Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2024, Vol. 18 Issue (3) : 240692    https://doi.org/10.1007/s11706-024-0692-x
Development of high-flux reverse osmosis membranes with MIL-101(Cr)/Fe3O4 interlayer
Yanzhuang Jiang1, Qian Yang1, Lin Zhang1, Liyan Yu1,2, Na Song1,2(), Lina Sui1(), Qingli Wei2(), Lifeng Dong1,3()
1. College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2. Qingdao University of Science and Technology Analytical & Testing Center, Qingdao 266042, China
3. Department of Physics, Hamline University, St. Paul 55104, USA
 Download: PDF(2240 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MIL-101(Cr) has a special pore cage structure that provides broad channels for the transport of water molecules in the reverse osmosis (RO) water separation and purification. Combining MIL-101(Cr) with Fe3O4 nanoparticles forms a water transport intermediate layer between the polyamide separation membrane and the polysulfone support base under an external magnetic field. MIL-101(Cr) is stable in both water and air while resistant to high temperature. With the introduction of 0.003 wt.% MIL-101(Cr)/Fe3O4, the water flux increased by 93.31% to 6.65 L·m−2·h−1·bar−1 without sacrificing the NaCl rejection of 95.88%. The MIL-101(Cr)/Fe3O4 multilayer membrane also demonstrated certain anti-pollution properties and excellent stability in a 72-h test. Therefore, the construction of a MIL-101(Cr)/Fe3O4 interlayer can effectively improve the permeability of RO composite membranes.

Keywords reverse osmosis      thin film nanocomposite      MIL-101(Cr)/Fe3O4      multi-layer     
Corresponding Author(s): Na Song,Lina Sui,Qingli Wei,Lifeng Dong   
Issue Date: 10 September 2024
 Cite this article:   
Yanzhuang Jiang,Qian Yang,Lin Zhang, et al. Development of high-flux reverse osmosis membranes with MIL-101(Cr)/Fe3O4 interlayer[J]. Front. Mater. Sci., 2024, 18(3): 240692.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-024-0692-x
https://academic.hep.com.cn/foms/EN/Y2024/V18/I3/240692
Fig.1  SEM images of (a)(b) MIL-101(Cr) and (c)(d) MIL-101(Cr)/Fe3O4.
Fig.2  (a) PSD result of MIL-101(Cr)/Fe3O4. (b) FTIR spectra and (c) XRD patterns of MIL-101(Cr) and MIL-101(Cr)/Fe3O4. (d)(e)(f) XPS spectra of MIL-101(Cr)/Fe3O4.
Fig.3  SEM images of (a) TFC, (b) TFN-0.002, (c) TFN-0.003, (d) TFN-0.004, and (e) TFN-0.005. (f) Changes of static contact angles with time for different membranes.
Fig.4  SEM cross-section images of (a)(b) TFC and (c)(d) TFN-0.003.
MembraneRa/nmRq/nm
TFC19.9627.98
TFN-0.00222.4331.12
TFN-0.00330.1442.45
TFN-0.00432.0845.12
TFN-0.00566.95112.3
Tab.1  Values of Ra and Rq for different membranes
Fig.5  AFM images of (a) TFC, (b) TFN-0.002, (c) TFN-0.003, (d) TFN-0.004, and (e) TFN-0.005. (f) Zeta potential measurements of TFC and TFN membranes.
Fig.6  (a) Water fluxes and NaCl rejections of TFC and TFN membranes. (b) Variations of water fluxes and NaCl rejections with time for TFC and TFN-0.003 membranes during the 72 h stability test.
Fig.7  Stress–strain curves of PSF, TFC, and TFN membranes.
Fig.8  Properties of both TFC and TFN-0.003 membranes before and after contamination with BSA.
Membrane Interlayer material Water flux/ (L·m?2·h?1·bar?1) Salt rejection/% c(NaCl)/ppm Ref.
TFN-UiO-66-SO3H UiO-66-X 3.75 94.7 2000 [43]
nTFC-SWRO SWRO 0.65 99.2 32000 [44]
PA on GO-PSf GO 5.42 98.20 2000 [45]
TFN-Tp COFs 3.11 99.5 2000 [46]
Ti3C2Tx-CNFs/PA Ti3C2Tx-CNFs 3.2 98.8 2000 [47]
TFN-ZIF-8 ZIF-8 2.3 99.4 2000 [48]
MIL/RO MIL-101(Cr)-Pyz-SO3HNPs 2.76 94.46 2000 [49]
TFN-Ag/HPS Ag/HPS 4.0 97.9 2000 [50]
ACNC-TFNs ACNC 2.6 99.7 2000 [51]
TFNC CN/PAN/PET 8.36 96.5 500 [52]
TFN MIL-101(Cr)/Fe3O4 6.65 95.88 2000 This work
Tab.2  Comparison of desalination performances in this work with other TFN membranes [4352]
1 B H, Jeong E M V, Hoek Y, Yan et al.. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes.Journal of Membrane Science, 2007, 294(1−2): 1–7
https://doi.org/10.1016/j.memsci.2007.02.025
2 J, Yin E S, Kim J, Yang , et al.. Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. Journal of Membrane Science, 2012, 423−424: 238−246
3 X X, Song S R, Qi C Y Y, Tang et al.. Ultra-thin, multi-layered polyamide membranes: synthesis and characterization.Journal of Membrane Science, 2017, 540: 10–18
https://doi.org/10.1016/j.memsci.2017.06.016
4 W, Ma A, Soroush T V A, Luong et al.. Cysteamine- and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance.Journal of Colloid and Interface Science, 2017, 501: 330–340
https://doi.org/10.1016/j.jcis.2017.04.069
5 P S, Goh K C, Wong T W, Wong et al.. Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes.Frontiers of Chemical Science and Engineering, 2021, 16(5): 564–591
https://doi.org/10.1007/s11705-021-2109-z
6 M Y, Wu J Q, Yuan H, Wu et al.. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability.Journal of Membrane Science, 2019, 576: 131–141
https://doi.org/10.1016/j.memsci.2019.01.040
7 T H, Lee J Y, Oh S P, Hong et al.. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: importance of particle deposition.Journal of Membrane Science, 2019, 570: 23–33
https://doi.org/10.1016/j.memsci.2018.10.015
8 Z Y, Wang Z X, Wang S H, Lin et al.. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination.Nature Communications, 2018, 9: 2004
https://doi.org/10.1038/s41467-018-04467-3
9 R Z, Pang K S Zhang . Fabrication of hydrophobic fluorinated silica-polyamide thin film nanocomposite reverse osmosis membranes with dramatically improved salt rejection.Journal of Colloid and Interface Science, 2018, 510: 127–132
https://doi.org/10.1016/j.jcis.2017.09.062
10 M, Tawalbeh H, Aljaghoub M, Qasim et al.. Surface modification techniques of membranes to improve their antifouling characteristics: recent advancements and developments.Frontiers of Chemical Science and Engineering, 2023, 17(12): 1837–1865
https://doi.org/10.1007/s11705-023-2347-3
11 S J, Park W G, Ahn W, Choi et al.. A facile and scalable fabrication method for thin film composite reverse osmosis membranes: dual-layer slot coating.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(14): 6648–6655
https://doi.org/10.1039/C7TA00891K
12 Z, Yang X Y, Huang X H, Ma et al.. Fabrication of a novel and green thin-film composite membrane containing nanovoids for water purification.Journal of Membrane Science, 2019, 570: 314–321
https://doi.org/10.1016/j.memsci.2018.10.057
13 R J, Zhang S L, Yu W X, Shi et al.. Support membrane pore blockage (SMPB): an important phenomenon during the fabrication of thin film composite membrane via interfacial polymerization.Separation and Purification Technology, 2019, 215: 670–680
https://doi.org/10.1016/j.seppur.2019.01.045
14 J Q, Wang H, Guo X N, Shi et al.. Fast polydopamine coating on reverse osmosis membrane: process investigation and membrane performance study.Journal of Colloid and Interface Science, 2019, 535: 239–244
https://doi.org/10.1016/j.jcis.2018.10.016
15 Q, Yang L, Zhang X, Xie et al.. Self-healing polyamide reverse osmosis membranes with temperature-responsive intelligent nanocontainers for chlorine resistance.Frontiers of Chemical Science and Engineering, 2023, 17(9): 1183–1195
https://doi.org/10.1007/s11705-022-2287-3
16 Y L, Zhao L, Dai Q F, Zhang et al.. Chlorine-resistant sulfochlorinated and sulfonated polysulfone for reverse osmosis membranes by coating method.Journal of Colloid and Interface Science, 2019, 541: 434–443
https://doi.org/10.1016/j.jcis.2019.01.104
17 M B, Wu Y, Lv H C, Yang et al.. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances.Journal of Membrane Science, 2016, 515: 238–244
https://doi.org/10.1016/j.memsci.2016.05.056
18 M Q, Shi Z, Wang S, Zhao et al.. A novel pathway for high performance RO membrane: preparing active layer with decreased thickness and enhanced compactness by incorporating tannic acid into the support.Journal of Membrane Science, 2018, 555: 157–168
https://doi.org/10.1016/j.memsci.2018.03.025
19 Amery N, Al H R, Abid S, Al-Saadi et al.. Facile directions for synthesis, modification and activation of MOFs.Materials Today: Chemistry, 2020, 17: 100343
https://doi.org/10.1016/j.mtchem.2020.100343
20 H, Duan J, Lu S, Li et al.. Formation of conductive MOF@metal oxide micro-nano composites via facile self-assembly for high-performance supercapacitors.Materials Today: Chemistry, 2022, 26: 101024
https://doi.org/10.1016/j.mtchem.2022.101024
21 Q, Wang Y, Liu A L, Shu , et al.. Functionalized carbon nitride/copper-based MOF nanocomposites modified electrode for electrochemical detection of glyphosate. Journal of Liaocheng University (Natural Science Edition), 2024, 37(3): 22–33 (in Chinese)
22 Z P, Leng X Q Lu . Investigation on CO2 adsorption and separation over N2 in functionalized metal–organic framework. Journal of Liaocheng University (Natural Science Edition), 2022, 35(2): 27–33 (in Chinese)
23 C W, Xu F F, Shao Z, Yi et al.. Highly chlorine resistance polyamide reverse osmosis membranes with oxidized graphitic carbon nitride by ontology doping method.Separation and Purification Technology, 2019, 223: 178–185
https://doi.org/10.1016/j.seppur.2019.04.073
24 H H, Liu B C, Zhao C J Zhang . Preparation and SERS properties of MOF/Au composite nanoparticles. Journal of Liaocheng University (Natural Science Edition), 2020, 33(1): 63–69, 91 (in Chinese)
25 X Y, Kou W W Sun . Metal–organic frameworks loaded ammonia borane: improvement on its dehydrogenation properties.Journal of Liaocheng University (Natural Science Edition), 2017, 30(1): 56–60
26 F Wang . Solvent-directed synthesis of two H-bonded metal–organic frameworks. Journal of Liaocheng University (Natural Science Edition), 2024, doi:10.19728/j.issn1672-6634.2024040014 (in Chinese)
27 A, Tirado-Guizar W, Gonzalez-Gomez G, Pina-Luis et al.. Anthracene removal from water samples using a composite based on metal–organic-frameworks (MIL-101) and magnetic nanoparticles (Fe3O4).Nanotechnology, 2020, 31(19): 195707
https://doi.org/10.1088/1361-6528/ab70fd
28 Z Y, Wang Y Y, Zheng Y C, Li et al.. Temperature-dependence polarization characteristics of graphene/Fe3O4/PVDF composite dielectric materials.Journal of Liaocheng University (Natural Science Edition), 2019, 32(5): 58–63
https://doi.org/10.19728/j.issn1672-6634.2019.05.010
29 L, Bromberg Y, Diao H M, Wu et al.. Chromium(III) terephthalate metal organic framework (MIL-101): HF-free synthesis, structure, polyoxometalate composites, and catalytic properties.Chemistry of Materials, 2012, 24(9): 1664–1675
https://doi.org/10.1021/cm2034382
30 H B T, Jeazet C, Staudt C Janiak . A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone.Chemical Communications, 2012, 48(15): 2140–2142
https://doi.org/10.1039/c2cc16628c
31 N, Song W, Shan X, Xie et al.. Design and construct alkali-responsive nanocontainers for self-healing thin-film composite reverse osmosis membranes.Desalination, 2022, 535: 115823
https://doi.org/10.1016/j.desal.2022.115823
32 X Y, Xu J G, Xu Q H, Duan et al.. Interaction of calcium folinate with bovine serum albumin.Journal of Liaocheng University (Natural Science Edition), 2010, 23(3): 44–49
33 A, Dhakshinamoorthy A, Santiago-Portillo A M, Asiri et al.. Engineering UiO-66 metal organic framework for heterogeneous catalysis.ChemCatChem, 2019, 11(3): 899–923
https://doi.org/10.1002/cctc.201801452
34 N V, Maksimchuk M N, Timofeeva M S, Melgunov et al.. Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates.Journal of Catalysis, 2008, 257(2): 315–323
https://doi.org/10.1016/j.jcat.2008.05.014
35 H T M, Thanh N T T, Tu N P, Hung et al.. Magnetic iron oxide modified MIL-101 composite as an efficient visible-light-driven photocatalyst for methylene blue degradation.Journal of Porous Materials, 2019, 26(6): 1699–1712
https://doi.org/10.1007/s10934-019-00767-1
36 M M, Mostafavi F Movahedi . Fe3O4/MIL-101(Fe) nanocomposite as an efficient and recyclable catalyst for Strecker reaction.Applied Organometallic Chemistry, 2018, 32(4): e4217
https://doi.org/10.1002/aoc.4217
37 T, Wang P, Zhao N, Lu et al.. Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution.Chemical Engineering Journal, 2016, 295: 403–413
https://doi.org/10.1016/j.cej.2016.03.016
38 P N, Dave L V Chopda . Application of iron oxide nanomaterials for the removal of heavy metals.Journal of Nanotechnology, 2014, 2014: 398569
https://doi.org/10.1155/2014/398569
39 Y K, Lu C L, Yue B X, Liu et al.. The encapsulation of POM clusters into MIL-101(Cr) at molecular level: LaW10O36@MIL-101(Cr), an efficient catalyst for oxidative desulfurization.Microporous and Mesoporous Materials, 2021, 311: 110694
https://doi.org/10.1016/j.micromeso.2020.110694
40 L, Fernandez M, Sanchez F J, Carmona et al.. Analysis of the grafting process of PVP on a silicon surface by AFM and contact angle.Langmuir, 2011, 27(18): 11636–11649
https://doi.org/10.1021/la201683p
41 J Y, Zhu J W, Hou S S, Yuan et al.. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(27): 16313–16322
https://doi.org/10.1039/C9TA02299F
42 N, Akther V, Sanahuja-Embuena R, Gorecki et al.. Employing the synergistic effect between aquaporin nanostructures and graphene oxide for enhanced separation performance of thin-film nanocomposite forward osmosis membranes.Desalination, 2021, 498: 114795
https://doi.org/10.1016/j.desal.2020.114795
43 Q Z, Luo J J, Li P F, Yun et al.. Thin-film composite membrane for desalination containing a sulfonated UiO-66 material.Journal of Materials Science, 2023, 58(7): 3134–3146
https://doi.org/10.1007/s10853-023-08216-w
44 R, Bhoje A K, Ghosh P R Nemade . Development of performance-enhanced graphene oxide-based nanostructured thin-film composite seawater reverse osmosis membranes.ACS Applied Polymer Materials, 2022, 4(3): 2149–2159
https://doi.org/10.1021/acsapm.2c00094
45 J, Lee J H, Jang H R, Chae et al.. A facile route to enhance the water flux of a thin-film composite reverse osmosis membrane: incorporating thickness-controlled graphene oxide into a highly porous support layer.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(44): 22053–22060
https://doi.org/10.1039/C5TA04042F
46 H G, Qi Y, Peng X H, Lv et al.. Synergetic effects of COFs interlayer regulation and surface modification on thin-film nanocomposite reverse osmosis membrane with high performance.Desalination, 2023, 548: 116265
https://doi.org/10.1016/j.desal.2022.116265
47 H M, Huang X Y, Wang Y A, Deng et al.. Highly permeable and durable mixed-matrix reverse osmosis membranes filled with cellulose nanofibers-hybridized Ti3C2Tx.Desalination, 2023, 551: 116412
https://doi.org/10.1016/j.desal.2023.116412
48 I H Aljundi . Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles.Desalination, 2017, 420: 12–20
https://doi.org/10.1016/j.desal.2017.06.020
49 M, Mehrabi V, Vatanpour O O, Teber et al.. Enhanced negative charge of polyamide thin-film nanocomposite reverse osmosis membrane modified with MIL-101(Cr)-Pyz-SO3H.Journal of Membrane Science, 2022, 664: 121066
https://doi.org/10.1016/j.memsci.2022.121066
50 S J, Bian Y Y, Wang F K, Xiao et al.. Fabrication of polyamide thin-film nanocomposite reverse osmosis membrane with improved permeability and antibacterial performances using silver immobilized hollow polymer nanospheres.Desalination, 2022, 539: 115953
https://doi.org/10.1016/j.desal.2022.115953
51 F, Abedi D, Emadzadeh M A, Dube et al.. Modifying cellulose nanocrystal dispersibility to address the permeability/selectivity trade-off of thin-film nanocomposite reverse osmosis membranes.Desalination, 2022, 538: 115900
https://doi.org/10.1016/j.desal.2022.115900
52 X, Wang H, Ma B, Chu et al.. Thin-film nanofibrous composite reverse osmosis membranes for desalination.Desalination, 2017, 420: 91–98
https://doi.org/10.1016/j.desal.2017.06.029
[1] QIU Xunlin, XIA Zhongfu, WANG Feipeng. Piezoelectricity of single- and multi-layer cellular polypropylene film electrets[J]. Front. Mater. Sci., 2007, 1(1): 72-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed