Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (2) : 239-243    https://doi.org/10.1007/s11467-011-0158-3
RESEARCH ARTICLE
Diffraction of entangled photon pairs by ultrasonic waves
Lü-bi Deng (邓履璧,)
Department of Physics, Southeast University, Nanjing 210096, China
 Download: PDF(238 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we have presented and established a new theoretical formulation of photon optics based on photon path and Feynman path integral idea. We have used Feynman path integral approach to discuss Fraunhofer, Fresnel diffraction of single photon and entangled photon pairs by ultrasonic wave and obtained the following results: i) quantum state and probability distribution of single photon and entangled photon pairs by Fraunhofer and Fresnel ultrasonic diffraction, ii) oblique incidence Raman–Nath and Bragg diffraction conditions, iii) total correlation state and its probability distribution. Our calculation results are in agreement with the experiment results. Comparing one-photon and two-photon diffraction effects by ultrasonic waves, we have found that two-photon diffraction by ultrasonic waves is also a sub-wavelength diffraction.

Keywords atom optics      diffraction and interference      path integral     
Corresponding Author(s): Lü-bi Deng (邓履璧),Email:lbdeng@seu.edu.cn   
Issue Date: 01 April 2012
 Cite this article:   
Lü-bi Deng (邓履璧). Diffraction of entangled photon pairs by ultrasonic waves[J]. Front. Phys. , 2012, 7(2): 239-243.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0158-3
https://academic.hep.com.cn/fop/EN/Y2012/V7/I2/239
1 L. Brillouin, Ann. De Phyique , 1921, 17: 103
2 P. Debye andF. W. Sears, Proc. Natl. Acad. Sci. , 1932, 18: 409
doi: 10.1073/pnas.18.6.409
3 E. David, Z. Phys. , 1937, 38: 587
4 S. Rytov, Diffraction de la Lumiére parles Ultrasons, Paris: Hermann, 1938
5 G. W. Willard, J. Acoust. Soc. Am. , 1949, 21: 101
doi: 10.1121/1.1906472
6 C. V. Raman and N. S. N. Nath, Proc. Ind. Acad. Sci. A , 1935, 2: 406
7 C. V. Raman and N. S. N. Nath, Proc. Ind. Acad. Sci. A , 1936, 3: 75–119
8 R. R. Aggarwal, Proc. Ind. Acad. Sci. A , 1950, 31: 417
9 A. B. Bhatia and W. J. Noble, Proc. Roy. Soc. A , 1953, 220: 356
doi: 10.1098/rspa.1953.0192
10 A. B. Bhatia and W. J. Noble, Proc. Roy. Soc. A , 1953, 220: 369
doi: 10.1098/rspa.1953.0193
11 A. Yariv, IEEE J. QuantumElectron. , 1965, 1: 28
doi: 10.1109/JQE.1965.1072182
12 M. Born and E. Wolf, Principles of Optics , Cambridge: Cambridge University Press,1999
13 A. Yariv, Optical Electronics , 3d Ed., New York: CBS College Publishing, 1985
14 R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals , New York: McGraw-Hill, 1965
15 L. B. Deng, Front. Phys. China , 2006, 1(1): 47
doi: 10.1007/s11467-005-0015-3
16 L. B. Deng, Front. Phys. China , 2008, 3(1): 13
doi: 10.1007/s11467-008-0003-5
17 E. J. S. Fonseca, C. H. Monken, and S. Padua, Phys. Rev. Lett. , 1999, 82: 2868
doi: 10.1103/PhysRevLett.82.2868
18 H. Z. Cummins and N. Knable, Proc . IEEE, 1963, 51: 1246
doi: 10.1109/PROC.1963.2510
[1] A. Parmentier, C. Andreani, G. Romanelli, J. J. Shephard, C. G. Salzmann, R. Senesi. Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice[J]. Front. Phys. , 2018, 13(1): 136101-.
[2] DENG LÜ-bi. Theory of atom optics: Feynman's path integral approach (II)[J]. Front. Phys. , 2008, 3(1): 13-18.
[3] DENG Lv-bi. Theory of Atom Optics: Feynman’s Path Integral Approach[J]. Front. Phys. , 2006, 1(1): 47-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed