|
|
General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics |
Hong Wang2,1, Bao-Cang Ren1( ), Ai Hua Wang1, Ahmed Alsaedi3, Tasawar Hayat3,4, Fu-Guo Deng2,3 |
1. Department of Physics, Capital Normal University, Beijing 100048, China 2. Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China 3. NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 4. Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan |
|
|
Abstract Hyperentanglement has attracted considerable attention recently because of its high-capacity for longdistance quantum communication. In this study, we present a hyperentanglement concentration protocol (hyper-ECP) for nonlocal three-photon systems in the polarization, spatial-mode, and timebin partially hyperentangled Greenberger–Horne–Zeilinger (GHZ) states using the Schmidt projection method. In our hyper-ECP, the three distant parties must perform the parity-check measurements on the polarization, spatial-mode, and time-bin degrees of freedom, respectively, using linear optical elements and Pockels cells, and only two identical nonlocal photon systems are required. This hyper-ECP can be directly extended to the N-photon hyperentangled GHZ states, and the success probability of this general hyper-ECP for a nonlocal N-photon system is the optimal one, regardless of the photon number N.
|
Keywords
hyperentanglement concentration
linear optics
long-distance quantum communication
high-capacity
polarization-spatial-time-bin hyperentanglement
|
Corresponding Author(s):
Bao-Cang Ren
|
Issue Date: 13 June 2018
|
|
1 |
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
|
2 |
X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)
https://doi.org/10.1007/s11467-014-0432-2
|
3 |
P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
https://doi.org/10.1007/s11467-016-0553-x
|
4 |
C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on Einstein–Podolsky– Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)
https://doi.org/10.1103/PhysRevLett.69.2881
|
5 |
X. S. Liu, G. L. Long, D. M. Tong, and F. Li, General scheme for superdense coding between multiparties, Phys. Rev. A 65(2), 022304 (2002)
https://doi.org/10.1103/PhysRevA.65.022304
|
6 |
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
|
7 |
C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett. 68(5), 557 (1992)
https://doi.org/10.1103/PhysRevLett.68.557
|
8 |
X. H. Li, F. G. Deng, and H. Y. Zhou, Efficient quantum key distribution over a collective noise channel, Phys. Rev. A 78(2), 022321 (2008)
https://doi.org/10.1103/PhysRevA.78.022321
|
9 |
F. Steinlechner, S. Ecker, M. Fink, B. Liu, J. Bavaresco, M. Huber, T. Scheidl, and R. Ursin, Distribution of high-dimensional entanglement via an intra-city freespace link, Nat. Commun. 8, 15971 (2017)
https://doi.org/10.1038/ncomms15971
|
10 |
M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
|
11 |
G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
|
12 |
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
|
13 |
F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A 69(5), 052319 (2004)
https://doi.org/10.1103/PhysRevA.69.052319
|
14 |
J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144 (2016)
https://doi.org/10.1038/lsa.2016.144
|
15 |
W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)
https://doi.org/10.1103/PhysRevLett.118.220501
|
16 |
X. H. Li, Quantum secure direct communication, Acta Physica Sinica 64, 160307 (2015)
|
17 |
F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, Experimental long-distance quantum secure direct communication, Sci. Bull. 62(22), 1519 (2017)
https://doi.org/10.1016/j.scib.2017.10.023
|
18 |
L. Zhou and Y. B. Sheng, Recyclable amplification protocol for the single-photon entangled state, Laser Phys. Lett. 12(4), 045203 (2015)
https://doi.org/10.1088/1612-2011/12/4/045203
|
19 |
L. Zhou and Y. B. Sheng, Complete logic Bell-state analysis assisted with photonic Faraday rotation, Phys. Rev. A 92(4), 042314 (2015)
https://doi.org/10.1103/PhysRevA.92.042314
|
20 |
Y. B. Sheng and L. Zhou, Two-step complete polarization logic Bell-state analysis, Sci. Rep. 5(1), 13453 (2015)
https://doi.org/10.1038/srep13453
|
21 |
P. G. Kwiat, Hyper-entangled states, J. Mod. Opt. 44(11–12), 2173 (1997)
https://doi.org/10.1080/09500349708231877
|
22 |
T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, M. Żukowski, Z. B. Chen, and J. W. Pan, All-versusnothing violation of local realism by two-photon, fourdimensional entanglement, Phys. Rev. Lett. 95(24), 240406 (2005)
https://doi.org/10.1103/PhysRevLett.95.240406
|
23 |
J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
https://doi.org/10.1103/PhysRevLett.95.260501
|
24 |
M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, Polarization-momentum hyperentangled states: realization and characterization, Phys. Rev. A 72(5), 052110 (2005)
https://doi.org/10.1103/PhysRevA.72.052110
|
25 |
R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, Experimental entanglement and nonlocality of a two-photon six-qubit cluster state, Phys. Rev. Lett. 103(16), 160401 (2009)
https://doi.org/10.1103/PhysRevLett.103.160401
|
26 |
G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79(3), 030301 (2009)
https://doi.org/10.1103/PhysRevA.79.030301
|
27 |
D. Bhatti, J. von Zanthier, and G. S. Agarwal, Entanglement of polarization and orbital angular momentum, Phys. Rev. A 91(6), 062303 (2015)
https://doi.org/10.1103/PhysRevA.91.062303
|
28 |
F. G. Deng, B. C. Ren, and X. H. Li, Quantum hyperentanglement and its applications in quantum information processing, Sci. Bull. 62(1), 46 (2017)
https://doi.org/10.1016/j.scib.2016.11.007
|
29 |
B. C. Ren and F. G. Deng, Hyper-parallel photonic quantum computation with coupled quantum dots, Sci. Rep. 4(1), 4623 (2015)
https://doi.org/10.1038/srep04623
|
30 |
B. C. Ren, G. Y. Wang, and F. G. Deng, Universal hyperparallel hybrid photonic quantum gates with dipoleinduced transparency in the weak-coupling regime, 91(3), 032328 (2015)
https://doi.org/10.1103/PhysRevA.91.032328
|
31 |
T. Li and G. L. Long, Hyperparallel optical Phys. Rev. Aquantum computation assisted by atomic ensembles embedded in double-sided optical cavities, Phys. Rev. A 94(2), 022343 (2016)
https://doi.org/10.1103/PhysRevA.94.022343
|
32 |
H. R. Wei, F. G. Deng, and G. L. Long, Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities, Opt. Express 24(16), 18619 (2016)
https://doi.org/10.1364/OE.24.018619
|
33 |
B. C. Ren and F. G. Deng, Robust hyperparallel photonic quantum entangling gate with cavity QED, Opt. Express 25(10), 10863 (2017)
https://doi.org/10.1364/OE.25.010863
|
34 |
Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)
https://doi.org/10.1103/PhysRevA.82.032318
|
35 |
B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)
https://doi.org/10.1364/OE.20.024664
|
36 |
T. C. Wei, J. T. Barreiro, and P. G. Kwiat, Hyperentangled Bell-state analysis, Phys. Rev. A 75(6), 060305 (2007)
https://doi.org/10.1103/PhysRevA.75.060305
|
37 |
T. J. Wang, Y. Lu, and G. L. Long, Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities, Phys. Rev. A 86(4), 042337 (2012)
https://doi.org/10.1103/PhysRevA.86.042337
|
38 |
Q. Liu and M. Zhang, Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators, Phys. Rev. A 91(6), 062321 (2015)
https://doi.org/10.1103/PhysRevA.91.062321
|
39 |
G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities, Opt. Express 24(25), 28444 (2016)
https://doi.org/10.1364/OE.24.028444
|
40 |
T. J. Wang, S. Y. Song, and G. L. Long, Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities, Phys. Rev. A 85(6), 062311 (2012)
https://doi.org/10.1103/PhysRevA.85.062311
|
41 |
P. G. Kwiat and H. Weinfurter, Embedded Bell-state analysis, Phys. Rev. A 58(4), R2623 (1998)
https://doi.org/10.1103/PhysRevA.58.R2623
|
42 |
S. P. Walborn, S. P’adua, and C. H. Monken, Hyperentanglement-assisted Bell-state analysis, Phys. Rev. A 68(4), 042313 (2003)
https://doi.org/10.1103/PhysRevA.68.042313
|
43 |
C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Complete deterministic linear optics Bell state analysis, Phys. Rev. Lett. 96(19), 190501 (2006)
https://doi.org/10.1103/PhysRevLett.96.190501
|
44 |
M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, Complete and detrministic deicrimination of polarization Bell states assisted by momentum entanglement, Phys. Rev. A 75(4), 042317 (2007)
https://doi.org/10.1103/PhysRevA.75.042317
|
45 |
Y. B. Sheng and F. G. Deng, Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentangledment, Phys. Rev. A 81(3), 032307 (2010)
https://doi.org/10.1103/PhysRevA.81.032307
|
46 |
Y. B. Sheng and F. G. Deng, One-step deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82(4), 044305 (2010)
https://doi.org/10.1103/PhysRevA.82.044305
|
47 |
X. H. Li, Deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82(4), 044304 (2010)
https://doi.org/10.1103/PhysRevA.82.044304
|
48 |
F. G. Deng, One-step error correction for multipartite polarization entanglement, Phys. Rev. A 83(6), 062316 (2011)
https://doi.org/10.1103/PhysRevA.83.062316
|
49 |
Y. B. Sheng and L. Zhou, Deterministic polarization entanglement purification using time-bin entanglement, Laser Phys. Lett. 11(8), 085203 (2014)
https://doi.org/10.1088/1612-2011/11/8/085203
|
50 |
B. C. Ren, F. F. Du, and F. G. Deng, Twostep hyperentanglement purification with the quantumstatejoining method, Phys. Rev. A 90(5), 052309 (2014)
https://doi.org/10.1103/PhysRevA.90.052309
|
51 |
G. Y. Wang, Q. Liu, and F. G. Deng, Hyperentanglement purification for two-photon six-qubit quantum systems, Phys. Rev. A 94(3), 032319 (2016)
https://doi.org/10.1103/PhysRevA.94.032319
|
52 |
C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53(4), 2046 (1996)
https://doi.org/10.1103/PhysRevA.53.2046
|
53 |
Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A 64(1), 014301 (2001)
https://doi.org/10.1103/PhysRevA.64.014301
|
54 |
T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)
https://doi.org/10.1103/PhysRevA.64.012304
|
55 |
Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics, Phys. Rev. A 77(6), 062325 (2008)
https://doi.org/10.1103/PhysRevA.77.062325
|
56 |
C. Wang, Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system, Phys. Rev. A 86(1), 012323 (2012)
https://doi.org/10.1103/PhysRevA.86.012323
|
57 |
S. Bose, V. Vedral, and P. L. Knight, Purification via entanglement swapping and conserved entanglement, Phys. Rev. A 60(1), 194 (1999)
https://doi.org/10.1103/PhysRevA.60.194
|
58 |
B. S. Shi, Y. K. Jiang, and G. C. Guo, Optimal entanglement purification via entanglement swapping, Phys. Rev. A 62(5), 054301 (2000)
https://doi.org/10.1103/PhysRevA.62.054301
|
59 |
Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)
https://doi.org/10.1103/PhysRevA.85.012307
|
60 |
F. G. Deng, Optimal nonlocal multipartite entanglement concentration based on projection measurements,Phys. Rev. A 85(2), 022311 (2012)
https://doi.org/10.1103/PhysRevA.85.022311
|
61 |
Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient twostep entanglement concentration for arbitraryWstates, Phys. Rev. A 85(4), 042302 (2012)
https://doi.org/10.1103/PhysRevA.85.042302
|
62 |
C. Cao, C. Wang, L. Y. He, and R. Zhang, Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime, Opt. Express 21(4), 4093 (2013)
https://doi.org/10.1364/OE.21.004093
|
63 |
X. Yan, Y. F. Yu, and Z. M. Zhang, Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9(5), 640 (2014)
https://doi.org/10.1007/s11467-014-0435-z
|
64 |
C. Cao, H. Ding, Y. Li, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems, Quantum Inform. Process. 14(4), 1265 (2015)
https://doi.org/10.1007/s11128-015-0924-1
|
65 |
C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, Concentration and distribution of entanglement based on valley qubits system in graphene, Sci. Bull. 60(23), 2016 (2015)
https://doi.org/10.1007/s11434-015-0941-6
|
66 |
C. Cao, T. J. Wang, R. Zhang, and C. Wang, Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace, Laser Phys. Lett. 12(3), 036001 (2015)
https://doi.org/10.1088/1612-2011/12/3/036001
|
67 |
Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, Efficient N-particle W state concentration with different parity check gates, Sci. China Phys. Mech. Astron. 58(6), 060301 (2015)
https://doi.org/10.1007/s11433-015-5672-9
|
68 |
C. Shukla, A. Banerjee, and A. Pathak, Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states, Quantum Inform. Process. 14(6), 2077 (2015)
https://doi.org/10.1007/s11128-015-0948-6
|
69 |
J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang, Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity, Quantum Inform. Process. 15(4), 1669 (2016)
https://doi.org/10.1007/s11128-016-1246-7
|
70 |
C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements, Sci. China Phys. Mech. Astron. 59(10), 100315 (2016)
https://doi.org/10.1007/s11433-016-0253-x
|
71 |
B. C. Ren, F. F. Du, and F. G. Deng, Hyperentanglement concentration for two-photon four-qubit systems with linear optics, Phys. Rev. A 88(1), 012302 (2013)
https://doi.org/10.1103/PhysRevA.88.012302
|
72 |
B. C. Ren and F. G. Deng, Hyperentanglement purication and concentration assisted by diamond NV centers inside photonic crystal cavities, Laser Phys. Lett. 10(11), 115201 (2013)
https://doi.org/10.1088/1612-2011/10/11/115201
|
73 |
B. C. Ren and G. L. Long, General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities, Opt. Express 22(6), 6547 (2014)
https://doi.org/10.1364/OE.22.006547
|
74 |
X. H. Li and S. Ghose, Hyperconcentration for multipartite entanglement via linear optics, Laser Phys. Lett. 11(12), 125201 (2014)
https://doi.org/10.1088/1612-2011/11/12/125201
|
75 |
X. H. Li and S. Ghose, Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity, Opt. Express 23(3), 3550 (2015)
https://doi.org/10.1364/OE.23.003550
|
76 |
B. C. Ren and G. L. Long, Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates, Sci. Rep. 5(1), 16444 (2015)
https://doi.org/10.1038/srep16444
|
77 |
X. H. Li and S. Ghose, Hyperentanglement concentration for time-bin and polarization hyperentangled photons, Phys. Rev. A 91(6), 062302 (2015)
https://doi.org/10.1103/PhysRevA.91.062302
|
78 |
C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, Nonlocal hyperconcentration on entangled photons using photonic module system, Ann. Phys. 369, 128 (2016)
https://doi.org/10.1016/j.aop.2016.03.003
|
79 |
L. L. Fan, Y. Xia, and J. Song, Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics, Quantum Inform. Process. 13(9), 1967 (2014)
https://doi.org/10.1007/s11128-014-0789-8
|
80 |
H. J. Liu, Y. Xia, and J. Song, Efficient hyperentanglement concentration for N-particle Greenberger–Horne– Zeilinger state assisted by weak cross-Kerr nonlinearity, Quantum Inform. Process. 15(5), 2033 (2016)
https://doi.org/10.1007/s11128-016-1258-3
|
81 |
F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states, Sci. China Phys. Mech. Astron. 60(12), 120313 (2017)
https://doi.org/10.1007/s11433-017-9100-9
|
82 |
Y. Soudagar, F. Bussières, G. Berlín, S. Lacroix, J. M. Fernandez, and N. Godbout, Cluster-state quantum computing in optical fibers, J. Opt. Soc. Am. B 24(2), 226 (2007)
https://doi.org/10.1364/JOSAB.24.000226
|
83 |
D. Kalamidas, Single-photon quantum error rejection and correction with linear optics, Phys. Lett. A 343(5), 331 (2005)
https://doi.org/10.1016/j.physleta.2005.06.034
|
84 |
B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Hyperentanglement concentration of nonlocal two photon six-qubit systems with linear optics, Ann. Phys. 385, 86 (2017)
https://doi.org/10.1016/j.aop.2017.07.013
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|