Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (5) : 571-586    https://doi.org/10.1007/s11467-013-0396-7
REVIEW ARTICLE
An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems
C. S. Hofmann(),G. Günter,H. Schempp,N. L. M. Müller,A. Faber,H. Busche,M. Robert-de-Saint-Vincent,S. Whitlock(),M. Weidemüller()
Physikalisches Institut, Universit?t Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
 Download: PDF(1076 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose–Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg–Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.

Keywords ultracold Rydberg gases      ultracold plasmas      Bose–Einstein condensation      atom–light interactions      many-body interactions     
Corresponding Author(s): S. Whitlock   
Issue Date: 15 October 2014
 Cite this article:   
C. S. Hofmann,G. Günter,H. Schempp, et al. An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems[J]. Front. Phys. , 2014, 9(5): 571-586.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0396-7
https://academic.hep.com.cn/fop/EN/Y2014/V9/I5/571
1 M. Saffman, T. G. Walker, and K. M?lmer, Quantum information with Rydberg atoms, Rev. Mod. Phys., 2010, 82(3): 2313
https://doi.org/10.1103/RevModPhys.82.2313
2 D. Comparat and P. Pillet, Dipole blockade in a cold Rydberg atomic sample, J. Opt. Soc. Am. B, 2010, 27(6): A208
https://doi.org/10.1364/JOSAB.27.00A208
3 J. D. Pritchard, K. J. Weatherill, and C. S. Adams, Nonlinear optics using cold Rydberg atoms; Annual Review of Cold Atoms and Molecule chapter 8, Singapore: World Scientific, 2013: 301-350
https://doi.org/10.1142/9789814440400_0008
4 F. Robicheaux and J. Hernández, Many-body wave function in a dipole blockade configuration, Phys. Rev. A, 2005, 72(6): 063403
https://doi.org/10.1103/PhysRevA.72.063403
5 H. Weimer, R. L?w, T. Pfau, and H. P. Büchler, Quantum critical behavior in strongly interacting Rydberg gases, Phys. Rev. Lett., 2008, 101(25): 250601
https://doi.org/10.1103/PhysRevLett.101.250601
6 A. Schwarzkopf, R. E. Sapiro, and G. Raithel, Imaging spatial correlations of Rydberg excitations in cold atom clouds, Phys. Rev. Lett., 2011, 107(10): 103001
https://doi.org/10.1103/PhysRevLett.107.103001
7 P. Schau?*, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Observation of spatially ordered structures in a two-dimensional Rydberg gas, Nature, 2012, 491(7422): 87
https://doi.org/10.1038/nature11596
8 C. Ates and I. Lesanovsky, Entropic enhancement of spatial correlations in a laser-driven Rydberg gas, Phys. Rev. A, 2012, 86(1): 013408
https://doi.org/10.1103/PhysRevA.86.013408
9 D. Petrosyan, M. H?ning, and M. Fleischhauer, Spatial correlations of Rydberg excitations in optically driven atomic ensembles, Phys. Rev. A, 2013, 87(5): 053414
https://doi.org/10.1103/PhysRevA.87.053414
10 T. Pohl, E. Demler, and M. D. Lukin, Dynamical crystallization in the dipole blockade of ultracold atoms, Phys. Rev. Lett., 2010, 104(4): 043002
https://doi.org/10.1103/PhysRevLett.104.043002
11 J. Schachenmayer, I. Lesanovsky, A. Micheli, and A. J. Daley, Dynamical crystal creation with polar molecules or Rydberg atoms in optical lattices, New J. Phys., 2010, 12(10): 103044
https://doi.org/10.1088/1367-2630/12/10/103044
12 R. M. W. van Bijnen, S. Smit, K. A. H. van Leeuwen, E. J. D. Vredenbregt, and S. J. J. M. F. Kokkelmans, Adiabatic formation of Rydberg crystals with chirped laser pulses, J. Phys. B: At. Mol. Opt. Phys., 2011, 44(18): 184008
https://doi.org/10.1088/0953-4075/44/18/184008
13 L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose–Einstein condensation in trapped dipolar gases, Phys. Rev. Lett., 2000, 85(9): 1791
https://doi.org/10.1103/PhysRevLett.85.1791
14 G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, Strongly correlated gases of Rydberg-dressed atoms: Quantum and classical dynamics, Phys. Rev. Lett., 2010, 104(22): 223002
https://doi.org/10.1103/PhysRevLett.104.223002
15 N. Henkel, R. Nath, and T. Pohl, Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose–Einstein condensates, Phys. Rev. Lett., 2010, 104(19): 195302
https://doi.org/10.1103/PhysRevLett.104.195302
16 N. Henkel, F. Cinti, P. Jain, G. Pupillo, and T. Pohl, Supersolid vortex crystals in Rydberg-dressed Bose–Einstein condensates, Phys. Rev. Lett., 2012, 108(26): 265301
https://doi.org/10.1103/PhysRevLett.108.265301
17 M. Robert-de-Saint-Vincent, C. S. Hofmann, H. Schempp, G. Günter, S. Whitlock, and M. Weidemüller, Spontaneous avalanche ionization of a strongly blockaded Rydberg gas, Phys. Rev. Lett., 2013, 110(4): 045004
https://doi.org/10.1103/PhysRevLett.110.045004
18 G. Bannasch, T. C. Killian, and T. Pohl, Strongly coupled plasmas via Rydberg blockade of cold atoms, Phys. Rev. Lett., 2013, 110(25): 253003
https://doi.org/10.1103/PhysRevLett.110.253003
19 Y. O. Dudin and A. Kuzmich, Strongly interacting Rydberg excitations of a cold atomic gas, Science, 2012, 336(6083): 887
https://doi.org/10.1126/science.1217901
20 T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuleti?, Quantum nonlinear optics with single photons enabled by strongly interacting atoms, Nature, 2012, 488(7409): 57
https://doi.org/10.1038/nature11361
21 D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Storage and control of optical photons using Rydberg polaritons, Phys. Rev. Lett., 2013, 110(10): 103001
https://doi.org/10.1103/PhysRevLett.110.103001
22 C. S. Hofmann, G. Günter, H. Schempp, M. Robertde-Saint-Vincent, M. G?rttner, J. Evers, S. Whitlock, and M. Weidemüller, Sub-poissonian statistics of Rydberginteracting dark-state polaritons, Phys. Rev. Lett., 2013, 110(20): 203601
https://doi.org/10.1103/PhysRevLett.110.203601
23 S. Sevin?li, N. Henkel, C. Ates, and T. Pohl, Nonlocal nonlinear optics in cold Rydberg gases, Phys. Rev. Lett., 2011, 107(15): 153001
https://doi.org/10.1103/PhysRevLett.107.153001
24 W. Ketterle, D. Durfee, and D. Stamper-Kurn, Bose–Einstein Condensation in Atomic Gases: Proceedings of the International School of Physics “Enrico Fermi” Course CXI chapter Making, probing and understanding Bose–Einstein condensates, IOS Press, 1999: 67-176
25 W. Ketterle and M. W. Zwierlein, Ultra-Cold Fermi Gases: Proceedings of the International School of Physics “Enrico Fermi”, Course ClXIV chapter Making, probing and understanding ultracold Fermi gases, Amsterdam: IOS Press, 2008: 95-287
26 R. L?w, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher, H. P. Büchler, and T. Pfau, An experimental and theoretical guide to strongly interacting Rydberg gases, J. Phys. B: At. Mol. Opt. Phys., 2012, 45(11): 113001
https://doi.org/10.1088/0953-4075/45/11/113001
27 H. Sa?mannshausen, F. Merkt, and J. Deiglmayr, Highresolution spectroscopy of Rydberg states in an ultracold cesium gas, Phys. Rev. A, 2013, 87(3): 032519
https://doi.org/10.1103/PhysRevA.87.032519
28 M. S. O’Sullivan and B. P. Stoicheff, Scalar polarizabilities and avoided crossings of high Rydberg states in Rb, Phys. Rev. A, 1985, 31(4): 2718
https://doi.org/10.1103/PhysRevA.31.2718
29 I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. Entin, Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n≤80, Phys. Rev. A, 2009, 79(5): 052504
https://doi.org/10.1103/PhysRevA.79.052504
30 T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, and P. Pillet, Dipole blockade at F?rster resonances in high resolution laser excitation of Rydberg states of cesium atoms, Phys. Rev. Lett., 2006, 97(8): 083003
https://doi.org/10.1103/PhysRevLett.97.083003
31 S. Westermann, T. Amthor, A. L. de Oliveira, J. Deiglmayr, M. Reetz-Lamour, and M. Weidemüller, Dynamics of resonant energy transfer in a cold Rydberg gas, Eur. Phys. J. D, 2006, 40(1): 37
https://doi.org/10.1140/epjd/e2006-00130-3
32 I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Observation of the Stark-tuned F?rster resonance between two Rydberg atoms, Phys. Rev. Lett., 2010, 104(7): 073003
https://doi.org/10.1103/PhysRevLett.104.073003
33 J. Nipper, J. B. Balewski, A. T. Krupp, S. Hofferberth, R. L?w, and T. Pfau, Atomic pair-state interferometer: Controlling and measuring an interaction-induced phase shift in Rydberg-atom pairs, Phys. Rev. X, 2012, 2(3): 031011
34 J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, and P. Pillet, Observation of a resonant four-body interaction in cold cesium Rydberg atoms, Phys. Rev. Lett., 2012, 108(2): 023005
https://doi.org/10.1103/PhysRevLett.108.023005
35 O. Mülken, A. Blumen, T. Amthor, C. Giese, M. Reetz-Lamour, and M. Weidemüller, Survival probabilities in coherent exciton transfer with trapping, Phys. Rev. Lett., 2007, 99(9): 090601
https://doi.org/10.1103/PhysRevLett.99.090601
36 K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. Walraven, Two-dimensional magneto-optical trap as a source of slow atoms, Phys. Rev. A, 1998, 58(5): 3891
https://doi.org/10.1103/PhysRevA.58.3891
37 J. Schoser, A. Bat?r, R. L?w, V. Schweikhard, A. Grabowski, Y. Ovchinnikov, and T. Pfau, Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap, Phys. Rev. A, 2002, 66(2): 023410
https://doi.org/10.1103/PhysRevA.66.023410
38 J. Catani, P. Maioli, L. D. Sarlo, F. Minardi, and M. Inguscio, Intense slow beams of bosonic potassium isotopes, Phys. Rev. A, 2006, 73(3): 033415
https://doi.org/10.1103/PhysRevA.73.033415
39 S. Chaudhuri, S. Roy, and C. S. Unnikrishnan, Realization of an intense cold Rb atomic beam based on a two-dimensional magneto-optical trap: Experiments and comparison with simulations, Phys. Rev. A, 2006, 74(2): 023406
https://doi.org/10.1103/PhysRevA.74.023406
40 R. Dubessy, K. Merloti, L. Longchambon, P. E. Pottie, T. Liennard, A. Perrin, V. Lorent, and H. Perrin, Rubidium-87 Bose–Einstein condensate in an optically plugged quadrupole trap, Phys. Rev. A, 2012, 85(1): 013643
https://doi.org/10.1103/PhysRevA.85.013643
41 P. A. Altin, N. P. Robins, D. D?ring, J. E. Debs, R. Poldy, C. Figl, and J. D. Close, 85Rb tunable-interaction Bose–Einstein condensate machine, Rev. Sci. Instrum., 2010, 81(6): 063103
https://doi.org/10.1063/1.3430538
42 Y. J. Lin, A. R. Perry, R. L. Compton, I. Spielman, and J. Porto, Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential, Phys. Rev. A, 2009, 2009(6): 063631
https://doi.org/10.1103/PhysRevA.79.063631
43 J. Fortágh and C. Zimmermann, Magnetic microtraps for ultracold atoms, Rev. Mod. Phys., 2007, 79(1): 235
https://doi.org/10.1103/RevModPhys.79.235
44 J. Reichel and V. Vuletic, Atom Chips, Wiley-VCH Verlag GmbH & Co. KGaA, 2011
45 C. S. Hofmann, , Combined optical and matterbased probing of Rydberg electromagnetically induced transparency, 2013 (to be published)
46 T. G. Tiecke, S. D. Gensemer, A. Ludewig, and J. Walraven, High-flux two-dimensional magneto-optical-trap source for cold lithium atoms, Phys. Rev. A, 2009, 80(1): 013409
https://doi.org/10.1103/PhysRevA.80.013409
47 We use ALVASOURCES from Alvatec, which are chromatefree metal vapor sources of the type AS-3-Rb87(98%)-20-F
48 S. G?tz, B. H?ltkemeier, C. S. Hofmann, D. Litsch, B. D. DePaola, and M. Weidemüller, Versatile cold atom target apparatus, Rev. Sci. Instrum., 2012, 83(7): 073112
https://doi.org/10.1063/1.4738643
49 D. Jacob, E. Mimoun, L. D. Sarlo, M. Weitz, J. Dalibard, and F. Gerbier, Production of sodium Bose–Einstein condensates in an optical dimple trap, New J. Phys., 2011, 13(6): 065022
https://doi.org/10.1088/1367-2630/13/6/065022
50 J. F. Clément, J. P. Brantut, M. Robert-de-Saint-Vincent, R. A. Nyman, A. Aspect, T. Bourdel, and P. Bouyer, Alloptical runaway evaporation to Bose–Einstein condensation, Phys. Rev. A, 2009, 79(6): 061406
https://doi.org/10.1103/PhysRevA.79.061406
51 T. Weber, J. Herbig, M. Mark, H.-C. N?gerl, and R. Grimm, Bose–Einstein condensation of cesium, Science, 2002, 299(5604): 232
https://doi.org/10.1126/science.1079699
52 M. Zaiser, J. Hartwig, D. Schlippert, U. Velte, N. Winter, V. Lebedev, W. Ertmer, and E. M. Rasel, Simple method for generating Bose–Einstein condensates in a weak hybrid trap, Phys. Rev. A, 2011, 83(3): 035601
https://doi.org/10.1103/PhysRevA.83.035601
53 S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, Loading an optical dipole trap, Phys. Rev. A, 2000, 62(1): 013406
https://doi.org/10.1103/PhysRevA.62.013406
54 C. G. Townsend, N. H. Edwards, K. P. Zetie, C. Cooper, J. Rink, and C. Foot, High-density trapping of cesium atoms in a dark magneto-optical trap, Phys. Rev. A, 1996, 53(3): 1702
https://doi.org/10.1103/PhysRevA.53.1702
55 K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. Thomas, Scaling laws for evaporative cooling in time-dependent optical traps, Phys. Rev. A, 2001, 64(5): 051403
https://doi.org/10.1103/PhysRevA.64.051403
56 T. Lauber, J. Küber, O. Wille, and G. Birkl, Optimized Bose–Einstein-condensate production in a dipole trap based on a 1070-nm multifrequency laser: Influence of enhanced two-body loss on the evaporation process, Phys. Rev. A, 2011, 84(4): 043641
https://doi.org/10.1103/PhysRevA.84.043641
57 A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip, Phys. Rev. A, 2010, 81(6): 063411
https://doi.org/10.1103/PhysRevA.81.063411
58 H. Hattermann, M. Mack, F. Karlewski, F. Jessen, D. Cano, and J. Fortágh, Detrimental adsorbate fields in experiments with cold Rydberg gases near surfaces, Phys. Rev. A, 2012, 86(2): 022511
https://doi.org/10.1103/PhysRevA.86.022511
59 M. Fleischhauer, A. Imamoglu, and J. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys., 2005, 77(2): 633
https://doi.org/10.1103/RevModPhys.77.633
60 J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Cooperative atom-light interaction in a blockaded Rydberg ensemble, Phys. Rev. Lett., 2010, 105(19): 193603
https://doi.org/10.1103/PhysRevLett.105.193603
61 H. Schempp, G. Günter, C. S. Hofmann, C. Giese, S. D. Saliba, B. D. DePaola, T. Amthor, M. Weidemüller, S. Sevin?li, and T. Pohl, Coherent population trapping with controlled interparticle interactions, Phys. Rev. Lett., 2010, 104(17): 173602
https://doi.org/10.1103/PhysRevLett.104.173602
62 S. Sevin?li, C. Ates, T. Pohl, H. Schempp, C. S. Hofmann, G. Günter, T. Amthor, M. Weidemüller, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Quantum interference in interacting threelevel Rydberg gases: Coherent population trapping and electromagnetically induced transparency, J. Phys. B: At. Mol. Opt. Phys., 2011, 44(18): 184018
https://doi.org/10.1088/0953-4075/44/18/184018
63 R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev., 1954, 93(1): 99
https://doi.org/10.1103/PhysRev.93.99
64 R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. L?w, L. Santos, and T. Pfau, Evidence for coherent collective Rydberg excitation in the strong blockade regime, Phys. Rev. Lett., 2007, 99(16): 163601
https://doi.org/10.1103/PhysRevLett.99.163601
65 A. Ga?tan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys., 2009, 5(2): 115
https://doi.org/10.1038/nphys1183
66 E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two atoms, Nat. Phys., 2009, 5(2): 110
https://doi.org/10.1038/nphys1178
67 Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, Observation of coherent many-body Rabi oscillations, Nat. Phys., 2012, 8(11): 790
https://doi.org/10.1038/nphys2413
68 D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. C?té, E. E. Eyler, and P. L. Gould, Local blockade of Rydberg excitation in an ultracold gas, Phys. Rev. Lett., 2004, 93(6): 063001
https://doi.org/10.1103/PhysRevLett.93.063001
69 K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms, Phys. Rev. Lett., 2004, 93(16): 163001
https://doi.org/10.1103/PhysRevLett.93.163001
70 T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, and P. Pillet, Electric-field induced dipole blockade with Rydberg atoms, Phys. Rev. Lett., 2007, 99(7): 073002
https://doi.org/10.1103/PhysRevLett.99.073002
71 A. Reinhard, K. C. Younge, and G. Raithel, Effect of Foerster resonances on the excitation statistics of many-body Rydberg systems, Phys. Rev. A, 2008, 78: 060702(R)
https://doi.org/10.1103/PhysRevA.78.060702
72 M. Viteau, P. Huillery, M. G. Bason, N. Malossi, D. Ciampini, O. Morsch, E. Arimondo, D. Comparat, and P. Pillet, Cooperative excitation and many-body interactions in a cold Rydberg gas, Phys. Rev. Lett., 2012, 109(5): 053002
https://doi.org/10.1103/PhysRevLett.109.053002
73 M. P. Robinson, B. L. Tolra, M. W. Noel, T. Gallagher, and P. Pillet, Spontaneous evolution of Rydberg atoms into an ultracold plasma, Phys. Rev. Lett., 2000, 85(21): 4466
https://doi.org/10.1103/PhysRevLett.85.4466
74 T. C. Killian, Ultracold neutral plasmas, Science, 2007, 316(5825): 705
https://doi.org/10.1126/science.1130556
75 W. Li, M. W. Noel, M. P. Robinson, P. Tanner, T. Gallagher, D. Comparat, B. Laburthe Tolra, N. Vanhaecke, T. Vogt, N. Zahzam, P. Pillet, and D. Tate, Evolution dynamics of a dense frozen Rydberg gas to plasma, Phys. Rev. A, 2004, 70(4): 042713
https://doi.org/10.1103/PhysRevA.70.042713
76 A. Walz-Flannigan, J. R. Guest, J. H. Choi, and G. Raithel, Cold-Rydberg-gas dynamics, Phys. Rev. A, 2004, 69(6): 063405
https://doi.org/10.1103/PhysRevA.69.063405
77 J. P. Morrison, C. J. Rennick, J. S. Keller, and E. Grant, Evolution from a molecular Rydberg gas to an ultracold plasma in a seeded supersonic expansion of NO, Phys. Rev. Lett., 2008, 101(20): 205005
https://doi.org/10.1103/PhysRevLett.101.205005
78 B. A. Remington, D. Arnett, R. Paul, Drake, and H. Takabe, Modeling astrophysical phenomena in the laboratory with intense lasers, Science, 1999, 284(5419): 1488
https://doi.org/10.1126/science.284.5419.1488
79 H. M. Van Horn, Dense astrophysical plasmas, Science, 1991, 252(5004): 384
https://doi.org/10.1126/science.252.5004.384
80 E. Shuryak, Physics of strongly coupled quark–gluon plasma, Prog. Part. Nucl. Phys., 2009, 62(1): 48
https://doi.org/10.1016/j.ppnp.2008.09.001
81 S. Ichimaru, Strongly coupled plasmas: High-density classical plasmas and degenerate electron liquids, Rev. Mod. Phys., 1982, 54(4): 1017
https://doi.org/10.1103/RevModPhys.54.1017
82 T. C. Killian, T. Pattard, T. Pohl, and J. M. Rost, Ultracold neutral plasmas, Phys. Rep., 2007, 449(4-5): 77
https://doi.org/10.1016/j.physrep.2007.04.007
83 C. E. Simien, Y. C. Chen, P. Gupta, S. Laha, Y. Martinez, P. Mickelson, S. Nagel, and T. Killian, Using absorption imaging to study ion dynamics in an ultracold neutral plasma, Phys. Rev. Lett., 2004, 92(14): 143001
https://doi.org/10.1103/PhysRevLett.92.143001
84 E. A. Cummings, J. E. Daily, D. S. Durfee, and S. Bergeson, Fluorescence measurements of expanding strongly coupled neutral plasmas, Phys. Rev. Lett., 2005, 95(23): 235001
https://doi.org/10.1103/PhysRevLett.95.235001
85 S. G. Kuzmin and T. M. O’Neil, Numerical simulation of ultracold plasmas: How rapid intrinsic heating limits the development of correlation, Phys. Rev. Lett., 2002, 88(6): 065003
https://doi.org/10.1103/PhysRevLett.88.065003
86 T. Pohl, T. Pattard, and J. M. Rost, Kinetic modeling and molecular dynamics simulation of ultracold neutral plasmas including ionic correlations, Phys. Rev. A, 2004, 70(3): 033416
https://doi.org/10.1103/PhysRevA.70.033416
87 S. D. Bergeson, A. Denning, M. Lyon, and F. Robicheaux, Density and temperature scaling of disorder-induced heating in ultracold plasmas, Phys. Rev. A, 2011, 83(2): 023409
https://doi.org/10.1103/PhysRevA.83.023409
88 I. I. Beterov, D. B. Tretyakov, I. I. Ryabtsev, A. Ekers, and N. Bezuglov, Ionization of sodium and rubidium nS, nP, and nD Rydberg atoms by blackbody radiation, Phys. Rev. A, 2007, 75(5): 052720
https://doi.org/10.1103/PhysRevA.75.052720
89 L. Barbier and M. Cheret, Experimental study of penning and Hornbeck–Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s), J. Phys. B: At. Mol. Opt. Phys., 1987, 20(6): 1229
https://doi.org/10.1088/0022-3700/20/6/011
90 A. Kumar, B. C. Sahaa, C. A. Weatherforda, and S. K. Verma, A systematic study of Hornbeck Molnar ionization involving Rydberg alkali atoms, J. Mol. Struct. Theochem., 1999, 487(1-2): 1
https://doi.org/10.1016/S0166-1280(99)00134-7
91 M. S. Murillo, Using Fermi statistics to create strongly coupled ion plasmas in atom traps, Phys. Rev. Lett., 2001, 87(11): 115003
https://doi.org/10.1103/PhysRevLett.87.115003
92 P. K. Shukla and K. Avinash, Phase coexistence and a critical point in ultracold neutral plasmas, Phys. Rev. Lett., 2011, 107(13): 135002
https://doi.org/10.1103/PhysRevLett.107.135002
93 L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett., 1979, 4(7): 205
https://doi.org/10.1364/OL.4.000205
94 S. Wüster, J. Stanojevic, C. Ates, T. Pohl, P. Deuar, J. F. Corney, and J. M. Rost, Correlations of Rydberg excitations in an ultracold gas after an echo sequence, Phys. Rev. A, 2010, 81(2): 023406
https://doi.org/10.1103/PhysRevA.81.023406
95 D. Breyel, T. L. Schmidt, and A. Komnik, Rydberg crystallization detection by statistical means, Phys. Rev. A, 2012, 86(2): 023405
https://doi.org/10.1103/PhysRevA.86.023405
96 M. G?rttner, K. P. Heeg, T. Gasenzer, and J. Evers, Optimal self-assembly of Rydberg excitations for quantum gate operations, Phys. Rev. A, 2013, 88(4): 043410
https://doi.org/10.1103/PhysRevA.88.043410
97 M. Fleischhauer and M. D. Lukin, Dark-state polaritons in electromagnetically induced transparency, Phys. Rev. Lett., 2000, 84(22): 5094
https://doi.org/10.1103/PhysRevLett.84.5094
98 C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Strong interaction effects on the atom counting statistics of ultracold Rydberg gases, J. Phys. B: At. Mol. Opt. Phys., 2006, 39(11): L233
https://doi.org/10.1088/0953-4075/39/11/L02
99 H. Schempp, G. Günter, M. Robert-de-Saint-Vincent, C. S. Hofmann, D. Breyel, A. Komnik, D. W. Sch?nleber, M. G?rttner, J. Evers, S. Whitlock, and M. Weidemüller, Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry, arXiv: 1308.0264, 2013
100 D. Petrosyan, J. Otterbach, and M. Fleischhauer, Electromagnetically induced transparency with Rydberg atoms, Phys. Rev. Lett., 2011, 107(21): 213601
https://doi.org/10.1103/PhysRevLett.107.213601
101 V. Parigi, E. Bimbard, J. Stanojevic, A. J. Hilliard, F. Nogrette, R. Tualle-Brouri, A. Ourjoumtsev, and P. Grangier, Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms, Phys. Rev. Lett., 2012, 109(23): 233602
https://doi.org/10.1103/PhysRevLett.109.233602
102 E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, Strongly interacting photons in hollow-core waveguides, Phys. Rev. A, 2011, 83(3): 033806
https://doi.org/10.1103/PhysRevA.83.033806
103 A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Photon–photon interactions via Rydberg blockade, Phys. Rev. Lett., 2011, 107(13): 133602
https://doi.org/10.1103/PhysRevLett.107.133602
104 M. Fleischhauer, J. Otterbach, and R. G. Unanyan, Bose–Einstein condensation of stationary-light polaritons, Phys. Rev. Lett., 2008, 101(16): 163601
https://doi.org/10.1103/PhysRevLett.101.163601
105 G. Nikoghosyan, F. E. Zimmer, and M. B. Plenio, Dipolar Bose–Einstein condensate of dark-state polaritons, Phys. Rev. A, 2012, 86(2): 023854
https://doi.org/10.1103/PhysRevA.86.023854
106 J. Honer, R. L?w, H. Weimer, T. Pfau, and H. P. Büchler, Artificial atoms can do more than atoms: Deterministic single photon subtraction from arbitrary light fields, Phys. Rev. Lett., 2011, 107(9): 093601
https://doi.org/10.1103/PhysRevLett.107.093601
107 J. Stanojevic, V. Parigi, E. Bimbard, A. Ourjoumtsev, P. Pillet, and P. Grangier, Generating non-Gaussian states using collisions between Rydberg polaritons, Phys. Rev. A, 2012, 86(2): 021403
https://doi.org/10.1103/PhysRevA.86.021403
108 I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, Long-range interactions and entanglement of slow singlephoton pulses, Phys. Rev. A, 2005, 72(4): 043803
https://doi.org/10.1103/PhysRevA.72.043803
109 D. Petrosyan and M. Fleischhauer, Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators, Phys. Rev. Lett., 2008, 100(17): 170501
https://doi.org/10.1103/PhysRevLett.100.170501
110 G. Günter, M. Robert-de-Saint-Vincent, H. Schempp, C. S. Hofmann, S. Whitlock, and M. Weidemüller, Interaction enhanced imaging of individual Rydberg atoms in dense gases, Phys. Rev. Lett., 2012, 108(1): 013002
https://doi.org/10.1103/PhysRevLett.108.013002
[1] Renju Rajan,P. Ramesh Babu,K. Senthilnathan. Photon condensation: A new paradigm for Bose–Einstein condensation[J]. Front. Phys. , 2016, 11(5): 110502-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed