1039/D0TA08638J
8 M H Alfaruqi, S Islam, J Gim, et al.. A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chemical Physics Letters, 2016, 650: 64–68
https://doi.org/10.1016/j.cplett.2016.02.067
9 S Islam, M H Alfaruqi, V Mathew, et al.. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (1 0 1) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(44): 23299–23309
https://doi.org/10.1039/C7TA07170A
10 M H Alfaruqi, V Mathew, J Gim, et al.. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chemistry of Materials, 2015, 27(10): 3609–3620
https://doi.org/10.1021/cm504717p
11 B Jiang, C Xu, C Wu, et al.. Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochimica Acta, 2017, 229: 422–428
https://doi.org/10.1016/j.electacta.2017.01.163
12 N Zhang, F Cheng, Y Liu, et al.. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. Journal of the American Chemical Society, 2016, 138(39): 12894–12901
https://doi.org/10.1021/jacs.6b05958 pmid: 27627103
13 C Guo, H Liu, J Li, et al.. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochimica Acta, 2019, 304: 370–377
https://doi.org/10.1016/j.electacta.2019.03.008
14 D Wang, L Wang, G Liang, et al.. A superior δ-MnO2 cathode and a self-healing Zn–δ-MnO2 battery. ACS Nano, 2019, 13(9): 10643–10652
https://doi.org/10.1021/acsnano.9b04916 pmid: 31419380
15 H Liu, J G Wang, Z You, et al.. Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Materials Today, 2021, 42: 73–98
https://doi.org/10.1016/j.mattod.2020.08.021
16 N Ma, P Wu, Y Wu, et al.. Progress and perspective of aqueous zinc-ion battery. Functional Materials Letters, 2019, 12(5): 1930003
https://doi.org/10.1142/S1793604719300032
17 H Pan, Y Shao, P Yan, et al.. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy, 2016, 1(5): 16039
https://doi.org/10.1038/nenergy.2016.39
18 J Huang, Z Wang, M Hou, et al.. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature Communications, 2018, 9: 2906
https://doi.org/10.1038/s41467-018-04949-4 pmid: 30046036
19 T Sun, Q Nian, S Zheng, et al.. Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous zinc-ion battery. Small, 2020, 16(17): 2000597
https://doi.org/10.1002/smll.202000597
20 J Wang, J G Wang, H Liu, et al.. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(22): 13727–13735
https://doi.org/10.1039/C9TA03541A
21 X Z Zhai, J Qu, S M Hao, et al.. Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries. Nano-Micro Letters, 2020, 12(1): 56
https://doi.org/10.1007/s40820-020-0397-3
22 Q N Zhu, Z Y Wang, J W Wang, et al.. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Metals, 2021, 40(2): 309–328
https://doi.org/10.1007/s12598-020-01588-x
23 D Chen, M Lu, D Cai, et al.. Recent advances in energy storage mechanism of aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 54: 712–726
https://doi.org/10.1016/j.jechem.2020.06.016
24 G Li, Z Huang, J Chen, et al.. Rechargeable Zn-ion batteries with high power and energy densities: A two-electron reaction pathway in birnessite MnO2 cathode materials. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(4): 1975–1985
https://doi.org/10.1039/C9TA11985J
25 Y Jin, L Zou, L Liu, et al.. Joint charge storage for high-rate aqueous zinc–manganese dioxide batteries. Advanced Materials, 2019, 31(29): 1900567
https://doi.org/10.1002/adma.201900567 pmid: 31157468
26 Y Jiang, D Ba, Y Li, et al.. Noninterference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 toward neutral Zn–Mn batteries with superior performance. Advanced Science, 2020, 7(6): 1902795
https://doi.org/10.1002/advs.201902795 pmid: 32195094
27 C Tang, F Xiong, B Lan, et al.. Constructing a disorder/order structure for enhanced magnesium storage. Chemical Engineering Journal, 2020, 382: 123049
https://doi.org/10.1016/j.cej.2019.123049
28 X Wang, G Pawar, Y Li, et al.. Glassy Li metal anode for high-performance rechargeable Li batteries. Nature Materials, 2020, 19(12): 1339–1345
https://doi.org/10.1038/s41563-020-0729-1 pmid: 32719511
29 F Xiong, Q An, L Xia, et al.. Revealing the atomistic origin of the disorder-enhanced Na-storage performance in NaFePO4 battery cathode. Nano Energy, 2019, 57: 608–615
https://doi.org/10.1016/j.nanoen.2018.12.087
30 Y Zhang, P Wang, G Li, et al.. Clarifying the charging induced nucleation in glass anode of Li-ion batteries and its enhanced performances. Nano Energy, 2019, 57: 592–599
https://doi.org/10.1016/j.nanoen.2018.12.088
31 Y Zhang, P Wang, T Zheng, et al.. Enhancing Li-ion battery anode performances via disorder/order engineering. Nano Energy, 2018, 49: 596–602
https://doi.org/10.1016/j.nanoen.2018.05.018
32 X Su, L Yu, G Cheng, et al.. Controllable hydrothermal synthesis of Cu-doped δ-MnO2 films with different morphologies for energy storage and conversion using supercapacitors. Applied Energy, 2014, 134: 439–445
https://doi.org/10.1016/j.apenergy.2014.08.050
33 H Chen, Y Wang, Y K Lv. Catalytic oxidation of NO over MnO2 with different crystal structures. RSC Advances, 2016, 6(59): 54032–54040
https://doi.org/10.1039/C6RA10103H
34 K Luo, S X Zhao, Y F Wang, et al.. Synthesis of petal-like δ-MnO2 and its catalytic ozonation performance. New Journal of Chemistry, 2018, 42(9): 6770–6777
https://doi.org/10.1039/C8NJ00240A
35 W Yang, Y Zhu, F You, et al.. Insights into the surface-defect dependence of molecular oxygen activation over birnessite-type MnO2. Applied Catalysis B: Environmental, 2018, 233: 184–193
https://doi.org/10.1016/j.apcatb.2018.03.107
36 X Pu, T Song, L Tang, et al.. Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. Journal of Power Sources, 2019, 437: 226917
https://doi.org/10.1016/j.jpowsour.2019.226917
37 V Mathew, S Kim, J Kang, et al.. Amorphous iron phosphate: Potential host for various charge carrier ions. NPG Asia Materials, 2014, 6: e138
https://doi.org/10.1038/am.2014.98
38 D Zu, H Wang, S Lin, et al.. Oxygen-deficient metal oxides: Synthesis routes and applications in energy and environment. Nano Research, 2019, 12(9): 2150–2163
https://doi.org/10.1007/s12274-019-2377-9
39 J Wang, J Polleux, J Lim, et al.. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. The Journal of Physical Chemistry C, 2007, 111(40): 14925–14931
https://doi.org/10.1021/jp074464w
40 X Xia, D Chao, Y Zhang, et al.. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small, 2016, 12(22): 3048–3058
https://doi.org/10.1002/smll.201600633 pmid: 27128527
41 D Chao, C Zhu, P Yang, et al.. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature Communications, 2016, 7: 12122
https://doi.org/10.1038/ncomms12122 pmid: 27358085
42 H Geng, M Cheng, B Wang, et al.. Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Advanced Functional Materials, 2020, 30(6): 1907684
https://doi.org/10.1002/adfm.201907684
43 C Zhu, G Fang, S Liang, et al.. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Materials, 2020, 24: 394–401
https://doi.org/10.1016/j.ensm.2019.07.030
44 C Wang, Y Zeng, X Xiao, et al.. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. Journal of Energy Chemistry, 2020, 43: 182–187
https://doi.org/10.1016/j.jechem.2019.08.011
[1] Guo CHEN, Changfeng SI, Pengpeng ZHANG, Kunping GUO, Saihu PAN, Wenqing ZHU, Bin WEI. Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer[J]. Front. Mater. Sci., 2017, 11(3): 233-240.
[2] Yingfang ZHU, Jingwei YOU, Haifu HUANG, Guangxu LI, Wenzheng ZHOU, Jin GUO. Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries[J]. Front. Mater. Sci., 2017, 11(2): 155-161.
[3] QI Hao, CAO Gao-shao, XIE Jian, ZHAO Xin-bing. Enhanced cycle stability of spinel LiMnO by a melting impregnation method[J]. Front. Mater. Sci., 2008, 2(3): 291-294.
[4] BIAN Xin-chao, HUO Chun-qing, ZHANG Yue-fei, CHEN Qiang. Preparation and photoluminescence of ZnO with nanostructure by hollow-cathode discharge[J]. Front. Mater. Sci., 2008, 2(1): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed