|
|
An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems |
C. S. Hofmann( ),G. Günter,H. Schempp,N. L. M. Müller,A. Faber,H. Busche,M. Robert-de-Saint-Vincent,S. Whitlock( ),M. Weidemüller( ) |
Physikalisches Institut, Universit?t Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany |
|
|
Abstract Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose–Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg–Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.
|
Keywords
ultracold Rydberg gases
ultracold plasmas
Bose–Einstein condensation
atom–light interactions
many-body interactions
|
Corresponding Author(s):
S. Whitlock
|
Issue Date: 15 October 2014
|
|
1 |
M. Saffman, T. G. Walker, and K. M?lmer, Quantum information with Rydberg atoms, Rev. Mod. Phys., 2010, 82(3): 2313
https://doi.org/10.1103/RevModPhys.82.2313
|
2 |
D. Comparat and P. Pillet, Dipole blockade in a cold Rydberg atomic sample, J. Opt. Soc. Am. B, 2010, 27(6): A208
https://doi.org/10.1364/JOSAB.27.00A208
|
3 |
J. D. Pritchard, K. J. Weatherill, and C. S. Adams, Nonlinear optics using cold Rydberg atoms; Annual Review of Cold Atoms and Molecule chapter 8, Singapore: World Scientific, 2013: 301-350
https://doi.org/10.1142/9789814440400_0008
|
4 |
F. Robicheaux and J. Hernández, Many-body wave function in a dipole blockade configuration, Phys. Rev. A, 2005, 72(6): 063403
https://doi.org/10.1103/PhysRevA.72.063403
|
5 |
H. Weimer, R. L?w, T. Pfau, and H. P. Büchler, Quantum critical behavior in strongly interacting Rydberg gases, Phys. Rev. Lett., 2008, 101(25): 250601
https://doi.org/10.1103/PhysRevLett.101.250601
|
6 |
A. Schwarzkopf, R. E. Sapiro, and G. Raithel, Imaging spatial correlations of Rydberg excitations in cold atom clouds, Phys. Rev. Lett., 2011, 107(10): 103001
https://doi.org/10.1103/PhysRevLett.107.103001
|
7 |
P. Schau?*, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Observation of spatially ordered structures in a two-dimensional Rydberg gas, Nature, 2012, 491(7422): 87
https://doi.org/10.1038/nature11596
|
8 |
C. Ates and I. Lesanovsky, Entropic enhancement of spatial correlations in a laser-driven Rydberg gas, Phys. Rev. A, 2012, 86(1): 013408
https://doi.org/10.1103/PhysRevA.86.013408
|
9 |
D. Petrosyan, M. H?ning, and M. Fleischhauer, Spatial correlations of Rydberg excitations in optically driven atomic ensembles, Phys. Rev. A, 2013, 87(5): 053414
https://doi.org/10.1103/PhysRevA.87.053414
|
10 |
T. Pohl, E. Demler, and M. D. Lukin, Dynamical crystallization in the dipole blockade of ultracold atoms, Phys. Rev. Lett., 2010, 104(4): 043002
https://doi.org/10.1103/PhysRevLett.104.043002
|
11 |
J. Schachenmayer, I. Lesanovsky, A. Micheli, and A. J. Daley, Dynamical crystal creation with polar molecules or Rydberg atoms in optical lattices, New J. Phys., 2010, 12(10): 103044
https://doi.org/10.1088/1367-2630/12/10/103044
|
12 |
R. M. W. van Bijnen, S. Smit, K. A. H. van Leeuwen, E. J. D. Vredenbregt, and S. J. J. M. F. Kokkelmans, Adiabatic formation of Rydberg crystals with chirped laser pulses, J. Phys. B: At. Mol. Opt. Phys., 2011, 44(18): 184008
https://doi.org/10.1088/0953-4075/44/18/184008
|
13 |
L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose–Einstein condensation in trapped dipolar gases, Phys. Rev. Lett., 2000, 85(9): 1791
https://doi.org/10.1103/PhysRevLett.85.1791
|
14 |
G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, Strongly correlated gases of Rydberg-dressed atoms: Quantum and classical dynamics, Phys. Rev. Lett., 2010, 104(22): 223002
https://doi.org/10.1103/PhysRevLett.104.223002
|
15 |
N. Henkel, R. Nath, and T. Pohl, Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose–Einstein condensates, Phys. Rev. Lett., 2010, 104(19): 195302
https://doi.org/10.1103/PhysRevLett.104.195302
|
16 |
N. Henkel, F. Cinti, P. Jain, G. Pupillo, and T. Pohl, Supersolid vortex crystals in Rydberg-dressed Bose–Einstein condensates, Phys. Rev. Lett., 2012, 108(26): 265301
https://doi.org/10.1103/PhysRevLett.108.265301
|
17 |
M. Robert-de-Saint-Vincent, C. S. Hofmann, H. Schempp, G. Günter, S. Whitlock, and M. Weidemüller, Spontaneous avalanche ionization of a strongly blockaded Rydberg gas, Phys. Rev. Lett., 2013, 110(4): 045004
https://doi.org/10.1103/PhysRevLett.110.045004
|
18 |
G. Bannasch, T. C. Killian, and T. Pohl, Strongly coupled plasmas via Rydberg blockade of cold atoms, Phys. Rev. Lett., 2013, 110(25): 253003
https://doi.org/10.1103/PhysRevLett.110.253003
|
19 |
Y. O. Dudin and A. Kuzmich, Strongly interacting Rydberg excitations of a cold atomic gas, Science, 2012, 336(6083): 887
https://doi.org/10.1126/science.1217901
|
20 |
T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuleti?, Quantum nonlinear optics with single photons enabled by strongly interacting atoms, Nature, 2012, 488(7409): 57
https://doi.org/10.1038/nature11361
|
21 |
D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Storage and control of optical photons using Rydberg polaritons, Phys. Rev. Lett., 2013, 110(10): 103001
https://doi.org/10.1103/PhysRevLett.110.103001
|
22 |
C. S. Hofmann, G. Günter, H. Schempp, M. Robertde-Saint-Vincent, M. G?rttner, J. Evers, S. Whitlock, and M. Weidemüller, Sub-poissonian statistics of Rydberginteracting dark-state polaritons, Phys. Rev. Lett., 2013, 110(20): 203601
https://doi.org/10.1103/PhysRevLett.110.203601
|
23 |
S. Sevin?li, N. Henkel, C. Ates, and T. Pohl, Nonlocal nonlinear optics in cold Rydberg gases, Phys. Rev. Lett., 2011, 107(15): 153001
https://doi.org/10.1103/PhysRevLett.107.153001
|
24 |
W. Ketterle, D. Durfee, and D. Stamper-Kurn, Bose–Einstein Condensation in Atomic Gases: Proceedings of the International School of Physics “Enrico Fermi” Course CXI chapter Making, probing and understanding Bose–Einstein condensates, IOS Press, 1999: 67-176
|
25 |
W. Ketterle and M. W. Zwierlein, Ultra-Cold Fermi Gases: Proceedings of the International School of Physics “Enrico Fermi”, Course ClXIV chapter Making, probing and understanding ultracold Fermi gases, Amsterdam: IOS Press, 2008: 95-287
|
26 |
R. L?w, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher, H. P. Büchler, and T. Pfau, An experimental and theoretical guide to strongly interacting Rydberg gases, J. Phys. B: At. Mol. Opt. Phys., 2012, 45(11): 113001
https://doi.org/10.1088/0953-4075/45/11/113001
|
27 |
H. Sa?mannshausen, F. Merkt, and J. Deiglmayr, Highresolution spectroscopy of Rydberg states in an ultracold cesium gas, Phys. Rev. A, 2013, 87(3): 032519
https://doi.org/10.1103/PhysRevA.87.032519
|
28 |
M. S. O’Sullivan and B. P. Stoicheff, Scalar polarizabilities and avoided crossings of high Rydberg states in Rb, Phys. Rev. A, 1985, 31(4): 2718
https://doi.org/10.1103/PhysRevA.31.2718
|
29 |
I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. Entin, Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n≤80, Phys. Rev. A, 2009, 79(5): 052504
https://doi.org/10.1103/PhysRevA.79.052504
|
30 |
T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, and P. Pillet, Dipole blockade at F?rster resonances in high resolution laser excitation of Rydberg states of cesium atoms, Phys. Rev. Lett., 2006, 97(8): 083003
https://doi.org/10.1103/PhysRevLett.97.083003
|
31 |
S. Westermann, T. Amthor, A. L. de Oliveira, J. Deiglmayr, M. Reetz-Lamour, and M. Weidemüller, Dynamics of resonant energy transfer in a cold Rydberg gas, Eur. Phys. J. D, 2006, 40(1): 37
https://doi.org/10.1140/epjd/e2006-00130-3
|
32 |
I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Observation of the Stark-tuned F?rster resonance between two Rydberg atoms, Phys. Rev. Lett., 2010, 104(7): 073003
https://doi.org/10.1103/PhysRevLett.104.073003
|
33 |
J. Nipper, J. B. Balewski, A. T. Krupp, S. Hofferberth, R. L?w, and T. Pfau, Atomic pair-state interferometer: Controlling and measuring an interaction-induced phase shift in Rydberg-atom pairs, Phys. Rev. X, 2012, 2(3): 031011
|
34 |
J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, and P. Pillet, Observation of a resonant four-body interaction in cold cesium Rydberg atoms, Phys. Rev. Lett., 2012, 108(2): 023005
https://doi.org/10.1103/PhysRevLett.108.023005
|
35 |
O. Mülken, A. Blumen, T. Amthor, C. Giese, M. Reetz-Lamour, and M. Weidemüller, Survival probabilities in coherent exciton transfer with trapping, Phys. Rev. Lett., 2007, 99(9): 090601
https://doi.org/10.1103/PhysRevLett.99.090601
|
36 |
K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. Walraven, Two-dimensional magneto-optical trap as a source of slow atoms, Phys. Rev. A, 1998, 58(5): 3891
https://doi.org/10.1103/PhysRevA.58.3891
|
37 |
J. Schoser, A. Bat?r, R. L?w, V. Schweikhard, A. Grabowski, Y. Ovchinnikov, and T. Pfau, Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap, Phys. Rev. A, 2002, 66(2): 023410
https://doi.org/10.1103/PhysRevA.66.023410
|
38 |
J. Catani, P. Maioli, L. D. Sarlo, F. Minardi, and M. Inguscio, Intense slow beams of bosonic potassium isotopes, Phys. Rev. A, 2006, 73(3): 033415
https://doi.org/10.1103/PhysRevA.73.033415
|
39 |
S. Chaudhuri, S. Roy, and C. S. Unnikrishnan, Realization of an intense cold Rb atomic beam based on a two-dimensional magneto-optical trap: Experiments and comparison with simulations, Phys. Rev. A, 2006, 74(2): 023406
https://doi.org/10.1103/PhysRevA.74.023406
|
40 |
R. Dubessy, K. Merloti, L. Longchambon, P. E. Pottie, T. Liennard, A. Perrin, V. Lorent, and H. Perrin, Rubidium-87 Bose–Einstein condensate in an optically plugged quadrupole trap, Phys. Rev. A, 2012, 85(1): 013643
https://doi.org/10.1103/PhysRevA.85.013643
|
41 |
P. A. Altin, N. P. Robins, D. D?ring, J. E. Debs, R. Poldy, C. Figl, and J. D. Close, 85Rb tunable-interaction Bose–Einstein condensate machine, Rev. Sci. Instrum., 2010, 81(6): 063103
https://doi.org/10.1063/1.3430538
|
42 |
Y. J. Lin, A. R. Perry, R. L. Compton, I. Spielman, and J. Porto, Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential, Phys. Rev. A, 2009, 2009(6): 063631
https://doi.org/10.1103/PhysRevA.79.063631
|
43 |
J. Fortágh and C. Zimmermann, Magnetic microtraps for ultracold atoms, Rev. Mod. Phys., 2007, 79(1): 235
https://doi.org/10.1103/RevModPhys.79.235
|
44 |
J. Reichel and V. Vuletic, Atom Chips, Wiley-VCH Verlag GmbH & Co. KGaA, 2011
|
45 |
C. S. Hofmann, , Combined optical and matterbased probing of Rydberg electromagnetically induced transparency, 2013 (to be published)
|
46 |
T. G. Tiecke, S. D. Gensemer, A. Ludewig, and J. Walraven, High-flux two-dimensional magneto-optical-trap source for cold lithium atoms, Phys. Rev. A, 2009, 80(1): 013409
https://doi.org/10.1103/PhysRevA.80.013409
|
47 |
We use ALVASOURCES from Alvatec, which are chromatefree metal vapor sources of the type AS-3-Rb87(98%)-20-F
|
48 |
S. G?tz, B. H?ltkemeier, C. S. Hofmann, D. Litsch, B. D. DePaola, and M. Weidemüller, Versatile cold atom target apparatus, Rev. Sci. Instrum., 2012, 83(7): 073112
https://doi.org/10.1063/1.4738643
|
49 |
D. Jacob, E. Mimoun, L. D. Sarlo, M. Weitz, J. Dalibard, and F. Gerbier, Production of sodium Bose–Einstein condensates in an optical dimple trap, New J. Phys., 2011, 13(6): 065022
https://doi.org/10.1088/1367-2630/13/6/065022
|
50 |
J. F. Clément, J. P. Brantut, M. Robert-de-Saint-Vincent, R. A. Nyman, A. Aspect, T. Bourdel, and P. Bouyer, Alloptical runaway evaporation to Bose–Einstein condensation, Phys. Rev. A, 2009, 79(6): 061406
https://doi.org/10.1103/PhysRevA.79.061406
|
51 |
T. Weber, J. Herbig, M. Mark, H.-C. N?gerl, and R. Grimm, Bose–Einstein condensation of cesium, Science, 2002, 299(5604): 232
https://doi.org/10.1126/science.1079699
|
52 |
M. Zaiser, J. Hartwig, D. Schlippert, U. Velte, N. Winter, V. Lebedev, W. Ertmer, and E. M. Rasel, Simple method for generating Bose–Einstein condensates in a weak hybrid trap, Phys. Rev. A, 2011, 83(3): 035601
https://doi.org/10.1103/PhysRevA.83.035601
|
53 |
S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, Loading an optical dipole trap, Phys. Rev. A, 2000, 62(1): 013406
https://doi.org/10.1103/PhysRevA.62.013406
|
54 |
C. G. Townsend, N. H. Edwards, K. P. Zetie, C. Cooper, J. Rink, and C. Foot, High-density trapping of cesium atoms in a dark magneto-optical trap, Phys. Rev. A, 1996, 53(3): 1702
https://doi.org/10.1103/PhysRevA.53.1702
|
55 |
K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. Thomas, Scaling laws for evaporative cooling in time-dependent optical traps, Phys. Rev. A, 2001, 64(5): 051403
https://doi.org/10.1103/PhysRevA.64.051403
|
56 |
T. Lauber, J. Küber, O. Wille, and G. Birkl, Optimized Bose–Einstein-condensate production in a dipole trap based on a 1070-nm multifrequency laser: Influence of enhanced two-body loss on the evaporation process, Phys. Rev. A, 2011, 84(4): 043641
https://doi.org/10.1103/PhysRevA.84.043641
|
57 |
A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip, Phys. Rev. A, 2010, 81(6): 063411
https://doi.org/10.1103/PhysRevA.81.063411
|
58 |
H. Hattermann, M. Mack, F. Karlewski, F. Jessen, D. Cano, and J. Fortágh, Detrimental adsorbate fields in experiments with cold Rydberg gases near surfaces, Phys. Rev. A, 2012, 86(2): 022511
https://doi.org/10.1103/PhysRevA.86.022511
|
59 |
M. Fleischhauer, A. Imamoglu, and J. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys., 2005, 77(2): 633
https://doi.org/10.1103/RevModPhys.77.633
|
60 |
J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Cooperative atom-light interaction in a blockaded Rydberg ensemble, Phys. Rev. Lett., 2010, 105(19): 193603
https://doi.org/10.1103/PhysRevLett.105.193603
|
61 |
H. Schempp, G. Günter, C. S. Hofmann, C. Giese, S. D. Saliba, B. D. DePaola, T. Amthor, M. Weidemüller, S. Sevin?li, and T. Pohl, Coherent population trapping with controlled interparticle interactions, Phys. Rev. Lett., 2010, 104(17): 173602
https://doi.org/10.1103/PhysRevLett.104.173602
|
62 |
S. Sevin?li, C. Ates, T. Pohl, H. Schempp, C. S. Hofmann, G. Günter, T. Amthor, M. Weidemüller, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Quantum interference in interacting threelevel Rydberg gases: Coherent population trapping and electromagnetically induced transparency, J. Phys. B: At. Mol. Opt. Phys., 2011, 44(18): 184018
https://doi.org/10.1088/0953-4075/44/18/184018
|
63 |
R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev., 1954, 93(1): 99
https://doi.org/10.1103/PhysRev.93.99
|
64 |
R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. L?w, L. Santos, and T. Pfau, Evidence for coherent collective Rydberg excitation in the strong blockade regime, Phys. Rev. Lett., 2007, 99(16): 163601
https://doi.org/10.1103/PhysRevLett.99.163601
|
65 |
A. Ga?tan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys., 2009, 5(2): 115
https://doi.org/10.1038/nphys1183
|
66 |
E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two atoms, Nat. Phys., 2009, 5(2): 110
https://doi.org/10.1038/nphys1178
|
67 |
Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, Observation of coherent many-body Rabi oscillations, Nat. Phys., 2012, 8(11): 790
https://doi.org/10.1038/nphys2413
|
68 |
D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. C?té, E. E. Eyler, and P. L. Gould, Local blockade of Rydberg excitation in an ultracold gas, Phys. Rev. Lett., 2004, 93(6): 063001
https://doi.org/10.1103/PhysRevLett.93.063001
|
69 |
K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms, Phys. Rev. Lett., 2004, 93(16): 163001
https://doi.org/10.1103/PhysRevLett.93.163001
|
70 |
T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, and P. Pillet, Electric-field induced dipole blockade with Rydberg atoms, Phys. Rev. Lett., 2007, 99(7): 073002
https://doi.org/10.1103/PhysRevLett.99.073002
|
71 |
A. Reinhard, K. C. Younge, and G. Raithel, Effect of Foerster resonances on the excitation statistics of many-body Rydberg systems, Phys. Rev. A, 2008, 78: 060702(R)
https://doi.org/10.1103/PhysRevA.78.060702
|
72 |
M. Viteau, P. Huillery, M. G. Bason, N. Malossi, D. Ciampini, O. Morsch, E. Arimondo, D. Comparat, and P. Pillet, Cooperative excitation and many-body interactions in a cold Rydberg gas, Phys. Rev. Lett., 2012, 109(5): 053002
https://doi.org/10.1103/PhysRevLett.109.053002
|
73 |
M. P. Robinson, B. L. Tolra, M. W. Noel, T. Gallagher, and P. Pillet, Spontaneous evolution of Rydberg atoms into an ultracold plasma, Phys. Rev. Lett., 2000, 85(21): 4466
https://doi.org/10.1103/PhysRevLett.85.4466
|
74 |
T. C. Killian, Ultracold neutral plasmas, Science, 2007, 316(5825): 705
https://doi.org/10.1126/science.1130556
|
75 |
W. Li, M. W. Noel, M. P. Robinson, P. Tanner, T. Gallagher, D. Comparat, B. Laburthe Tolra, N. Vanhaecke, T. Vogt, N. Zahzam, P. Pillet, and D. Tate, Evolution dynamics of a dense frozen Rydberg gas to plasma, Phys. Rev. A, 2004, 70(4): 042713
https://doi.org/10.1103/PhysRevA.70.042713
|
76 |
A. Walz-Flannigan, J. R. Guest, J. H. Choi, and G. Raithel, Cold-Rydberg-gas dynamics, Phys. Rev. A, 2004, 69(6): 063405
https://doi.org/10.1103/PhysRevA.69.063405
|
77 |
J. P. Morrison, C. J. Rennick, J. S. Keller, and E. Grant, Evolution from a molecular Rydberg gas to an ultracold plasma in a seeded supersonic expansion of NO, Phys. Rev. Lett., 2008, 101(20): 205005
https://doi.org/10.1103/PhysRevLett.101.205005
|
78 |
B. A. Remington, D. Arnett, R. Paul, Drake, and H. Takabe, Modeling astrophysical phenomena in the laboratory with intense lasers, Science, 1999, 284(5419): 1488
https://doi.org/10.1126/science.284.5419.1488
|
79 |
H. M. Van Horn, Dense astrophysical plasmas, Science, 1991, 252(5004): 384
https://doi.org/10.1126/science.252.5004.384
|
80 |
E. Shuryak, Physics of strongly coupled quark–gluon plasma, Prog. Part. Nucl. Phys., 2009, 62(1): 48
https://doi.org/10.1016/j.ppnp.2008.09.001
|
81 |
S. Ichimaru, Strongly coupled plasmas: High-density classical plasmas and degenerate electron liquids, Rev. Mod. Phys., 1982, 54(4): 1017
https://doi.org/10.1103/RevModPhys.54.1017
|
82 |
T. C. Killian, T. Pattard, T. Pohl, and J. M. Rost, Ultracold neutral plasmas, Phys. Rep., 2007, 449(4-5): 77
https://doi.org/10.1016/j.physrep.2007.04.007
|
83 |
C. E. Simien, Y. C. Chen, P. Gupta, S. Laha, Y. Martinez, P. Mickelson, S. Nagel, and T. Killian, Using absorption imaging to study ion dynamics in an ultracold neutral plasma, Phys. Rev. Lett., 2004, 92(14): 143001
https://doi.org/10.1103/PhysRevLett.92.143001
|
84 |
E. A. Cummings, J. E. Daily, D. S. Durfee, and S. Bergeson, Fluorescence measurements of expanding strongly coupled neutral plasmas, Phys. Rev. Lett., 2005, 95(23): 235001
https://doi.org/10.1103/PhysRevLett.95.235001
|
85 |
S. G. Kuzmin and T. M. O’Neil, Numerical simulation of ultracold plasmas: How rapid intrinsic heating limits the development of correlation, Phys. Rev. Lett., 2002, 88(6): 065003
https://doi.org/10.1103/PhysRevLett.88.065003
|
86 |
T. Pohl, T. Pattard, and J. M. Rost, Kinetic modeling and molecular dynamics simulation of ultracold neutral plasmas including ionic correlations, Phys. Rev. A, 2004, 70(3): 033416
https://doi.org/10.1103/PhysRevA.70.033416
|
87 |
S. D. Bergeson, A. Denning, M. Lyon, and F. Robicheaux, Density and temperature scaling of disorder-induced heating in ultracold plasmas, Phys. Rev. A, 2011, 83(2): 023409
https://doi.org/10.1103/PhysRevA.83.023409
|
88 |
I. I. Beterov, D. B. Tretyakov, I. I. Ryabtsev, A. Ekers, and N. Bezuglov, Ionization of sodium and rubidium nS, nP, and nD Rydberg atoms by blackbody radiation, Phys. Rev. A, 2007, 75(5): 052720
https://doi.org/10.1103/PhysRevA.75.052720
|
89 |
L. Barbier and M. Cheret, Experimental study of penning and Hornbeck–Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s), J. Phys. B: At. Mol. Opt. Phys., 1987, 20(6): 1229
https://doi.org/10.1088/0022-3700/20/6/011
|
90 |
A. Kumar, B. C. Sahaa, C. A. Weatherforda, and S. K. Verma, A systematic study of Hornbeck Molnar ionization involving Rydberg alkali atoms, J. Mol. Struct. Theochem., 1999, 487(1-2): 1
https://doi.org/10.1016/S0166-1280(99)00134-7
|
91 |
M. S. Murillo, Using Fermi statistics to create strongly coupled ion plasmas in atom traps, Phys. Rev. Lett., 2001, 87(11): 115003
https://doi.org/10.1103/PhysRevLett.87.115003
|
92 |
P. K. Shukla and K. Avinash, Phase coexistence and a critical point in ultracold neutral plasmas, Phys. Rev. Lett., 2011, 107(13): 135002
https://doi.org/10.1103/PhysRevLett.107.135002
|
93 |
L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett., 1979, 4(7): 205
https://doi.org/10.1364/OL.4.000205
|
94 |
S. Wüster, J. Stanojevic, C. Ates, T. Pohl, P. Deuar, J. F. Corney, and J. M. Rost, Correlations of Rydberg excitations in an ultracold gas after an echo sequence, Phys. Rev. A, 2010, 81(2): 023406
https://doi.org/10.1103/PhysRevA.81.023406
|
95 |
D. Breyel, T. L. Schmidt, and A. Komnik, Rydberg crystallization detection by statistical means, Phys. Rev. A, 2012, 86(2): 023405
https://doi.org/10.1103/PhysRevA.86.023405
|
96 |
M. G?rttner, K. P. Heeg, T. Gasenzer, and J. Evers, Optimal self-assembly of Rydberg excitations for quantum gate operations, Phys. Rev. A, 2013, 88(4): 043410
https://doi.org/10.1103/PhysRevA.88.043410
|
97 |
M. Fleischhauer and M. D. Lukin, Dark-state polaritons in electromagnetically induced transparency, Phys. Rev. Lett., 2000, 84(22): 5094
https://doi.org/10.1103/PhysRevLett.84.5094
|
98 |
C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Strong interaction effects on the atom counting statistics of ultracold Rydberg gases, J. Phys. B: At. Mol. Opt. Phys., 2006, 39(11): L233
https://doi.org/10.1088/0953-4075/39/11/L02
|
99 |
H. Schempp, G. Günter, M. Robert-de-Saint-Vincent, C. S. Hofmann, D. Breyel, A. Komnik, D. W. Sch?nleber, M. G?rttner, J. Evers, S. Whitlock, and M. Weidemüller, Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry, arXiv: 1308.0264, 2013
|
100 |
D. Petrosyan, J. Otterbach, and M. Fleischhauer, Electromagnetically induced transparency with Rydberg atoms, Phys. Rev. Lett., 2011, 107(21): 213601
https://doi.org/10.1103/PhysRevLett.107.213601
|
101 |
V. Parigi, E. Bimbard, J. Stanojevic, A. J. Hilliard, F. Nogrette, R. Tualle-Brouri, A. Ourjoumtsev, and P. Grangier, Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms, Phys. Rev. Lett., 2012, 109(23): 233602
https://doi.org/10.1103/PhysRevLett.109.233602
|
102 |
E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, Strongly interacting photons in hollow-core waveguides, Phys. Rev. A, 2011, 83(3): 033806
https://doi.org/10.1103/PhysRevA.83.033806
|
103 |
A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Photon–photon interactions via Rydberg blockade, Phys. Rev. Lett., 2011, 107(13): 133602
https://doi.org/10.1103/PhysRevLett.107.133602
|
104 |
M. Fleischhauer, J. Otterbach, and R. G. Unanyan, Bose–Einstein condensation of stationary-light polaritons, Phys. Rev. Lett., 2008, 101(16): 163601
https://doi.org/10.1103/PhysRevLett.101.163601
|
105 |
G. Nikoghosyan, F. E. Zimmer, and M. B. Plenio, Dipolar Bose–Einstein condensate of dark-state polaritons, Phys. Rev. A, 2012, 86(2): 023854
https://doi.org/10.1103/PhysRevA.86.023854
|
106 |
J. Honer, R. L?w, H. Weimer, T. Pfau, and H. P. Büchler, Artificial atoms can do more than atoms: Deterministic single photon subtraction from arbitrary light fields, Phys. Rev. Lett., 2011, 107(9): 093601
https://doi.org/10.1103/PhysRevLett.107.093601
|
107 |
J. Stanojevic, V. Parigi, E. Bimbard, A. Ourjoumtsev, P. Pillet, and P. Grangier, Generating non-Gaussian states using collisions between Rydberg polaritons, Phys. Rev. A, 2012, 86(2): 021403
https://doi.org/10.1103/PhysRevA.86.021403
|
108 |
I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, Long-range interactions and entanglement of slow singlephoton pulses, Phys. Rev. A, 2005, 72(4): 043803
https://doi.org/10.1103/PhysRevA.72.043803
|
109 |
D. Petrosyan and M. Fleischhauer, Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators, Phys. Rev. Lett., 2008, 100(17): 170501
https://doi.org/10.1103/PhysRevLett.100.170501
|
110 |
G. Günter, M. Robert-de-Saint-Vincent, H. Schempp, C. S. Hofmann, S. Whitlock, and M. Weidemüller, Interaction enhanced imaging of individual Rydberg atoms in dense gases, Phys. Rev. Lett., 2012, 108(1): 013002
https://doi.org/10.1103/PhysRevLett.108.013002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|