Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (5) : 640-645    https://doi.org/10.1007/s11467-014-0435-z
RESEARCH ARTICLE
Entanglement concentration for a non-maximally entangled four-photon cluster state
Xiang Yan,Ya-Fei Yu,Zhi-Ming Zhang()
Laboratory of Nanophotonic Functional Materials and Devices (SIPSE), Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
 Download: PDF(212 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a scheme for locally concentrating a non-maximally entangled four-photon cluster state into a maximally-entangled four-photon cluster state. This scheme has a high success probability. The controlled-NOT (CNOT) gate is a crucial ingredient in this scheme, and we use a nearly deterministic CNOT gate, which is similar with that first introduced by Nemoto et al. (Phys. Rev. Lett., 2004, 93: 250502). This CNOT gate has a simple structure and does not need the strong nonlinearity.

Keywords cluster state      entanglement concentration      controlled-NOT gate     
Corresponding Author(s): Zhi-Ming Zhang   
Issue Date: 15 October 2014
 Cite this article:   
Xiang Yan,Ya-Fei Yu,Zhi-Ming Zhang. Entanglement concentration for a non-maximally entangled four-photon cluster state[J]. Front. Phys. , 2014, 9(5): 640-645.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0435-z
https://academic.hep.com.cn/fop/EN/Y2014/V9/I5/640
1 H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A, 2002, 65(4): 042305
https://doi.org/10.1103/PhysRevA.65.042305
2 T. C. Ralph, A. Gilchrist, G. J. Milburn, W. Munro, and S. Glancy, Quantum computation with optical coherent states, Phys. Rev. A, 2003, 68(4): 042319
https://doi.org/10.1103/PhysRevA.68.042319
3 S. J. van Enk and O. Hirota, Entangled coherent states: Teleportation and decoherence, Phys. Rev. A, 2001, 64(2): 022313
https://doi.org/10.1103/PhysRevA.64.022313
4 H. Jeong, M. S. Kim, and J. Lee, Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel, Phys. Rev. A, 2001, 64(5): 052308
https://doi.org/10.1103/PhysRevA.64.052308
5 D. Gottesman and J. Preskill, Secure quantum key distribution using squeezed states, Phys. Rev. A, 2001, 63(2): 022309
https://doi.org/10.1103/PhysRevA.63.022309
6 N. J. Cerf, M. Lévy, and G. Assche, Quantum distribution of Gaussian keys using squeezed states, Phys. Rev. A, 2001, 63(5): 052311
https://doi.org/10.1103/PhysRevA.63.052311
7 W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A, 2000, 62(6): 062314
https://doi.org/10.1103/PhysRevA.62.062314
8 C. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett., 1996, 76(5): 722
https://doi.org/10.1103/PhysRevLett.76.722
9 Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A, 2001, 64(1): 014301
https://doi.org/10.1103/PhysRevA.64.014301
10 L. Ye and G. C. Guo, Scheme for entanglement concentration of atomic entangled states in cavity QED, Phys. Lett. A, 2004, 327(4): 284
https://doi.org/10.1016/j.physleta.2004.05.035
11 C. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett., 1996, 76(5): 722
https://doi.org/10.1103/PhysRevLett.76.722
12 M. Yang and Z. L. Cao, Entanglement distillation for W class states, Physica A, 2004, 337(1-2): 141
https://doi.org/10.1016/j.physa.2004.02.016
13 M. Yang, W. Song, and Z. L. Cao, Entanglement distillation for atomic states via cavity QED, Physica A, 2004, 341: 251
https://doi.org/10.1016/j.physa.2004.04.108
14 J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature, 2001, 410(6832): 1067
https://doi.org/10.1038/35074041
15 H. F.Wang, S. Zhang, and K. H. Yeon, Linear optical scheme for entanglement concentration of two partially entangled three-photon W states, Eur. Phys. J. D, 2010, 56(2): 271
https://doi.org/10.1140/epjd/e2009-00277-3
16 L. L. Sun, H. F. Wang, S. Zhang, and K. H. Yeon, Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity, J. Opt. Soc. Am. B, 2012, 29(4): 630
https://doi.org/10.1364/JOSAB.29.000630
17 Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A, 2012, 85(4): 042302
https://doi.org/10.1103/PhysRevA.85.042302
18 C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A, 1996, 53(4): 2046
https://doi.org/10.1103/PhysRevA.53.2046
19 Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A, 2001, 64(1): 014301
https://doi.org/10.1103/PhysRevA.64.014301
20 Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics, Phys. Rev. A, 2008, 77(6): 062325
https://doi.org/10.1103/PhysRevA.77.062325
21 Z. L. Cao and M. Yang, Entanglement distillation for threeparticle W class states, J. Phys. B, 2003, 36(21): 4245
https://doi.org/10.1088/0953-4075/36/21/005
22 L. H. Zhang, M. Yang, and Z. L. Cao, Entanglement concentration for unknown Wclass states, Physica A, 2007, 374(2): 611
https://doi.org/10.1016/j.physa.2006.08.018
23 H. F. Wang, S. Zhang, and K. H. Yeon, Linear optical scheme for entanglement concentration of two partially entangled three-photon W states, Eur. Phys. J. D, 2010, 56(2): 271
https://doi.org/10.1140/epjd/e2009-00277-3
24 Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A, 2012, 85(4): 042302
https://doi.org/10.1103/PhysRevA.85.042302
25 W. Dür and H. J. Briegel, Stability of macroscopic entanglement under decoherence, Phys. Rev. Lett., 2004, 92(18): 180403
https://doi.org/10.1103/PhysRevLett.92.180403
26 B. Si, S. L. Su, L. L. Sun, L. Y. Cheng, H. F. Wang, and S. Zhang, Efficient three-step entanglement concentration for an arbitrary four-photon cluster state, Chin. Phys. B, 2013, 22(3): 030305
https://doi.org/10.1088/1674-1056/22/3/030305
27 S. Y. Zhao, J. Liu, L. Zhou, and Y. B. Sheng, Two-step entanglement concentration for arbitrary electronic cluster state, Quantum Inf. Process., 2013, 12(12): 3633
https://doi.org/10.1007/s11128-013-0623-8
28 B. S. Choudhury and A. Dhara, An entanglement concentration protocol for cluster states, Quantum Inf. Process., 2013, 12(7): 2577
https://doi.org/10.1007/s11128-013-0549-1
29 Q. Lin and J. Li, Quantum control gates with weak cross-Kerr nonlinearity, Phys. Rev. A, 2009, 79(2): 022301
https://doi.org/10.1103/PhysRevA.79.022301
30 K. Nemoto and W. J. Munro, Nearly deterministic linear optical controlled-NOT<?Pub Caret?> gate, Phys. Rev. Lett., 2004, 93(25): 250502
https://doi.org/10.1103/PhysRevLett.93.250502
31 P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys., 2007, 79(1): 135
https://doi.org/10.1103/RevModPhys.79.135
32 B. Yurke, Wideband photon counting and homodyne detection, Phys. Rev. A, 1985, 32(1): 311
https://doi.org/10.1103/PhysRevA.32.311
33 J. H. Shapiro, Single-photon Kerr nonlinearities do not help quantum computation, Phys. Rev. A, 2006, 73: 062305
https://doi.org/10.1103/PhysRevA.73.062305
34 J. H. Shapiro and M. Razavi, Continuous-time cross-phase modulation and quantum computation, New. J. Phys., 2007, 9: 16
https://doi.org/10.1088/1367-2630/9/1/016
35 W. J. Munro, Kae Nemoto, T. P. Spiller, S. D. Barrett, Pieter Kok, and R. G. Beausoleil, Efficient optical quantum information processing, J. Opt. B, 2005, 7(7): S135
https://doi.org/10.1088/1464-4266/7/7/002
[1] Lei-Xia Liang, Yan-Yan Zheng, Yuan-Xia Zhang, Mei Zhang. Error-detected N-photon cluster state generation based on the controlledphase gate using a quantum dot in an optical microcavity[J]. Front. Phys. , 2020, 15(2): 21601-.
[2] Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics[J]. Front. Phys. , 2018, 13(5): 130315-.
[3] Xiao-Long Su, Shu-Hong Hao, Ya-Ping Zhao, Xiao-Wei Deng, Xiao-Jun Jia, Chang-De Xie, Kun-Chi Peng. Demonstration of eight-partite two-diamond shape cluster state for continuous variables[J]. Front. Phys. , 2013, 8(1): 20-26.
[4] Zbigniew FICEK, . Quantum entanglement and disentanglement of multi-atom systems[J]. Front. Phys. , 2010, 5(1): 26-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed