|
|
Development of high-flux reverse osmosis membranes with MIL-101(Cr)/Fe3O4 interlayer |
Yanzhuang Jiang1, Qian Yang1, Lin Zhang1, Liyan Yu1,2, Na Song1,2( ), Lina Sui1( ), Qingli Wei2( ), Lifeng Dong1,3( ) |
1. College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China 2. Qingdao University of Science and Technology Analytical & Testing Center, Qingdao 266042, China 3. Department of Physics, Hamline University, St. Paul 55104, USA |
|
|
Abstract MIL-101(Cr) has a special pore cage structure that provides broad channels for the transport of water molecules in the reverse osmosis (RO) water separation and purification. Combining MIL-101(Cr) with Fe3O4 nanoparticles forms a water transport intermediate layer between the polyamide separation membrane and the polysulfone support base under an external magnetic field. MIL-101(Cr) is stable in both water and air while resistant to high temperature. With the introduction of 0.003 wt.% MIL-101(Cr)/Fe3O4, the water flux increased by 93.31% to 6.65 L·m−2·h−1·bar−1 without sacrificing the NaCl rejection of 95.88%. The MIL-101(Cr)/Fe3O4 multilayer membrane also demonstrated certain anti-pollution properties and excellent stability in a 72-h test. Therefore, the construction of a MIL-101(Cr)/Fe3O4 interlayer can effectively improve the permeability of RO composite membranes.
|
Keywords
reverse osmosis
thin film nanocomposite
MIL-101(Cr)/Fe3O4
multi-layer
|
Corresponding Author(s):
Na Song,Lina Sui,Qingli Wei,Lifeng Dong
|
Issue Date: 10 September 2024
|
|
1 |
B H, Jeong E M V, Hoek Y, Yan et al.. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes.Journal of Membrane Science, 2007, 294(1−2): 1–7
https://doi.org/10.1016/j.memsci.2007.02.025
|
2 |
J, Yin E S, Kim J, Yang , et al.. Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. Journal of Membrane Science, 2012, 423−424: 238−246
|
3 |
X X, Song S R, Qi C Y Y, Tang et al.. Ultra-thin, multi-layered polyamide membranes: synthesis and characterization.Journal of Membrane Science, 2017, 540: 10–18
https://doi.org/10.1016/j.memsci.2017.06.016
|
4 |
W, Ma A, Soroush T V A, Luong et al.. Cysteamine- and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance.Journal of Colloid and Interface Science, 2017, 501: 330–340
https://doi.org/10.1016/j.jcis.2017.04.069
|
5 |
P S, Goh K C, Wong T W, Wong et al.. Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes.Frontiers of Chemical Science and Engineering, 2021, 16(5): 564–591
https://doi.org/10.1007/s11705-021-2109-z
|
6 |
M Y, Wu J Q, Yuan H, Wu et al.. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability.Journal of Membrane Science, 2019, 576: 131–141
https://doi.org/10.1016/j.memsci.2019.01.040
|
7 |
T H, Lee J Y, Oh S P, Hong et al.. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: importance of particle deposition.Journal of Membrane Science, 2019, 570: 23–33
https://doi.org/10.1016/j.memsci.2018.10.015
|
8 |
Z Y, Wang Z X, Wang S H, Lin et al.. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination.Nature Communications, 2018, 9: 2004
https://doi.org/10.1038/s41467-018-04467-3
|
9 |
R Z, Pang K S Zhang . Fabrication of hydrophobic fluorinated silica-polyamide thin film nanocomposite reverse osmosis membranes with dramatically improved salt rejection.Journal of Colloid and Interface Science, 2018, 510: 127–132
https://doi.org/10.1016/j.jcis.2017.09.062
|
10 |
M, Tawalbeh H, Aljaghoub M, Qasim et al.. Surface modification techniques of membranes to improve their antifouling characteristics: recent advancements and developments.Frontiers of Chemical Science and Engineering, 2023, 17(12): 1837–1865
https://doi.org/10.1007/s11705-023-2347-3
|
11 |
S J, Park W G, Ahn W, Choi et al.. A facile and scalable fabrication method for thin film composite reverse osmosis membranes: dual-layer slot coating.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(14): 6648–6655
https://doi.org/10.1039/C7TA00891K
|
12 |
Z, Yang X Y, Huang X H, Ma et al.. Fabrication of a novel and green thin-film composite membrane containing nanovoids for water purification.Journal of Membrane Science, 2019, 570: 314–321
https://doi.org/10.1016/j.memsci.2018.10.057
|
13 |
R J, Zhang S L, Yu W X, Shi et al.. Support membrane pore blockage (SMPB): an important phenomenon during the fabrication of thin film composite membrane via interfacial polymerization.Separation and Purification Technology, 2019, 215: 670–680
https://doi.org/10.1016/j.seppur.2019.01.045
|
14 |
J Q, Wang H, Guo X N, Shi et al.. Fast polydopamine coating on reverse osmosis membrane: process investigation and membrane performance study.Journal of Colloid and Interface Science, 2019, 535: 239–244
https://doi.org/10.1016/j.jcis.2018.10.016
|
15 |
Q, Yang L, Zhang X, Xie et al.. Self-healing polyamide reverse osmosis membranes with temperature-responsive intelligent nanocontainers for chlorine resistance.Frontiers of Chemical Science and Engineering, 2023, 17(9): 1183–1195
https://doi.org/10.1007/s11705-022-2287-3
|
16 |
Y L, Zhao L, Dai Q F, Zhang et al.. Chlorine-resistant sulfochlorinated and sulfonated polysulfone for reverse osmosis membranes by coating method.Journal of Colloid and Interface Science, 2019, 541: 434–443
https://doi.org/10.1016/j.jcis.2019.01.104
|
17 |
M B, Wu Y, Lv H C, Yang et al.. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances.Journal of Membrane Science, 2016, 515: 238–244
https://doi.org/10.1016/j.memsci.2016.05.056
|
18 |
M Q, Shi Z, Wang S, Zhao et al.. A novel pathway for high performance RO membrane: preparing active layer with decreased thickness and enhanced compactness by incorporating tannic acid into the support.Journal of Membrane Science, 2018, 555: 157–168
https://doi.org/10.1016/j.memsci.2018.03.025
|
19 |
Amery N, Al H R, Abid S, Al-Saadi et al.. Facile directions for synthesis, modification and activation of MOFs.Materials Today: Chemistry, 2020, 17: 100343
https://doi.org/10.1016/j.mtchem.2020.100343
|
20 |
H, Duan J, Lu S, Li et al.. Formation of conductive MOF@metal oxide micro-nano composites via facile self-assembly for high-performance supercapacitors.Materials Today: Chemistry, 2022, 26: 101024
https://doi.org/10.1016/j.mtchem.2022.101024
|
21 |
Q, Wang Y, Liu A L, Shu , et al.. Functionalized carbon nitride/copper-based MOF nanocomposites modified electrode for electrochemical detection of glyphosate. Journal of Liaocheng University (Natural Science Edition), 2024, 37(3): 22–33 (in Chinese)
|
22 |
Z P, Leng X Q Lu . Investigation on CO2 adsorption and separation over N2 in functionalized metal–organic framework. Journal of Liaocheng University (Natural Science Edition), 2022, 35(2): 27–33 (in Chinese)
|
23 |
C W, Xu F F, Shao Z, Yi et al.. Highly chlorine resistance polyamide reverse osmosis membranes with oxidized graphitic carbon nitride by ontology doping method.Separation and Purification Technology, 2019, 223: 178–185
https://doi.org/10.1016/j.seppur.2019.04.073
|
24 |
H H, Liu B C, Zhao C J Zhang . Preparation and SERS properties of MOF/Au composite nanoparticles. Journal of Liaocheng University (Natural Science Edition), 2020, 33(1): 63–69, 91 (in Chinese)
|
25 |
X Y, Kou W W Sun . Metal–organic frameworks loaded ammonia borane: improvement on its dehydrogenation properties.Journal of Liaocheng University (Natural Science Edition), 2017, 30(1): 56–60
|
26 |
F Wang . Solvent-directed synthesis of two H-bonded metal–organic frameworks. Journal of Liaocheng University (Natural Science Edition), 2024, doi:10.19728/j.issn1672-6634.2024040014 (in Chinese)
|
27 |
A, Tirado-Guizar W, Gonzalez-Gomez G, Pina-Luis et al.. Anthracene removal from water samples using a composite based on metal–organic-frameworks (MIL-101) and magnetic nanoparticles (Fe3O4).Nanotechnology, 2020, 31(19): 195707
https://doi.org/10.1088/1361-6528/ab70fd
|
28 |
Z Y, Wang Y Y, Zheng Y C, Li et al.. Temperature-dependence polarization characteristics of graphene/Fe3O4/PVDF composite dielectric materials.Journal of Liaocheng University (Natural Science Edition), 2019, 32(5): 58–63
https://doi.org/10.19728/j.issn1672-6634.2019.05.010
|
29 |
L, Bromberg Y, Diao H M, Wu et al.. Chromium(III) terephthalate metal organic framework (MIL-101): HF-free synthesis, structure, polyoxometalate composites, and catalytic properties.Chemistry of Materials, 2012, 24(9): 1664–1675
https://doi.org/10.1021/cm2034382
|
30 |
H B T, Jeazet C, Staudt C Janiak . A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone.Chemical Communications, 2012, 48(15): 2140–2142
https://doi.org/10.1039/c2cc16628c
|
31 |
N, Song W, Shan X, Xie et al.. Design and construct alkali-responsive nanocontainers for self-healing thin-film composite reverse osmosis membranes.Desalination, 2022, 535: 115823
https://doi.org/10.1016/j.desal.2022.115823
|
32 |
X Y, Xu J G, Xu Q H, Duan et al.. Interaction of calcium folinate with bovine serum albumin.Journal of Liaocheng University (Natural Science Edition), 2010, 23(3): 44–49
|
33 |
A, Dhakshinamoorthy A, Santiago-Portillo A M, Asiri et al.. Engineering UiO-66 metal organic framework for heterogeneous catalysis.ChemCatChem, 2019, 11(3): 899–923
https://doi.org/10.1002/cctc.201801452
|
34 |
N V, Maksimchuk M N, Timofeeva M S, Melgunov et al.. Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates.Journal of Catalysis, 2008, 257(2): 315–323
https://doi.org/10.1016/j.jcat.2008.05.014
|
35 |
H T M, Thanh N T T, Tu N P, Hung et al.. Magnetic iron oxide modified MIL-101 composite as an efficient visible-light-driven photocatalyst for methylene blue degradation.Journal of Porous Materials, 2019, 26(6): 1699–1712
https://doi.org/10.1007/s10934-019-00767-1
|
36 |
M M, Mostafavi F Movahedi . Fe3O4/MIL-101(Fe) nanocomposite as an efficient and recyclable catalyst for Strecker reaction.Applied Organometallic Chemistry, 2018, 32(4): e4217
https://doi.org/10.1002/aoc.4217
|
37 |
T, Wang P, Zhao N, Lu et al.. Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution.Chemical Engineering Journal, 2016, 295: 403–413
https://doi.org/10.1016/j.cej.2016.03.016
|
38 |
P N, Dave L V Chopda . Application of iron oxide nanomaterials for the removal of heavy metals.Journal of Nanotechnology, 2014, 2014: 398569
https://doi.org/10.1155/2014/398569
|
39 |
Y K, Lu C L, Yue B X, Liu et al.. The encapsulation of POM clusters into MIL-101(Cr) at molecular level: LaW10O36@MIL-101(Cr), an efficient catalyst for oxidative desulfurization.Microporous and Mesoporous Materials, 2021, 311: 110694
https://doi.org/10.1016/j.micromeso.2020.110694
|
40 |
L, Fernandez M, Sanchez F J, Carmona et al.. Analysis of the grafting process of PVP on a silicon surface by AFM and contact angle.Langmuir, 2011, 27(18): 11636–11649
https://doi.org/10.1021/la201683p
|
41 |
J Y, Zhu J W, Hou S S, Yuan et al.. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(27): 16313–16322
https://doi.org/10.1039/C9TA02299F
|
42 |
N, Akther V, Sanahuja-Embuena R, Gorecki et al.. Employing the synergistic effect between aquaporin nanostructures and graphene oxide for enhanced separation performance of thin-film nanocomposite forward osmosis membranes.Desalination, 2021, 498: 114795
https://doi.org/10.1016/j.desal.2020.114795
|
43 |
Q Z, Luo J J, Li P F, Yun et al.. Thin-film composite membrane for desalination containing a sulfonated UiO-66 material.Journal of Materials Science, 2023, 58(7): 3134–3146
https://doi.org/10.1007/s10853-023-08216-w
|
44 |
R, Bhoje A K, Ghosh P R Nemade . Development of performance-enhanced graphene oxide-based nanostructured thin-film composite seawater reverse osmosis membranes.ACS Applied Polymer Materials, 2022, 4(3): 2149–2159
https://doi.org/10.1021/acsapm.2c00094
|
45 |
J, Lee J H, Jang H R, Chae et al.. A facile route to enhance the water flux of a thin-film composite reverse osmosis membrane: incorporating thickness-controlled graphene oxide into a highly porous support layer.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(44): 22053–22060
https://doi.org/10.1039/C5TA04042F
|
46 |
H G, Qi Y, Peng X H, Lv et al.. Synergetic effects of COFs interlayer regulation and surface modification on thin-film nanocomposite reverse osmosis membrane with high performance.Desalination, 2023, 548: 116265
https://doi.org/10.1016/j.desal.2022.116265
|
47 |
H M, Huang X Y, Wang Y A, Deng et al.. Highly permeable and durable mixed-matrix reverse osmosis membranes filled with cellulose nanofibers-hybridized Ti3C2Tx.Desalination, 2023, 551: 116412
https://doi.org/10.1016/j.desal.2023.116412
|
48 |
I H Aljundi . Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles.Desalination, 2017, 420: 12–20
https://doi.org/10.1016/j.desal.2017.06.020
|
49 |
M, Mehrabi V, Vatanpour O O, Teber et al.. Enhanced negative charge of polyamide thin-film nanocomposite reverse osmosis membrane modified with MIL-101(Cr)-Pyz-SO3H.Journal of Membrane Science, 2022, 664: 121066
https://doi.org/10.1016/j.memsci.2022.121066
|
50 |
S J, Bian Y Y, Wang F K, Xiao et al.. Fabrication of polyamide thin-film nanocomposite reverse osmosis membrane with improved permeability and antibacterial performances using silver immobilized hollow polymer nanospheres.Desalination, 2022, 539: 115953
https://doi.org/10.1016/j.desal.2022.115953
|
51 |
F, Abedi D, Emadzadeh M A, Dube et al.. Modifying cellulose nanocrystal dispersibility to address the permeability/selectivity trade-off of thin-film nanocomposite reverse osmosis membranes.Desalination, 2022, 538: 115900
https://doi.org/10.1016/j.desal.2022.115900
|
52 |
X, Wang H, Ma B, Chu et al.. Thin-film nanofibrous composite reverse osmosis membranes for desalination.Desalination, 2017, 420: 91–98
https://doi.org/10.1016/j.desal.2017.06.029
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|