Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (3) : 33301    https://doi.org/10.1007/s11467-019-0937-9
REVIEW ARTICLE
Physical properties and device applications of graphene oxide
Xiao-Ming Huang1, Li-Zhao Liu2,3(), Si Zhou3(), Ji-Jun Zhao3
1. School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
2. School of Mathematical and Physical Sciences, Dalian University of Technology, Panjin 124221, China
3. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
 Download: PDF(18924 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Graphene oxide (GO), the functionalized graphene with oxygenated groups (mainly epoxy and hydroxyl), has attracted resurgent interests in the past decade owing to its large surface area, superior physical and chemical properties, and easy composition with other materials via surface functional groups. Usually, GO is used as an important raw material for mass production of graphene via reduction. However, under different conditions, the coverage, types, and arrangements of oxygen-containing groups in GO can be varied, which give rise to excellent and controllable physical properties, such as tunable electronic and mechanical properties depending closely on oxidation degree, suppressed thermal conductivity, optical transparency and fluorescence, and nonlinear optical properties. Based on these outstanding properties, many electronic, optical, optoelectronic, and thermoelectric devices with high performance can be achieved on the basis of GO. Here we present a comprehensive review on recent progress of GO, focusing on the atomic structures, fundamental physical properties, and related device applications, including transparent and flexible conductors, field-effect transistors, electrical and optical sensors, fluorescence quenchers, optical limiters and absorbers, surface enhanced Raman scattering detectors, solar cells, light-emitting diodes, and thermal rectifiers.

Keywords graphene oxide      mechanics      electronics      thermal properties      nonlinear optics     
Corresponding Author(s): Li-Zhao Liu,Si Zhou   
Issue Date: 08 January 2020
 Cite this article:   
Xiao-Ming Huang,Li-Zhao Liu,Si Zhou, et al. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0937-9
https://academic.hep.com.cn/fop/EN/Y2020/V15/I3/33301
1 J. Zhao, L. Liu, and F. Li, Graphene Oxide: Physics and Applications, Springer, 2015
https://doi.org/10.1007/978-3-662-44829-8
2 S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 4(4), 217 (2009)
https://doi.org/10.1038/nnano.2009.58
3 C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: A synthetic chemistry viewpoint, Chem. Soc. Rev. 43(1), 291 (2014)
https://doi.org/10.1039/C3CS60303B
4 L. Dong, J. Yang, M. Chhowalla, and K. P. Loh, Synthesis and reduction of large sized graphene oxide sheets, Chem. Soc. Rev. 46(23), 7306 (2017)
https://doi.org/10.1039/C7CS00485K
5 B. C. Brodie, On the atomic weight of graphite, Philos. Trans. R. Soc. Lond. B Biol. Sci. 149, 249 (1859)
https://doi.org/10.1098/rstl.1859.0013
6 D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1), 228 (2010)
https://doi.org/10.1039/B917103G
7 C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater. 19(16), 2577 (2009)
https://doi.org/10.1002/adfm.200900166
8 G. Eda and M. Chhowalla, Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics, Adv. Mater. 22(22), 2392 (2010)
https://doi.org/10.1002/adma.200903689
9 D. Chen, H. Feng, and J. Li, Graphene oxide: Preparation, functionalization, and electrochemical applications, Chem. Rev. 112(11), 6027 (2012)
https://doi.org/10.1021/cr300115g
10 S. Sajjad, S. A. Khan Leghari, and A. Iqbal, Study of graphene oxide structural features for catalytic, antibacterial, gas sensing, and metals decontamination environmental applications, ACS Appl. Mater. Interfaces 9(50), 43393 (2017)
https://doi.org/10.1021/acsami.7b08232
11 L. Liu, J. Zhang, J. Zhao, and F. Liu, Mechanical properties of graphene oxides, Nanoscale 4(19), 5910 (2012)
https://doi.org/10.1039/c2nr31164j
12 C. Wang, Q. Peng, J. Wu, X. He, L. Tong, Q. Luo, J. Li, S. Moody, H. Liu, R. Wang, S. Du, and Y. Li, Mechanical characteristics of individual multi-layer graphene-oxide sheets under direct tensile loading, Carbon 80, 279 (2014)
https://doi.org/10.1016/j.carbon.2014.08.066
13 Y. Gao, L. Q. Liu, S. Z. Zu, K. Peng, D. Zhou, B. H. Han, and Z. Zhang, The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers, ACS Nano 5(3), 2134 (2011)
https://doi.org/10.1021/nn103331x
14 P. Poulin, R. Jalili, W. Neri, F. Nallet, T. Divoux, A. Colin, S. H. Aboutalebi, G. Wallace, and C. Zakri, Superflexibility of graphene oxide, Proc. Natl. Acad. Sci. USA 113(40), 11088 (2016)
https://doi.org/10.1073/pnas.1605121113
15 G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3(5), 270 (2008)
https://doi.org/10.1038/nnano.2008.83
16 J. A. Yan, L. Xian, and M. Y. Chou, Structural and electronic properties of oxidized graphene, Phys. Rev. Lett. 103(8), 086802 (2009)
https://doi.org/10.1103/PhysRevLett.103.086802
17 L. Liu, L. Wang, J. Gao, J. Zhao, X. Gao, and Z. Chen, Amorphous structural models for graphene oxides, Carbon 50(4), 1690 (2012)
https://doi.org/10.1016/j.carbon.2011.12.014
18 K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nat. Chem. 2(12), 1015 (2010)
https://doi.org/10.1038/nchem.907
19 H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2(3), 463 (2008)
https://doi.org/10.1021/nn700375n
20 L. Cao, M. J. Meziani, S. Sahu, and Y. P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials, Acc. Chem. Res. 46(1), 171 (2013)
https://doi.org/10.1021/ar300128j
21 H. Tian, D. Xie, Y. Yang, T. L. Ren, G. Zhang, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, A novel solid-state thermal rectifier based on reduced graphene oxide, Sci. Rep. 2(1), 523 (2012)
https://doi.org/10.1038/srep00523
22 D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009)
https://doi.org/10.1103/PhysRevB.79.155413
23 D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite, Appl. Phys. Lett. 94(20), 203103 (2009)
https://doi.org/10.1063/1.3136860
24 H. Zhang, A. F. Fonseca, and K. Cho, Tailoring thermal transport property of graphene through oxygen functionalization, J. Phys. Chem. C 118(3), 1436 (2014)
https://doi.org/10.1021/jp4096369
25 X. Huang, X. Qi, F. Boey, and H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41(2), 666 (2012)
https://doi.org/10.1039/C1CS15078B
26 D. R. Dreyer, A. D. Todd, and C. W. Bielawski, Harnessing the chemistry of graphene oxide, Chem. Soc. Rev. 43(15), 5288 (2014)
https://doi.org/10.1039/C4CS00060A
27 W. S. Hung, Y. H. Chiao, A. Sengupta, Y. W. Lin, S. R. Wickramasinghe, C. C. Hu, H. A. Tsai, K. R. Lee, and J. Y. Lai, Tuning the interlayer spacing of forward osmosis membranes based on ultrathin graphene oxide to achieve desired performance, Carbon 142, 337 (2019)
https://doi.org/10.1016/j.carbon.2018.10.058
28 M. Muschi and C. Serre, Progress and challenges of graphene oxide/metal-organic composites, Coord. Chem. Rev. 387, 262 (2019)
https://doi.org/10.1016/j.ccr.2019.02.017
29 J. Du, S. Pei, L. Ma, and H. M. Cheng, 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices, Adv. Mater. 26(13), 1958 (2014)
https://doi.org/10.1002/adma.201304135
30 Q. Zheng, Z. Li, J. Yang, and J. K. Kim, Graphene oxidebased transparent conductive films, Prog. Mater. Sci. 64, 200 (2014)
https://doi.org/10.1016/j.pmatsci.2014.03.004
31 Q. He, S. Wu, Z. Yin, and H. Zhang, Graphene-based electronic sensors, Chem. Sci. 3(6), 1764 (2012)
https://doi.org/10.1039/c2sc20205k
32 T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, Recent advances in graphene-based biosensors, Biosens. Bioelectron. 26(12), 4637 (2011)
https://doi.org/10.1016/j.bios.2011.05.039
33 K. Toda, R. Furue, and S. Hayami, Recent progress in applications of graphene oxide for gas sensing: A review, Anal. Chim. Acta 878, 43 (2015)
https://doi.org/10.1016/j.aca.2015.02.002
34 S. J. Rowley-Neale, E. P. Randviir, A. S. Abo Dena, and C. E. Banks, An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms, Appl. Mater. Today 10, 218 (2018)
https://doi.org/10.1016/j.apmt.2017.11.010
35 P. Zheng and N. Wu, Fluorescence and sensing applications of graphene oxide and graphene quantum dots: A review, Chem. Asian J. 12(18), 2343 (2017)
https://doi.org/10.1002/asia.201700814
36 E. Morales-Narvaez and A. Merkoci, Graphene oxide as an optical biosensing platform: A progress report, Adv. Mater. 31(6), e1805043 (2019)
https://doi.org/10.1002/adma.201805043
37 Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, Graphene and graphene oxide: Biofunctionalization and applications in biotechnology, Trends Biotechnol. 29(5), 205 (2011)
https://doi.org/10.1016/j.tibtech.2011.01.008
38 S. S. Nanda, G. C. Papaefthymiou, and D. K. Yi, Functionalization of Graphene Oxide and its Biomedical Applications, Crit. Rev. Solid State Mater. Sci. 40(5), 291 (2015)
https://doi.org/10.1080/10408436.2014.1002604
39 H. Zhang, A. Aldalbahi, X. Zuo, C. Fan, and X. Mi, Fluorescent biosensors enabled by graphene and graphene oxide, Biosens. Bioelectron. 89, 96 (2017)
https://doi.org/10.1016/j.bios.2016.07.030
40 D. P. Singh, C. E. Herrera, B. Singh, S. Singh, R. K. Singh, and R. Kumar, Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications, Mater. Sci. Eng. C 86, 173 (2018)
https://doi.org/10.1016/j.msec.2018.01.004
41 X. Wan, Y. Huang, and Y. Chen, Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale, Acc. Chem. Res. 45(4), 598 (2012)
https://doi.org/10.1021/ar200229q
42 E. Kymakis, C. Petridis, T. D. Anthopoulos, and E. Stratakis, Laser-assisted reduction of graphene oxide for flexible, large-area optoelectronics, IEEE J. Sel. Top. Quantum Electron. 20(1), 106 (2014)
https://doi.org/10.1109/JSTQE.2013.2273414
43 A. T. Dideikin and A. Y. Vul, Graphene oxide and derivatives: The place in graphene family, Front. Phys. 6, 149 (2019)
https://doi.org/10.3389/fphy.2018.00149
44 S. Pei and H. M. Cheng, The reduction of graphene oxide, Carbon 50(9), 3210 (2012)
https://doi.org/10.1016/j.carbon.2011.11.010
45 S. Mao, H. Pu, and J. Chen, Graphene oxide and its reduction: Modeling and experimental progress, RSC Adv. 2(7), 2643 (2012)
https://doi.org/10.1039/c2ra00663d
46 T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials, Nanoscale 5(1), 52 (2013)
https://doi.org/10.1039/C2NR32703A
47 S. Thakur and N. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: A review, Carbon 94, 224 (2015)
https://doi.org/10.1016/j.carbon.2015.06.030
48 L. P. Chen, R. Yang, Y. L. Yan, C. J. Fan, M. M. Shi, and Y. H. Xu, The control of reduction degree of graphene oxide, Prog. Chem. 30(12), 1930 (2018)
49 X. Gao, D. E. Jiang, Y. Zhao, S. Nagase, S. Zhang, and Z. Chen, Theoretical insights into the structures of graphene oxide and its chemical conversions between graphene, J. Comput. Theor. Nanosci. 8(12), 2406 (2011)
https://doi.org/10.1166/jctn.2011.1972
50 S. Eigler and A. Hirsch, Chemistry with graphene and graphene oxide-challenges for synthetic chemists, Angew. Chem. Int. Ed. 53(30), 7720 (2014)
https://doi.org/10.1002/anie.201402780
51 S. Zhou and A. Bongiorno, Density functional theory modeling of multilayer “epitaxial” graphene oxide, Acc. Chem. Res. 47(11), 3331 (2014)
https://doi.org/10.1021/ar400288h
52 C. Galande, W. Gao, A. Mathkar, A. M. Dattelbaum, T. N. Narayanan, A. D. Mohite, and P. M. Ajayan, Science and engineering of graphene oxide, Part. Part. Syst. Charact. 31(6), 619 (2014)
https://doi.org/10.1002/ppsc.201300232
53 F. Perrozzi, S. Prezioso, and L. Ottaviano, Graphene oxide: From fundamentals to applications, J. Phys.: Condens. Matter 27(1), 013002 (2015)
https://doi.org/10.1088/0953-8984/27/1/013002
54 W. H. Zhang, D. Yin, N. Lu, Z. Y. Li, and J. L. Yang, Computational spectroscopy for structure characterization of nanomaterials a case study of graphene oxide, Chem. J. Chin. Univ. 36(11), 2081 (2015)
55 R. Trusovas, G. Račiukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite, Recent advances in laser utilization in the chemical modification of graphene oxide and its applications, Adv. Opt. Mater. 4(1), 37 (2016)
https://doi.org/10.1002/adom.201500469
56 J. Kim, L. J. Cote, and J. Huang, Two dimensional soft material: New faces of graphene oxide, Acc. Chem. Res. 45(8), 1356 (2012)
https://doi.org/10.1021/ar300047s
57 Q. Xiang, J. Yu, and M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev. 41(2), 782 (2012)
https://doi.org/10.1039/C1CS15172J
58 C. Su and K. P. Loh, Carbocatalysts: Graphene oxide and its derivatives, Acc. Chem. Res. 46(10), 2275 (2013)
https://doi.org/10.1021/ar300118v
59 D. Haag and H. H. Kung, Metal free graphene based catalysts: A review, Top. Catal. 57(6–9), 762 (2014)
https://doi.org/10.1007/s11244-013-0233-9
60 A. Tayel, A. Ramadan, and O. El Seoud, Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: Synthesis, characterization and photocatalytic applications for water decontamination, Catalysts 8(11), 491 (2018)
https://doi.org/10.3390/catal8110491
61 R. K. Upadhyay, N. Soin, and S. S. Roy, Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review, RSC Adv. 4(8), 3823 (2014)
https://doi.org/10.1039/C3RA45013A
62 A. Kausar, I. Rafique, Z. Anwar, and B. Muhammad, Perspectives of epoxy/graphene oxide composite: significant features and technical applications, Polym. Plast. Technol. Eng. 55(7), 704 (2016)
https://doi.org/10.1080/03602559.2015.1098700
63 V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, and R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications, Chem. Rev. 116(9), 5464 (2016)
https://doi.org/10.1021/acs.chemrev.5b00620
64 H. Ahmad, M. Fan, and D. Hui, Graphene oxide incorporated functional materials: A review, Compos. Part B Eng. 145, 270 (2018)
https://doi.org/10.1016/j.compositesb.2018.02.006
65 M. Pumera, Graphene-based nanomaterials for energy storage, Energy Environ. Sci. 4(3), 668 (2011)
https://doi.org/10.1039/C0EE00295J
66 G. Kucinskis, G. Bajars, and J. Kleperis, Graphene in lithium ion battery cathode materials: A review, J. Power Sources 240, 66 (2013)
https://doi.org/10.1016/j.jpowsour.2013.03.160
67 J. Liu, M. Durstock, and L. Dai, Graphene oxide derivatives as hole- and electron-extraction layers for highperformance polymer solar cells, Energy Environ. Sci. 7(4), 1297 (2014)
https://doi.org/10.1039/C3EE42963F
68 F. Li, X. Jiang, J. Zhao, and S. Zhang, Graphene oxide: A promising nanomaterial for energy and environmental applications, Nano Energy 16, 488 (2015)
https://doi.org/10.1016/j.nanoen.2015.07.014
69 A. Eftekhari, Y. M. Shulga, S. A. Baskakov, and G. L. Gutsev, Graphene oxide membranes for electrochemical energy storage and conversion, Int. J. Hydrogen Energy 43(4), 2307 (2018)
https://doi.org/10.1016/j.ijhydene.2017.12.012
70 W. H. Antink, Y. Choi, K. Seong, J. M. Kim, and Y. Piao, Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices, Adv. Mater. Interfaces 5(5), 1701212 (2018)
https://doi.org/10.1002/admi.201701212
71 K. R. Ratinac, W. Yang, S. P. Ringer, and F. Braet, Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene, Environ. Sci. Technol. 44(4), 1167 (2010)
https://doi.org/10.1021/es902659d
72 X. Wang, Q. Fan, Z. Chen, Q. Wang, J. Li, A. Hobiny, A. Alsaedi, and X. Wang, Surface modification of graphene oxides by plasma techniques and their application for environmental pollution cleanup, Chem. Rec. 16(1), 295 (2016)
https://doi.org/10.1002/tcr.201500223
73 M. Sun and J. Li, Graphene oxide membranes: Functional structures, preparation and environmental applications, Nano Today 20, 121 (2018)
https://doi.org/10.1016/j.nantod.2018.04.007
74 Y. Wang, C. Pan, W. Chu, K. A. Vipin, and L. Sun, Environmental remediation applications of carbon nanotubes and graphene oxide: Adsorption and catalysis, Nanomaterials (Basel) 9(3), 439 (2019)
https://doi.org/10.3390/nano9030439
75 Q. Xu, H. Xu, J. Chen, Y. Lv, C. Dong, and T. S. Sreeprasad, Graphene and graphene oxide: Advanced membranes for gas separation and water purification, Inorg. Chem. Front. 2(5), 417 (2015)
https://doi.org/10.1039/C4QI00230J
76 Y. Wei, Y. Zhang, X. Gao, Z. Ma, X. Wang, and C. Gao, Multilayered graphene oxide membranes for water treatment: A review, Carbon 139, 964 (2018)
https://doi.org/10.1016/j.carbon.2018.07.040
77 B. C. Thompson, E. Murray, and G. G. Wallace, Graphite oxide to graphene. Biomaterials to bionics, Adv. Mater. 27(46), 7563 (2015)
https://doi.org/10.1002/adma.201500411
78 A. B. Seabra, A. J. Paula, R. de Lima, O. L. Alves, and N. Durán, Nanotoxicity of graphene and graphene oxide, Chem. Res. Toxicol. 27(2), 159 (2014)
https://doi.org/10.1021/tx400385x
79 S. Y. Wu, S. S. A. An, and J. Hulme, Current applications of graphene oxide in nanomedicine, Int. J. Nanomedicine 10, 9 (2015)
https://doi.org/10.2147/IJN.S88285
80 X. P. He and H. Tian, Photoluminescence architectures for disease diagnosis: From graphene to thin-layer transition metal dichalcogenides and oxides, Small 12(2), 144 (2016)
https://doi.org/10.1002/smll.201502516
81 H. Zheng, R. Ma, M. Gao, X. Tian, Y. Q. Li, L. Zeng, and R. Li, Antibacterial applications of graphene oxides: Structure-activity relationships, molecular initiating events and biosafety, Sci. Bull. 63(2), 133 (2018)
https://doi.org/10.1016/j.scib.2017.12.012
82 Y. Zhou, X. Jing, and Y. Chen, Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine, J. Mater. Chem. B 5(32), 6451 (2017)
https://doi.org/10.1039/C7TB00680B
83 K. Muazim and Z. Hussain, Graphene oxide — A platform towards theranostics, Mater. Sci. Eng. C 76, 1274 (2017)
https://doi.org/10.1016/j.msec.2017.02.121
84 S. Taniselass, M. K. Md Arshad, and S. C. B. Gopinath, Current state of green reduction strategies: Solutionprocessed reduced graphene oxide for healthcare biodetection, Mater. Sci. Eng. C 96, 904 (2019)
https://doi.org/10.1016/j.msec.2018.11.062
85 V. Palmieri, G. Perini, M. De Spirito, and M. Papi, Graphene oxide touches blood: in vivointeractions of bio-coronated 2D materials, Nanoscale Horiz. 4(2), 273 (2019)
https://doi.org/10.1039/C8NH00318A
86 D. Krishnan, F. Kim, J. Luo, R. Cruz-Silva, L. J. Cote, H. D. Jang, and J. Huang, Energetic graphene oxide: Challenges and opportunities, Nano Today 7(2), 137 (2012)
https://doi.org/10.1016/j.nantod.2012.02.003
87 R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, The mechanics of graphene nanocomposites: A review, Compos. Sci. Technol. 72(12), 1459 (2012)
https://doi.org/10.1016/j.compscitech.2012.05.005
88 J. K. Wassei and R. B. Kaner, Graphene, a promising transparent conductor, Mater. Today 13(3), 52 (2010)
https://doi.org/10.1016/S1369-7021(10)70034-1
89 C. Tan, Z. Liu, W. Huang, and H. Zhang, Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials, Chem. Soc. Rev. 44(9), 2615 (2015)
https://doi.org/10.1039/C4CS00399C
90 L. Staudenmaier, Verfahren zur darstellung der graphitsäure, Ber. Dtsch. Chem. Ges. 31(2), 1481 (1898)
https://doi.org/10.1002/cber.18980310237
91 W. S. Jr Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(6), 1339 (1958)
https://doi.org/10.1021/ja01539a017
92 M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, and I. A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater. 19(18), 4396 (2007)
https://doi.org/10.1021/cm0630800
93 W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, J. An, D. Chen, and R. S. Ruoff, Synthesis and solid-state NMR structural characterization of 13Clabeled graphite oxide, Science 321(5897), 1815 (2008)
https://doi.org/10.1126/science.1162369
94 K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, Determination of the local chemical structure of graphene oxide and reduced graphene oxide, Adv. Mater. 22(40), 4467 (2010)
https://doi.org/10.1002/adma.201000732
95 D. W. Boukhvalov and M. I. Katsnelson, Modeling of graphite oxide, J. Am. Chem. Soc. 130(32), 10697 (2008)
https://doi.org/10.1021/ja8021686
96 R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee, Density functional theory study of graphite oxide for different oxidation levels, Phys. Rev. B 79(12), 125435 (2009)
https://doi.org/10.1103/PhysRevB.79.125435
97 S. Zhang, J. Zhou, Q. Wang, and P. Jena, Structure, stability, and property modulations of stoichiometric graphene oxide, J. Phys. Chem. C 117(2), 1064 (2013)
https://doi.org/10.1021/jp310895q
98 J. A. Yan and M. Y. Chou, Oxidation functional groups on graphene: Structural and electronic properties, Phys. Rev. B 82(12), 125403 (2010)
https://doi.org/10.1103/PhysRevB.82.125403
99 H. J. Xiang, S. H. Wei, and X. G. Gong, Structural motifs in oxidized graphene: A genetic algorithm study based on density functional theory, Phys. Rev. B 82(3), 035416 (2010)
https://doi.org/10.1103/PhysRevB.82.035416
100 L. Wang, Y. Y. Sun, K. Lee, D. West, Z. F. Chen, J. J. Zhao, and S. B. Zhang, Stability of graphene oxide phases from first-principles calculations, Phys. Rev. B 82(16), 161406 (2010)
https://doi.org/10.1103/PhysRevB.82.161406
101 L. Wang, K. Lee, Y. Y. Sun, M. Lucking, Z. F. Chen, J. J. Zhao, and S. B. B. Zhang, Graphene oxide as an ideal substrate for hydrogen storage, ACS Nano 3(10), 2995 (2009)
https://doi.org/10.1021/nn900667s
102 M. T. Nguyen, R. Erni, and D. Passerone, Twodimensional nucleation and growth mechanism explaining graphene oxide structures, Phys. Rev. B 86(11), 115406 (2012)
https://doi.org/10.1103/PhysRevB.86.115406
103 B. Huang, H. Xiang, Q. Xu, and S. H. Wei, Overcoming the phase inhomogeneity in chemically functionalized graphene: The case of graphene oxides, Phys. Rev. Lett. 110(8), 085501 (2013)
https://doi.org/10.1103/PhysRevLett.110.085501
104 D. B. Lawson and E. J. Beregszaszy, Incremental oxidation of the surface of monolayer and bilayer graphene: A computational study, Physica E 68, 164 (2015)
https://doi.org/10.1016/j.physe.2014.12.012
105 M. Topsakal and S. Ciraci, Domain formation on oxidized graphene, Phys. Rev. B 86(20), 205402 (2012)
https://doi.org/10.1103/PhysRevB.86.205402
106 S. Zhou and A. Bongiorno, Origin of the chemical and kinetic stability of graphene oxide, Sci. Rep. 3(1), 2484 (2013)
https://doi.org/10.1038/srep02484
107 Ž. Šljivančanin, A. S. Milošević, Z. S. Popović, and F. R. Vukajlović, Binding of atomic oxygen on graphene from small epoxy clusters to a fully oxidized surface, Carbon 54, 482 (2013)
https://doi.org/10.1016/j.carbon.2012.12.008
108 C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, Atomic structure of reduced graphene oxide, Nano Lett. 10(4), 1144 (2010)
https://doi.org/10.1021/nl9031617
109 D. Pandey, R. Reifenberger, and R. Piner, Scanning probe microscopy study of exfoliated oxidized graphene sheets, Surf. Sci. 602(9), 1607 (2008)
https://doi.org/10.1016/j.susc.2008.02.025
110 J. Yang, G. Shi, Y. Tu, and H. Fang, High correlation between oxidation loci on graphene oxide, Angew. Chem. Int. Ed. 53(38), 10190 (2014)
https://doi.org/10.1002/anie.201404144
111 H. Luo, G. Auchterlonie, and J. Zou, A thermodynamic structural model of graphene oxide, J. Appl. Phys. 122(14), 145101 (2017)
https://doi.org/10.1063/1.4991967
112 C. J. Kim, W. Khan, and S. Y. Park, Structural evolution of graphite oxide during heat treatment, Chem. Phys. Lett. 511(1–3), 110 (2011)
https://doi.org/10.1016/j.cplett.2011.06.016
113 S. Kim, S. Zhou, Y. Hu, M. Acik, Y. J. Chabal, C. Berger, W. de Heer, A. Bongiorno, and E. Riedo, Roomtemperature metastability of multilayer graphene oxide films, Nat. Mater. 11(6), 544 (2012)
https://doi.org/10.1038/nmat3316
114 J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, Imaging and dynamics of light atoms and molecules on graphene, Nature 454(7202), 319 (2008)
https://doi.org/10.1038/nature07094
115 A. M. Suarez, L. R. Radovic, E. Bar-Ziv, and J. O. Sofo, Gate-voltage control of oxygen diffusion on graphene, Phys. Rev. Lett. 106(14), 146802 (2011)
https://doi.org/10.1103/PhysRevLett.106.146802
116 Y. Wang, Y. Shen, X. Zhang, Y. Zhang, and J. Hu, Humidity induced charge migration on single layer graphene oxide sheets, Appl. Phys. Lett. 105(23), 233107 (2014)
https://doi.org/10.1063/1.4903836
117 J. T. Paci, T. Belytschko, and G. C. Schatz, Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide, J. Phys. Chem. C 111(49), 18099 (2007)
https://doi.org/10.1021/jp075799g
118 A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ x-ray-based spectroscopies, J. Phys. Chem. C 115(34), 17009 (2011)
https://doi.org/10.1021/jp203741y
119 X. Gao, J. Jang, and S. Nagase, Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design, J. Phys. Chem. C 114(2), 832 (2010)
https://doi.org/10.1021/jp909284g
120 A. F. Fonseca, H. Zhang, and K. Cho, Formation energy of graphene oxide structures: A molecular dynamics study on distortion and thermal effects, Carbon 84, 365 (2015)
https://doi.org/10.1016/j.carbon.2014.12.026
121 N. Lu, D. Yin, Z. Li, and J. Yang, Structure of graphene oxide: Thermodynamics versus kinetics, J. Phys. Chem. C 115(24), 11991 (2011)
https://doi.org/10.1021/jp204476q
122 O. C. Compton, B. Jain, D. A. Dikin, A. Abouimrane, K. Amine, and S. T. Nguyen, Chemically active reduced graphene oxide with tunable C/O ratios, ACS Nano 5(6), 4380 (2011)
https://doi.org/10.1021/nn1030725
123 N. Ghaderi and M. Peressi, First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide, J. Phys. Chem. C 114(49), 21625 (2010)
https://doi.org/10.1021/jp108688m
124 A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nat. Chem. 2(7), 581 (2010)
https://doi.org/10.1038/nchem.686
125 A. Bagri, R. Grantab, N. V. Medhekar, and V. B. Shenoy, Stability and formation mechanisms of carbonyl- and hydroxyl-decorated holes in graphene oxide, J. Phys. Chem. C 114(28), 12053 (2010)
https://doi.org/10.1021/jp908801c
126 R. M. Abolfath and K. Cho, Computational studies for reduced graphene oxide in hydrogen-rich environment, J. Phys. Chem. A 116(7), 1820 (2012)
https://doi.org/10.1021/jp2107439
127 R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi, and S. Lizzit, Dual path mechanism in the thermal reduction of graphene oxide, J. Am. Chem. Soc. 133(43), 17315 (2011)
https://doi.org/10.1021/ja205168x
128 P. V. Kumar, N. M. Bardhan, S. Tongay, J. Wu, A. M. Belcher, and J. C. Grossman, Scalable enhancement of graphene oxide properties by thermally driven phase transformation, Nat. Chem. 6(2), 151 (2014)
https://doi.org/10.1038/nchem.1820
129 M. S. Fuhrer, C. N. Lau, and A. H. MacDonald, Graphene: Materially better carbon, MRS Bull. 35(4), 289 (2010)
https://doi.org/10.1557/mrs2010.551
130 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)
https://doi.org/10.1126/science.1157996
131 Q. Zheng, Y. Geng, S. Wang, Z. Li, and J. K. Kim, Effects of functional groups on the mechanical and wrinkling properties of graphene sheets, Carbon 48(15), 4315 (2010)
https://doi.org/10.1016/j.carbon.2010.07.044
132 Z. Novotny, M. T. Nguyen, F. P. Netzer, V. A. Glezakou, R. Rousseau, and Z. Dohnalek, Formation of supported graphene oxide: Evidence for enolate species, J. Am. Chem. Soc. 140(15), 5102 (2018)
https://doi.org/10.1021/jacs.7b12791
133 M. Cano, U. Khan, T. Sainsbury, A. O’Neill, Z. Wang, I. T. McGovern, W. K. Maser, A. M. Benito, and J. N. Coleman, Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains, Carbon 52, 363 (2013)
https://doi.org/10.1016/j.carbon.2012.09.046
134 N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, and V. B. Shenoy, Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties, ACS Nano 4(4), 2300 (2010)
https://doi.org/10.1021/nn901934u
135 S. Park, J. W. Suk, J. An, J. Oh, S. Lee, W. Lee, J. R. Potts, J. H. Byun, and R. S. Ruoff, The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers, Carbon 50(12), 4573 (2012)
https://doi.org/10.1016/j.carbon.2012.05.042
136 J. Liu, C. Chen, C. He, J. Zhao, X. Yang, and H. Wang, Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels, ACS Nano 6(9), 8194 (2012)
https://doi.org/10.1021/nn302874v
137 D. D. Kulkarni, I. Choi, S. S. Singamaneni, and V. V. Tsukruk, Graphene oxide–polyelectrolyte nanomembranes, ACS Nano 4(8), 4667 (2010)
https://doi.org/10.1021/nn101204d
138 C. Cao, M. Daly, C. V. Singh, Y. Sun, and T. Filleter, High strength measurement of monolayer graphene oxide, Carbon 81, 497 (2015)
https://doi.org/10.1016/j.carbon.2014.09.082
139 X. Wei, L. Mao, R. A. Soler-Crespo, J. T. Paci, J. Huang, S. T. Nguyen, and H. D. Espinosa, Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism, Nat. Commun. 6(1), 8029 (2015)
https://doi.org/10.1038/ncomms9029
140 R. A. Soler-Crespo, W. Gao, P. Xiao, X. Wei, J. T. Paci, G. Henkelman, and H. D. Espinosa, Engineering the mechanical properties of monolayer graphene oxide at the atomic level, J. Phys. Chem. Lett. 7(14), 2702 (2016)
https://doi.org/10.1021/acs.jpclett.6b01027
141 A. Zandiatashbar, E. Ban, and R. C. Picu, Stiffness and strength of oxygen-functionalized graphene with vacancies, J. Appl. Phys. 116(18), 184308 (2014)
https://doi.org/10.1063/1.4901580
142 Q. Peng, L. Han, J. Lian, X. Wen, S. Liu, Z. Chen, N. Koratkar, and S. De, Mechanical degradation of graphene by epoxidation: insights from first-principles calculations, Phys. Chem. Chem. Phys. 17(29), 19484 (2015)
https://doi.org/10.1039/C5CP02986D
143 C. Gómez-Navarro, M. Burghard, and K. Kern, Elastic properties of chemically derived single graphene sheets, Nano Lett. 8(7), 2045 (2008)
https://doi.org/10.1021/nl801384y
144 J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, Mechanical properties of monolayer graphene oxide, ACS Nano 4(11), 6557 (2010)
https://doi.org/10.1021/nn101781v
145 T. Cui, S. Mukherjee, C. Cao, P. M. Sudeep, J. Tam, P. M. Ajayan, C. V. Singh, Y. Sun, and T. Filleter, Effect of lattice stacking orientation and local thickness variation on the mechanical behavior of few layer graphene oxide, Carbon 136, 168 (2018)
https://doi.org/10.1016/j.carbon.2018.04.074
146 Q. Peng and S. De, Mechanical properties and instabilities of ordered graphene oxide C6O monolayers, RSC Adv. 3(46), 24337 (2013)
https://doi.org/10.1039/c3ra44949a
147 D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448(7152), 457 (2007)
https://doi.org/10.1038/nature06016
148 C. N. Yeh, K. Raidongia, J. Shao, Q. H. Yang, and J. Huang, On the origin of the stability of graphene oxide membranes in water, Nat. Chem. 7(2), 166 (2015)
https://doi.org/10.1038/nchem.2145
149 O. C. Compton, S. W. Cranford, K. W. Putz, Z. An, L. C. Brinson, M. J. Buehler, and S. T. Nguyen, Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding, ACS Nano 6(3), 2008 (2012)
https://doi.org/10.1021/nn202928w
150 R. J. Jiménez Riobóo, E. Climent-Pascual, X. Díez-Betriu, F. Jiménez-Villacorta, C. Prieto, and A. de Andrés, Elastic constants of graphene oxide few-layer films: Correlations with interlayer stacking and bonding, J. Mater. Chem. C 3(19), 4868 (2015)
https://doi.org/10.1039/C4TC02883J
151 R. A. Soler-Crespo, W. Gao, L. Mao, H. T. Nguyen, M. R. Roenbeck, J. T. Paci, J. Huang, S. T. Nguyen, and H. D. Espinosa, The role of water in mediating interfacial adhesion and shear strength in graphene oxide, ACS Nano 12(6), 6089 (2018)
https://doi.org/10.1021/acsnano.8b02373
152 H. P. Cong, P. Wang, and S. H. Yu, Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels, Small 10(3), 448 (2014)
https://doi.org/10.1002/smll.201301591
153 Q. Cheng, M. Wu, M. Li, L. Jiang, and Z. Tang, Ultratough artificial nacre based on conjugated cross-linked graphene oxide, Angew. Chem. Int. Ed. 52(13), 3750 (2013)
https://doi.org/10.1002/anie.201210166
154 S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, Graphene oxide papers modified by divalent ions — enhancing mechanical properties via chemical cross-linking, ACS Nano 2(3), 572 (2008)
https://doi.org/10.1021/nn700349a
155 Y. Tian, Y. Cao, Y. Wang, W. Yang, and J. Feng, Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of musselinspired polymers, Adv. Mater. 25(21), 2980 (2013)
https://doi.org/10.1002/adma.201300118
156 A. Kumar and C. Zhou, The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win? ACS Nano 4(1), 11 (2010)
https://doi.org/10.1021/nn901903b
157 Y. Gao, S. Kim, S. Zhou, H. C. Chiu, D. Nelias, C. Berger, W. de Heer, L. Polloni, R. Sordan, A. Bongiorno, and E. Riedo, Elastic coupling between layers in twodimensional materials, Nat. Mater. 14(7), 714 (2015)
https://doi.org/10.1038/nmat4322
158 W. Lee, J. U. Lee, B. M. Jung, J. H. Byun, J. W. Yi, S. B. Lee, and B. S. Kim, Simultaneous enhancement of mechanical, electrical and thermal properties of graphene oxide paper by embedding dopamine, Carbon 65, 296 (2013)
https://doi.org/10.1016/j.carbon.2013.08.029
159 S. H. Lee, H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski, R. S. Ruoff, and S. O. Kim, Threedimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films, Angew. Chem. Int. Ed. 49(52), 10084 (2010)
https://doi.org/10.1002/anie.201006240
160 H. C. Schniepp, K. N. Kudin, J. L. Li, R. K. Prud’homme, R. Car, D. A. Saville, and I. A. Aksay, Bending properties of single functionalized graphene sheets probed by atomic force microscopy, ACS Nano 2(12), 2577 (2008)
https://doi.org/10.1021/nn800457s
161 R. Huang, M. Huang, X. Li, F. An, N. Koratkar, and Z. Z. Yu, Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices, Adv. Mater. 30(21), 1707025 (2018)
https://doi.org/10.1002/adma.201707025
162 G. J. Silverberg and C. D. Vecitis, Wrinkling and periodic folding of graphene oxide monolayers by langmuirblodgett compression, Langmuir 33(38), 9880 (2017)
https://doi.org/10.1021/acs.langmuir.7b02289
163 F. Tardani, W. Neri, C. Zakri, H. Kellay, A. Colin, and P. Poulin, Shear rheology control of wrinkles and patterns in graphene oxide films, Langmuir 34(9), 2996 (2018)
https://doi.org/10.1021/acs.langmuir.7b04281
164 A. Incze, A. Pasturel, and P. Peyla, Mechanical properties of graphite oxides: Ab initiosimulations and continuum theory, Phys. Rev. B 70(21), 212103 (2004)
https://doi.org/10.1103/PhysRevB.70.212103
165 X. Wang, L. L. Lu, Z. L. Yu, X. W. Xu, Y. R. Zheng, and S. H. Yu, Scalable template synthesis of resorcinol–formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties, Angew. Chem. 127(8), 2427 (2015)
https://doi.org/10.1002/ange.201410668
166 X. Cheng, V. Kumar, T. Yokozeki, T. Goto, T. Takahashi, J. Koyanagi, L. Wu, and R. Wang, Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties, Compos. Part A Appl. Sci. Manuf. 82, 100 (2016)
https://doi.org/10.1016/j.compositesa.2015.12.006
167 G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, Insulator to semimetal transition in graphene oxide, J. Phys. Chem. C 113(35), 15768 (2009)
https://doi.org/10.1021/jp9051402
168 T. Tsuchiya, K. Terabe, and M. Aono, In situ and nonvolatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor, Adv. Mater. 26(7), 1087 (2014)
https://doi.org/10.1002/adma.201304770
169 A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, Bandgap opening in oxygen plasma-treated graphene, Nanotechnology 21(43), 435203 (2010)
https://doi.org/10.1088/0957-4484/21/43/435203
170 A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A. Leela Mohana Reddy, and P. M. Ajayan, Controlled, stepwise reduction and band gap manipulation of graphene oxide, J. Phys. Chem. Lett. 3(8), 986 (2012)
https://doi.org/10.1021/jz300096t
171 C. H. Chuang, Y. F. Wang, Y. C. Shao, Y. C. Yeh, D. Y. Wang, C. W. Chen, J. W. Chiou, S. C. Ray, W. F. Pong, L. Zhang, J. F. Zhu, and J. H. Guo, The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides, Sci. Rep. 4(1), 4525 (2015)
https://doi.org/10.1038/srep04525
172 A. Hunt, D. A. Dikin, E. Z. Kurmaev, Y. H. Lee, N. V. Luan, G. S. Chang, and A. Moewes, Modulation of the band gap of graphene oxide: The role of AA-stacking, Carbon 66, 539 (2014)
https://doi.org/10.1016/j.carbon.2013.09.036
173 A. Hunt, E. Z. Kurmaev, and A. Moewes, Band gap engineering of graphene oxide by chemical modification, Carbon 75, 366 (2014)
https://doi.org/10.1016/j.carbon.2014.04.015
174 L. Guo, R. Q. Shao, Y. L. Zhang, H. B. Jiang, X. B. Li, S. Y. Xie, B. B. Xu, Q. D. Chen, J. F. Song, and H. B. Sun, Bandgap tailoring and synchronous microdevices patterning of graphene oxides, J. Phys. Chem. C 116(5), 3594 (2012)
https://doi.org/10.1021/jp209843m
175 H. Huang, Z. Li, J. She, and W. Wang, Oxygen density dependent band gap of reduced graphene oxide, J. Appl. Phys. 111(5), 054317 (2012)
https://doi.org/10.1063/1.3694665
176 Z. Kan, C. Nelson, and M. Khatun, Quantum conductance of zigzag graphene oxide nanoribbons, J. Appl. Phys. 115(15), 153704 (2014)
https://doi.org/10.1063/1.4871288
177 J. Ito, J. Nakamura, and A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet, J. Appl. Phys. 103(11), 113712 (2008)
https://doi.org/10.1063/1.2939270
178 K. Y. Lian, Y. F. Ji, X. F. Li, M. X. Jin, D. J. Ding, and Y. Luo, Big bandgap in highly reduced graphene oxides, J. Phys. Chem. C 117(12), 6049 (2013)
https://doi.org/10.1021/jp3118067
179 T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, Impurities on graphene: Midgap states and migration barriers, Phys. Rev. B 80(8), 085428 (2009)
https://doi.org/10.1103/PhysRevB.80.085428
180 I. S. Esqueda, C. D. Cress, Y. Cao, Y. Che, M. Fritze, and C. Zhou, The impact of defect scattering on the quasiballistic transport of nanoscale conductors, J. Appl. Phys. 117(8), 084319 (2015)
https://doi.org/10.1063/1.4913779
181 T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson, Resonant scattering by realistic impurities in graphene, Phys. Rev. Lett. 105(5), 056802 (2010)
https://doi.org/10.1103/PhysRevLett.105.056802
182 N. Leconte, A. Lherbier, F. Varchon, P. Ordejon, S. Roche, and J. C. Charlier, Quantum transport in chemically modified two-dimensional graphene: From minimal conductivity to Anderson localization, Phys. Rev. B 84(23), 235420 (2011)
https://doi.org/10.1103/PhysRevB.84.235420
183 M. I. Katsnelson, F. Guinea, and A. K. Geim, Scattering of electrons in graphene by clusters of impurities, Phys. Rev. B 79(19), 195426 (2009)
https://doi.org/10.1103/PhysRevB.79.195426
184 J. Zhao, S. Pei, W. Ren, L. Gao, and H. M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano 4(9), 5245 (2010)
https://doi.org/10.1021/nn1015506
185 D. M. Sun, C. Liu, W. C. Ren, and H. M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors, Small 9(8), 1188 (2013)
https://doi.org/10.1002/smll.201203154
186 N. S. Green and M. L. Norton, Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review, Anal. Chim. Acta 853, 127 (2015)
https://doi.org/10.1016/j.aca.2014.10.023
187 W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, and F. Braet, Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49(12), 2114 (2010)
https://doi.org/10.1002/anie.200903463
188 Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Graphene based electrochemical sensors and biosensors: A review, Electroanalysis 22(10), 1027 (2010)
https://doi.org/10.1002/elan.200900571
189 C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett. 7(11), 3499 (2007)
https://doi.org/10.1021/nl072090c
190 A. B. Kaiser and V. Skakalova, Electronic conduction in polymers, carbon nanotubes and graphene, Chem. Soc. Rev. 40(7), 3786 (2011)
https://doi.org/10.1039/c0cs00103a
191 Y. Chen, K. Fu, S. Zhu, W. Luo, Y. Wang, Y. Li, E. Hitz, Y. Yao, J. Dai, J. Wan, V. A. Danner, T. Li, and L. Hu, Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors, Nano Lett. 16(6), 3616 (2016)
https://doi.org/10.1021/acs.nanolett.6b00743
192 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
193 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
194 A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
https://doi.org/10.1126/science.1158877
195 V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J. L. Brédas, Charge transport in organic semiconductors, Chem. Rev. 107(4), 926 (2007)
https://doi.org/10.1021/cr050140x
196 V. López, R. S. Sundaram, C. Gómez-Navarro, D. Olea, M. Burghard, J. Gómez-Herrero, F. Zamora, and K. Kern, Chemical vapor deposition repair of graphene oxide: A route to highly-conductive graphene monolayers, Adv. Mater. 21(46), 4683 (2009)
https://doi.org/10.1002/adma.200901582
197 H. Klauk, Organic thin-film transistors, Chem. Soc. Rev. 39(7), 2643 (2010)
https://doi.org/10.1039/b909902f
198 I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures, Nano Lett. 8(12), 4283 (2008)
https://doi.org/10.1021/nl8019938
199 Z. Xu, Y. Bando, L. Liu, W. Wang, X. Bai, and D. Golberg, Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM, ACS Nano 5(6), 4401 (2011)
https://doi.org/10.1021/nn103200t
200 J. T. Han, B. J. Kim, B. G. Kim, J. S. Kim, B. H. Jeong, S. Y. Jeong, H. J. Jeong, J. H. Cho, and G. W. Lee, Enhanced electrical properties of reduced graphene oxide multilayer films by in-situ insertion of a TiO2 layer, ACS Nano 5(11), 8884 (2011)
https://doi.org/10.1021/nn203054t
201 A. B. Kaiser, C. Gómez-Navarro, R. S. Sundaram, M. Burghard, and K. Kern, Electrical conduction mechanism in chemically derived graphene monolayers, Nano Lett. 9(5), 1787 (2009)
https://doi.org/10.1021/nl803698b
202 M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98(20), 206805 (2007)
https://doi.org/10.1103/PhysRevLett.98.206805
203 R. G. Gordon, Criteria for choosing transparent conductors, MRS Bull. 25(8), 52 (2000)
https://doi.org/10.1557/mrs2000.151
204 Y. Zhu, W. Cai, R. D. Piner, A. Velamakanni, and R. S. Ruoff, Transparent self-assembled films of reduced graphene oxide platelets, Appl. Phys. Lett. 95(10), 103104 (2009)
https://doi.org/10.1063/1.3212862
205 G. Eda, Y. Y. Lin, S. Miller, C. W. Chen, W. F. Su, and M. Chhowalla, Transparent and conducting electrodes for organic electronics from reduced graphene oxide, Appl. Phys. Lett. 92(23), 233305 (2008)
https://doi.org/10.1063/1.2937846
206 M. Wang, L. D. Duong, J. S. Oh, N. T. Mai, S. Kim, S. Hong, T. Hwang, Y. Lee, and J. D. Nam, Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD), ACS Appl. Mater. Interfaces 6(3), 1747 (2014)
https://doi.org/10.1021/am404719u
207 X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye, Y. W. Mai, and J. K. Kim, Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets, ACS Nano 6(12), 10708 (2012)
https://doi.org/10.1021/nn303904z
208 S. Y. Jeong, S. H. Kim, J. T. Han, H. J. Jeong, S. Yang, and G. W. Lee, High-performance transparent conductive films using rheologically derived reduced graphene oxide, ACS Nano 5(2), 870 (2011)
https://doi.org/10.1021/nn102017f
209 K. H. Shin, Y. Jang, B. S. Kim, J. Jang, and S. H. Kim, Highly conductive reduced graphene oxide produced via pressure-assisted reduction at mild temperature for flexible and transparent electrodes, Chem. Commun. 49(43), 4887 (2013)
https://doi.org/10.1039/c3cc41874j
210 S. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon 48(15), 4466 (2010)
https://doi.org/10.1016/j.carbon.2010.08.006
211 C. X. Cong, T. Yu, Z. H. Ni, L. Liu, Z. X. Shen, and W. Huang, Fabrication of graphene nanodisk arrays using nanosphere lithography, J. Phys. Chem. C 113(16), 6529 (2009)
https://doi.org/10.1021/jp900011s
212 Q. B. Zheng, M. M. Gudarzi, S. J. Wang, Y. Geng, Z. Li, and J. K. Kim, Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments, Carbon 49(9), 2905 (2011)
https://doi.org/10.1016/j.carbon.2011.02.064
213 U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks, J. Am. Chem. Soc. 127(14), 5125 (2005)
https://doi.org/10.1021/ja046685a
214 J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y. H. Kim, M. H. Song, S. Yoo, and S. O. Kim, Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer lightemitting diodes, ACS Nano 6(1), 159 (2012)
https://doi.org/10.1021/nn203176u
215 J. Mu, C. Hou, G. Wang, X. Wang, Q. Zhang, Y. Li, H. Wang, and M. Zhu, An elastic transparent conductor based on hierarchically wrinkled reduced graphene oxide for artificial muscles and sensors, Adv. Mater. 28(43), 9491 (2016)
https://doi.org/10.1002/adma.201603395
216 S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, and R. S. Ruoff, Graphene–silica composite thin films as transparent conductors, Nano Lett. 7(7), 1888 (2007)
https://doi.org/10.1021/nl070477+
217 V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, Low-temperature solution processing of graphene–carbon nanotube hybrid materials for high-performance transparent conductors, Nano Lett. 9(5), 1949 (2009)
https://doi.org/10.1021/nl9001525
218 Q. Zheng, B. Zhang, X. Lin, X. Shen, N. Yousefi, Z. D. Huang, Z. Li, and J. K. Kim, Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir–Blodgett assembly, J. Mater. Chem. 22(48), 25072 (2012)
https://doi.org/10.1039/c2jm34870e
219 C. F. Guo and Z. Ren, Flexible transparent conductors based on metal nanowire networks, Mater. Today 18(3), 143 (2015)
https://doi.org/10.1016/j.mattod.2014.08.018
220 Y. S. Yun, D. H. Kim, B. Kim, H. H. Park, and H. J. Jin, Transparent conducting films based on graphene oxide/ silver nanowire hybrids with high flexibility, Synth. Met. 162(15–16), 1364 (2012)
https://doi.org/10.1016/j.synthmet.2012.05.026
221 S. H. Domingues, I. N. Kholmanov, T. Kim, J. Kim, C. Tan, H. Chou, Z. A. Alieva, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications, Carbon 63, 454 (2013)
https://doi.org/10.1016/j.carbon.2013.07.007
222 P. Meenakshi, R. Karthick, M. Selvaraj, and S. Ramu, Investigations on reduced graphene oxide film embedded with silver nanowire as a transparent conducting electrode, Sol. Energy Mater. Sol. Cells 128, 264 (2014)
https://doi.org/10.1016/j.solmat.2014.05.013
223 I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes, ACS Nano 7(2), 1811 (2013)
https://doi.org/10.1021/nn3060175
224 R. Karthick, M. Brindha, M. Selvaraj, and S. Ramu, Stable colloidal dispersion of functionalized reduced graphene oxide in aqueous medium for transparent conductive film, J. Colloid Interface Sci. 406, 69 (2013)
https://doi.org/10.1016/j.jcis.2013.06.006
225 S. J. Kim, K. Choi, B. Lee, Y. Kim, and B. H. Hong, Materials for flexible, stretchable electronics: Graphene and 2D materials, Annu. Rev. Mater. Res. 45(1), 63 (2015)
https://doi.org/10.1146/annurev-matsci-070214-020901
226 Q. He, S. Wu, S. Gao, X. Cao, Z. Yin, H. Li, P. Chen, and H. Zhang, Transparent, flexible, all-reduced graphene oxide thin film transistors, ACS Nano 5(6), 5038 (2011)
https://doi.org/10.1021/nn201118c
227 J. Liu, Z. Yin, X. Cao, F. Zhao, L. Wang, W. Huang, and H. Zhang, Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices, Adv. Mater. 25(2), 233 (2013)
https://doi.org/10.1002/adma.201203349
228 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457(7230), 706 (2009)
https://doi.org/10.1038/nature07719
229 M. Diba, D. W. H. Fam, A. R. Boccaccini, and M. S. P. Shaffer, Electrophoretic deposition of graphene-related materials: A review of the fundamentals, Prog. Mater. Sci. 82, 83 (2016)
https://doi.org/10.1016/j.pmatsci.2016.03.002
230 Y. Chen, X. Zhang, P. Yu, and Y. Ma, Stable dispersions of graphene and highly conducting graphene films: A new approach to creating colloids of graphene monolayers, Chem. Commun. 30(30), 4527 (2009)
https://doi.org/10.1039/b907723e
231 Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y. M. Lam, and H. Zhang, Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes, ACS Nano 4(9), 5263 (2010)
https://doi.org/10.1021/nn1015874
232 T. Qiu, B. Luo, M. Liang, J. Ning, B. Wang, X. Li, and L. Zhi, Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices, Carbon 81, 232 (2015)
https://doi.org/10.1016/j.carbon.2014.09.054
233 C. J. Wan, Y. H. Liu, P. Feng, W. Wang, L. Q. Zhu, Z. P. Liu, Y. Shi, and Q. Wan, Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates, Adv. Mater. 28(28), 5878 (2016)
https://doi.org/10.1002/adma.201600820
234 M. Soni, P. Kumar, J. Pandey, S. K. Sharma, and A. Soni, Scalable and site specific functionalization of reduced graphene oxide for circuit elements and flexible electronics, Carbon 128, 172 (2018)
https://doi.org/10.1016/j.carbon.2017.11.087
235 L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano 4(5), 2865 (2010)
https://doi.org/10.1021/nn901587x
236 H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J. E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S. Y. Choi, Graphene oxide thin films for flexible nonvolatile memory applications, Nano Lett. 10(11), 4381 (2010)
https://doi.org/10.1021/nl101902k
237 H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, Z. Zheng, and A. Transparent, Flexible, low-temperature, and solution-processible graphene composite electrode, Adv. Funct. Mater. 20(17), 2893 (2010)
https://doi.org/10.1002/adfm.201000900
238 L. E. Scriven, Physics and applications of DIP coating and spin coating, Proc. MRS 121, 717 (1988)
https://doi.org/10.1557/PROC-121-717
239 X. Wang, L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8(1), 323 (2008)
https://doi.org/10.1021/nl072838r
240 X. Dong, C. Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L. J. Li, Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties, Phys. Chem. Chem. Phys. 12(9), 2164 (2010)
https://doi.org/10.1039/b914546j
241 D. W. Lee, T. K. Hong, D. Kang, J. Lee, M. Heo, J. Y. Kim, B. S. Kim, and H. S. Shin, Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides, J. Mater. Chem. 21(10), 3438 (2011)
https://doi.org/10.1039/C0JM02270E
242 S. T. Hsiao, C. C. M. Ma, W. H. Liao, Y. S. Wang, S. M. Li, Y. C. Huang, R. B. Yang, and W. F. Liang, Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance, ACS Appl. Mater. Interfaces 6(13), 10667 (2014)
https://doi.org/10.1021/am502412q
243 X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol. 3(9), 538 (2008)
https://doi.org/10.1038/nnano.2008.210
244 L. J. Cote, F. Kim, and J. Huang, Langmuir–Blodgett assembly of graphite oxide single layers, J. Am. Chem. Soc. 131(3), 1043 (2009)
https://doi.org/10.1021/ja806262m
245 Q. Zheng, W. H. Ip, X. Lin, N. Yousefi, K. K. Yeung, Z. Li, and J. K. Kim, Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir–Blodgett assembly, ACS Nano 5(7), 6039 (2011)
https://doi.org/10.1021/nn2018683
246 D. Konios, C. Petridis, G. Kakavelakis, M. Sygletou, K. Savva, E. Stratakis, and E. Kymakis, Reduced graphene oxide micromesh electrodes for large area, flexible, organic photovoltaic devices, Adv. Funct. Mater. 25(15), 2213 (2015)
https://doi.org/10.1002/adfm.201404046
247 Y. Xu, W. Hong, H. Bai, C. Li, and G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure, Carbon 47(15), 3538 (2009)
https://doi.org/10.1016/j.carbon.2009.08.022
248 L. Xu, S. Jiang, B. Li, W. Hou, G. Li, M. A. Memon, Y. Huang, and J. Geng, Graphene oxide: A versatile agent for polyimide foams with improved foaming capability and enhanced flexibility, Chem. Mater. 27(12), 4358 (2015)
https://doi.org/10.1021/acs.chemmater.5b00981
249 H. Im and J. Kim, Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite, Carbon 50(15), 5429 (2012)
https://doi.org/10.1016/j.carbon.2012.07.029
250 Y. Xue, L. Zhu, H. Chen, J. Qu, and L. Dai, Multiscale patterning of graphene oxide and reduced graphene oxide for flexible supercapacitors, Carbon 92, 305 (2015)
https://doi.org/10.1016/j.carbon.2015.04.046
251 M. Rogala, I. Wlasny, P. Dabrowski, P. J. Kowalczyk, A. Busiakiewicz, W. Kozlowski, L. Lipinska, J. Jagiello, M. Aksienionek, W. Strupinski, A. Krajewska, Z. Sieradzki, I. Krucinska, M. Puchalski, E. Skrzetuska, and Z. Klusek, Graphene oxide overprints for flexible and transparent electronics, Appl. Phys. Lett. 106(4), 041901 (2015)
https://doi.org/10.1063/1.4906593
252 I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, Reduced graphene oxide by chemical graphitization, Nat. Commun. 1(1), 73 (2010)
https://doi.org/10.1038/ncomms1067
253 J. Ning, J. Wang, X. Li, T. Qiu, B. Luo, L. Hao, M. Liang, B. Wang, and L. Zhi, A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive films,J. Mater. Chem. A 2(28), 10969 (2014)
https://doi.org/10.1039/C4TA00527A
254 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
255 F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
https://doi.org/10.1038/nnano.2010.89
256 H. Yamaguchi, K. Murakami, G. Eda, T. Fujita, P. Guan, W. Wang, C. Gong, J. Boisse, S. Miller, M. Acik, K. Cho, Y. J. Chabal, M. Chen, F. Wakaya, M. Takai, and M. Chhowalla, Field emission from atomically thin edges of reduced graphene oxide, ACS Nano 5(6), 4945 (2011)
https://doi.org/10.1021/nn201043a
257 V. Reddy, K. K. C. Satish Babu, S. R. Torati, Y. J. Eom, T. Q. Trung, N. E. Lee, and C. Kim, Scalable production of water-dispersible reduced graphene oxide and its integration in a field effect transistor, J. Ind. Eng. Chem. 63, 19 (2018)
https://doi.org/10.1016/j.jiec.2018.01.033
258 H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, and Z. Zheng, Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films, Adv. Mater. 22(43), 4872 (2010)
https://doi.org/10.1002/adma.201002229
259 C. Yu, X. Chang, J. Liu, L. Ding, J. Peng, and Y. Fang, Creation of reduced graphene oxide based field effect transistors and their utilization in the detection and discrimination of nucleoside triphosphates, ACS Appl. Mater. Interfaces 7(20), 10718 (2015)
https://doi.org/10.1021/acsami.5b00155
260 M. Jin, H. K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, Graphene oxide thin film field effect transistors without reduction, J. Phys. D Appl. Phys. 42(13), 135109 (2009)
https://doi.org/10.1088/0022-3727/42/13/135109
261 İ. Karteri, Ş. Karataş, A. A. Al-Ghamdi, and F. Yakuphanoğlu, The electrical characteristics of thin film transistors with graphene oxide and organic insulators, Synth. Met. 199, 241 (2015)
https://doi.org/10.1016/j.synthmet.2014.11.036
262 J. Chang, G. Zhou, X. Gao, S. Mao, S. Cui, L. E. Ocola, C. Yuan, and J. Chen, Real-time detection of mercury ions in water using a reduced graphene oxide/DNA fieldeffect transistor with assistance of a passivation layer, Sens. Biosensing Res. 5, 97 (2015)
https://doi.org/10.1016/j.sbsr.2015.07.009
263 J. W. Park, C. Lee, and J. Jang, High-performance fieldeffect transistor-type glucose biosensor based on nanohybrids of carboxylated polypyrrole nanotube wrapped graphene sheet transducer, Sens. Actuators B Chem. 208, 532 (2015)
https://doi.org/10.1016/j.snb.2014.11.085
264 D. Joung, A. Chunder, L. Zhai, and S. I. Khondaker, High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis, Nanotechnology 21(16), 165202 (2010)
https://doi.org/10.1088/0957-4484/21/16/165202
265 X. Cai, N. Sakai, T. C. Ozawa, A. Funatsu, R. Ma, Y. Ebina, and T. Sasaki, Efficient photoinduced charge accumulation in reduced graphene oxide coupled with titania nanosheets to show highly enhanced and persistent conductance, ACS Appl. Mater. Interfaces 7(21), 11436 (2015)
https://doi.org/10.1021/acsami.5b02107
266 N. D. K. Tu, J. Choi, C. R. Park, and H. Kim, Remarkable conversion between n- and p-type reduced graphene oxide on varying the thermal annealing temperature, Chem. Mater. 27(21), 7362 (2015)
https://doi.org/10.1021/acs.chemmater.5b02999
267 R. C. Wang and Y. M. Chang, Switch of p–n electricity of reduced-graphene-oxide-flake stacked films enabling room-temperature gas sensing from ultrasensitive to insensitive, Carbon 91, 416 (2015)
https://doi.org/10.1016/j.carbon.2015.05.012
268 A. Bhaumik and J. Narayan, Conversion of p to n-type reduced graphene oxide by laser annealing at room temperature and pressure, J. Appl. Phys. 121(12), 125303 (2017)
https://doi.org/10.1063/1.4979211
269 S. Some, P. Bhunia, E. Hwang, K. Lee, Y. Yoon, S. Seo, and H. Lee, Can commonly used hydrazine produce ntype graphene? Chemistry 18(25), 7665 (2012)
https://doi.org/10.1002/chem.201200104
270 X. Li, T. Tang, M. Li, and X. He, Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors, Appl. Phys. Lett. 106(1), 013110 (2015)
https://doi.org/10.1063/1.4905342
271 F. Khan, S. H. Baek, and J. H. Kim, One-step and controllable bipolar doping of reduced graphene oxide using TMAH as reducing agent and doping source for field effect transistors, Carbon 100, 608 (2016)
https://doi.org/10.1016/j.carbon.2016.01.064
272 L. Wang, Y. Park, P. Cui, S. Bak, H. Lee, S. M. Lee, and H. Lee, Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature, Chem. Commun. 50(10), 1224 (2014)
https://doi.org/10.1039/C3CC47224H
273 Y. Zhou, S. T. Han, P. Sonar, X. Ma, J. Chen, Z. Zheng, and V. A. Roy, Reversible conversion of dominant polarity in ambipolar polymer/graphene oxide hybrids, Sci. Rep. 5(1), 9446 (2015)
https://doi.org/10.1038/srep09446
274 V. A. Smirnov, A. D. Mokrushin, V. P. Vasiliev, N. N. Denisov, and K. N. Denisova, Mixed proton and electron conduction in graphene oxide films: field effect in a transistor based on graphene oxide, Appl. Phys. A 122(5), 513 (2016)
https://doi.org/10.1007/s00339-016-0039-2
275 G. Eda and M. Chhowalla, Graphene-based composite thin films for electronics, Nano Lett. 9(2), 814 (2009)
https://doi.org/10.1021/nl8035367
276 S. Lim, B. Kang, D. Kwak, W. H. Lee, J. A. Lim, and K. Cho, Inkjet-printed reduced graphene oxide/poly (vinyl alcohol) composite electrodes for flexible transparent organic field-effect transistors, J. Phys. Chem. C 116(13), 7520 (2012)
https://doi.org/10.1021/jp203441e
277 K. S. Vasu, B. Chakraborty, S. Sampath, and A. K. Sood, Probing top-gated field effect transistor of reduced graphene oxide monolayer made by dielectrophoresis, Solid State Commun. 150(29–30), 1295 (2010)
https://doi.org/10.1016/j.ssc.2010.05.018
278 N. Rathi, S. Rathi, I. Lee, J. Wang, M. Kang, D. Lim, M. A. Khan, Y. Lee, and G. H. Kim, Reduction of persistent photoconductivity in a few-layer MoS2 field-effect transistor by graphene oxide functionalization, RSC Adv. 6(28), 23961 (2016)
https://doi.org/10.1039/C6RA03436E
279 T. Kobayashi, N. Kimura, J. Chi, S. Hirata, and D. Hobara, Channel-length-dependent field-effect mobility and carrier concentration of reduced graphene oxide thin-film transistors, Small 6(11), 1210 (2010)
https://doi.org/10.1002/smll.200902407
280 A. N. Aleshin, I. P. Shcherbakov, A. S. Komolov, V. N. Petrov, and I. N. Trapeznikova, Poly(9-vinylcarbazole)–graphene oxide composite field-effect transistors with enhanced mobility, Org. Electron. 16, 186 (2015)
https://doi.org/10.1016/j.orgel.2014.11.006
281 İ. Karteri, Ş. Karataş, and F. Yakuphanoglu, Photosensing properties of pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators, J. Mater. Sci. Mater. Electron. 27(5), 5284 (2016)
https://doi.org/10.1007/s10854-016-4426-4
282 J. Ito, J. Nakamura, and A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet, J. Appl. Phys. 103(11), 113712 (2008)
https://doi.org/10.1063/1.2939270
283 B. J. Kim, M. S. Kang, V. H. Pham, T. V. Cuong, E. J. Kim, J. S. Chung, S. H. Hur, and J. H. Cho, Lowvoltage solution-processed graphene transistors based on chemically and solvothermally reduced graphene oxide, J. Mater. Chem. 21(34), 13068 (2011)
https://doi.org/10.1039/c1jm11691f
284 G. Eda, A. Nathan, P. Wöbkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, and M. Chhowalla, Graphene oxide gate dielectric for graphene-based monolithic field effect transistors, Appl. Phys. Lett. 102(13), 133108 (2013)
https://doi.org/10.1063/1.4799970
285 T. W. Kim, Y. Gao, O. Acton, H. L. Yip, H. Ma, H. Chen, and A. K. Y. Jen, Graphene oxide nanosheets based organic field effect transistor for nonvolatile memory applications, Appl. Phys. Lett. 97(2), 023310 (2010)
https://doi.org/10.1063/1.3464292
286 Y. Park, D. Gupta, C. Lee, and Y. Hong, Role of tunneling layer in graphene-oxide based organic nonvolatile memory transistors, Org. Electron. 13(12), 2887 (2012)
https://doi.org/10.1016/j.orgel.2012.08.020
287 X. Chen, S. Zhang, K. Wu, Z. Xu, H. Li, Y. Meng, X. Ma, L. Liu, and L. Li, Improving the charge injection in organic transistors by covalently linked graphene oxide/ metal electrodes, Adv. Electron. Mater. 2(4), 1500409 (2016)
https://doi.org/10.1002/aelm.201500409
288 Z. Xu, X. Chen, S. Zhang, K. Wu, H. Li, Y. Meng, and L. Li, Minimizing electrode edge in organic transistors with ultrathin reduced graphene oxide for improving charge injection efficiency, Phys. Chem. Chem. Phys. 18(19), 13209 (2016)
https://doi.org/10.1039/C6CP00756B
289 J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett. 8(10), 3137 (2008)
https://doi.org/10.1021/nl8013007
290 S. Basu, and P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors, Sens. Actuators B Chem. 173, 1 (2012)
https://doi.org/10.1016/j.snb.2012.07.092
291 X. Yu, W. Zhang, P. Zhang, and Z. Su, Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges, Biosens. Bioelectron. 89, 72 (2017)
https://doi.org/10.1016/j.bios.2016.01.081
292 R. Pearce, T. Iakimov, M. Andersson, L. Hultman, A. L. Spetz, and R. Yakimova, Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection, Sens. Actuators B Chem. 155(2), 451 (2011)
https://doi.org/10.1016/j.snb.2010.12.046
293 R. Stine, J. T. Robinson, P. E. Sheehan, and C. R. Tamanaha, Real-time DNA detection using reduced graphene oxide field effect transistors, Adv. Mater. 22(46), 5297 (2010)
https://doi.org/10.1002/adma.201002121
294 B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang, and G. J. Zhang, Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor, ACS Nano 8(3), 2632 (2014)
https://doi.org/10.1021/nn4063424
295 X. Dong, Y. Shi, W. Huang, P. Chen, and L. J. Li, Electrical detection of DNA hybridization with singlebase specificity using transistors based on CVD-grown graphene sheets, Adv. Mater. 22(14), 1649 (2010)
https://doi.org/10.1002/adma.200903645
296 Z. Yin, Q. He, X. Huang, J. Zhang, S. Wu, P. Chen, G. Lu, Q. Zhang, Q. Yan, and H. Zhang, Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors, Nanoscale 4(1), 293 (2012)
https://doi.org/10.1039/C1NR11149C
297 T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, Label-free detection of DNA hybridization using transistors based on CVD grown graphene, Biosens. Bioelectron. 41, 103 (2013)
https://doi.org/10.1016/j.bios.2012.07.059
298 Q. He, H. G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, and H. Zhang, Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications, ACS Nano 4(6), 3201 (2010)
https://doi.org/10.1021/nn100780v
299 S. Mao, K. Yu, G. Lu, and J. Chen, Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor, Nano Res. 4(10), 921 (2011)
https://doi.org/10.1007/s12274-011-0148-3
300 H. Chen, P. Chen, J. Huang, R. Selegard, M. Platt, A. Palaniappan, D. Aili, A. I. Tok, and B. Liedberg, Detection of matrilysin activity using polypeptide functionalized reduced graphene oxide field-effect transistor sensor, Anal. Chem. 88(6), 2994 (2016)
https://doi.org/10.1021/acs.analchem.5b04663
301 G. Lu, L. E. Ocola, and J. Chen, Reduced graphene oxide for room-temperature gas sensors, Nanotechnology 20(44), 445502 (2009)
https://doi.org/10.1088/0957-4484/20/44/445502
302 O. Leenaerts, B. Partoens, and F. M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A firstprinciples study, Phys. Rev. B 77(12), 125416 (2008)
https://doi.org/10.1103/PhysRevB.77.125416
303 G. Lu, K. Yu, L. E. Ocola, and J. Chen, Ultrafast room temperature NH3 sensing with positively gated reduced graphene oxide field-effect transistors, Chem. Commun. 47(27), 7761 (2011)
https://doi.org/10.1039/c1cc12658j
304 K. H. Cheon, J. Cho, Y. H. Kim, and D. S. Chung, Thin film transistor gas sensors incorporating highmobility diketopyrrolopyrole-based polymeric semiconductor doped with graphene oxide, ACS Appl. Mater. Interfaces 7(25), 14004 (2015)
https://doi.org/10.1021/acsami.5b03059
305 T. Q. Trung, N. T. Tien, D. Kim, J. H. Jung, O. J. Yoon, and N. E. Lee, High thermal responsiveness of a reduced graphene oxide field-effect transistor, Adv. Mater. 24(38), 5254 (2012)
https://doi.org/10.1002/adma.201201724
306 T. Q. Trung, S. Ramasundaram, and N. E. Lee, Infrared detection using transparent and flexible field-effect transistor array with solution processable nanocomposite channel of reduced graphene oxide and P(VDF-TrFE), Adv. Funct. Mater. 25(11), 1745 (2015)
https://doi.org/10.1002/adfm.201404582
307 I. Y. Sohn, D. J. Kim, J. H. Jung, O. J. Yoon, T. N. Thanh, T. T. Quang, and N. E. Lee, pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors, Biosens. Bioelectron. 45, 70 (2013)
https://doi.org/10.1016/j.bios.2013.01.051
308 Y. R. Li, S. Chang, C. T. Chang, W. L. Tsai, Y. K. Chiu, P. Y. Yang, and H. C. Cheng, High-sensitivity extendedgate field-effect transistors as pH sensors with oxygenmodified reduced graphene oxide films coated on different reverse-pyramid silicon structures as sensing heads, Jpn. J. Appl. Phys. 55(4S), 04EM08 (2016)
https://doi.org/10.7567/JJAP.55.04EM08
309 E. Sharon, X. Liu, R. Freeman, O. Yehezkeli, and I. Willner, Label-free analysis of thrombin or Hg2+ ions by nucleic acid-functionalized graphene oxide matrices assembled on field-effect transistors, Electroanalysis 25(4), 851 (2013)
https://doi.org/10.1002/elan.201200581
310 A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
https://doi.org/10.1038/nmat3064
311 W. Huang, Q. X. Pei, Z. Liu, and Y. W. Zhang, Thermal onductivity of fluorinated graphene: A non-equilibrium molecular dynamics study, Chem. Phys. Lett. 552, 97 (2012)
https://doi.org/10.1016/j.cplett.2012.09.043
312 Q. X. Pei, Z. D. Sha, and Y. W. Zhang, A theoretical analysis of the thermal conductivity of hydrogenated graphene, Carbon 49(14), 4752 (2011)
https://doi.org/10.1016/j.carbon.2011.06.083
313 Z. X. Xie, L. M. Tang, C. N. Pan, K. M. Li, K. Q. Chen, and W. Duan, Enhancement of thermoelectric properties in graphene nanoribbons modulated with stub structures, Appl. Phys. Lett. 100(7), 073105 (2012)
https://doi.org/10.1063/1.3685694
314 W. Park, J. Hu, L. A. Jauregui, X. Ruan, and Y. P. Chen, Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites, Appl. Phys. Lett. 104(11), 113101 (2014)
https://doi.org/10.1063/1.4869026
315 G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, and F. Mauri, Thermal conductivity of graphene and graphite: Collective excitations and mean free paths, Nano Lett. 14(11), 6109 (2014)
https://doi.org/10.1021/nl502059f
316 J. Choi, N. D. K. Tu, S. S. Lee, H. Lee, J. S. Kim, and H. Kim, Controlled oxidation level of reduced graphene oxides and its effect on thermoelectric properties, Macromol. Res. 22(10), 1104 (2014)
https://doi.org/10.1007/s13233-014-2160-4
317 T. Schwamb, B. R. Burg, N. C. Schirmer, and D. Poulikakos, An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures, Nanotechnology 20(40), 405704 (2009)
https://doi.org/10.1088/0957-4484/20/40/405704
318 X. Mu, X. Wu, T. Zhang, D. B. Go, and T. Luo, Thermal transport in graphene oxide–from ballistic extreme to amorphous limit, Sci. Rep. 4(1), 3909 (2015)
https://doi.org/10.1038/srep03909
319 S. Lin and M. J. Buehler, Thermal transport in monolayer graphene oxide: Atomistic insights into phonon engineering through surface chemistry, Carbon 77, 351 (2014)
https://doi.org/10.1016/j.carbon.2014.05.038
320 Y. Y. Zhang, Q. X. Pei, X. Q. He, and Y. W. Mai, A molecular dynamics simulation study on thermal conductivity of functionalized bilayer graphene sheet, Chem. Phys. Lett. 622, 104 (2015)
https://doi.org/10.1016/j.cplett.2015.01.034
321 B. Y. Cao and Y. W. Li, A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics, J. Chem. Phys. 133(2), 024106 (2010)
https://doi.org/10.1063/1.3463699
322 F. Müller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, J. Chem. Phys. 106(14), 6082 (1997)
https://doi.org/10.1063/1.473271
323 X. Shen, X. Lin, J. Jia, Z. Wang, Z. Li, and J. K. Kim, Tunable thermal conductivities of graphene oxide by functionalization and tensile loading, Carbon 80, 235 (2014)
https://doi.org/10.1016/j.carbon.2014.08.062
324 M. Hamid Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. Haji Hassan, M. B. Ali Bashir, and M. Mohamad, A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renew. Sustain. Energy Rev. 30, 337 (2014)
https://doi.org/10.1016/j.rser.2013.10.027
325 H. Alam and S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy 2(2), 190 (2013)
https://doi.org/10.1016/j.nanoen.2012.10.005
326 Y. Xu, Z. Li, and W. Duan, Thermal and thermoelectric properties of graphene, Small 10(11), 2182 (2014)
https://doi.org/10.1002/smll.201303701
327 H. Sevinçli and G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons, Phys. Rev. B 81(11), 113401 (2010)
https://doi.org/10.1103/PhysRevB.81.113401
328 G. D. Mahan, Figure of merit for thermoelectrics, J. Appl. Phys. 65(4), 1578 (1989)
https://doi.org/10.1063/1.342976
329 J. O. Sofo and G. D. Mahan, Optimum band gap of a thermoelectric material, Phys. Rev. B 49(7), 4565 (1994)
https://doi.org/10.1103/PhysRevB.49.4565
330 N. Xiao, X. Dong, L. Song, D. Liu, Y. Tay, S. Wu, L. J. Li, Y. Zhao, T. Yu, H. Zhang, W. Huang, H. H. Hng, P. M. Ajayan, and Q. Yan, Enhanced thermopower of graphene films with oxygen plasma treatment, ACS Nano 5(4), 2749 (2011)
https://doi.org/10.1021/nn2001849
331 P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, Anomalous thermoelectric transport of Dirac particles in graphene, Phys. Rev. Lett. 102(16), 166808 (2009)
https://doi.org/10.1103/PhysRevLett.102.166808
332 F. Li, K. Cai, S. Shen, and S. Chen, Preparation and thermoelectric properties of reduced graphene oxide/PEDOT: PSS composite films, Synth. Met. 197, 58 (2014)
https://doi.org/10.1016/j.synthmet.2014.08.014
333 K. Zhang, Y. Zhang, and S. Wang, Enhancing thermoelectric properties of organic composites through hierarchical nanostructures, Sci. Rep. 3(1), 3448 (2013)
https://doi.org/10.1038/srep03448
334 Y. Zhao, G. S. Tang, Z. Z. Yu, and J. S. Qi, The effect of graphite oxide on the thermoelectric properties of polyaniline, Carbon 50(8), 3064 (2012)
https://doi.org/10.1016/j.carbon.2012.03.001
335 W. Zhao, Y. Wang, Z. Wu, W. Wang, K. Bi, Z. Liang, J. Yang, Y. Chen, Z. Xu, and Z. Ni, Defect-engineered heat transport in graphene: A route to high efficient thermal rectification, Sci. Rep. 5(1), 11962 (2015)
https://doi.org/10.1038/srep11962
336 S. Zhou, Y. Guo, and J. Zhao, Enhanced thermoelectric properties of graphene oxide patterned by nanoroads, Phys. Chem. Chem. Phys. 18(15), 10607 (2016)
https://doi.org/10.1039/C6CP01012A
337 J. Kim, F. Kim, and J. Huang, Seeing graphene-based sheets, Mater. Today 13(3), 28 (2010)
https://doi.org/10.1016/S1369-7021(10)70031-6
338 E. Morales-Narváez and A. Merkoci, Graphene oxide as an optical biosensing platform, Adv. Mater. 24(25), 3298 (2012)
https://doi.org/10.1002/adma.201200373
339 Z. Liu, X. Zhang, X. Yan, Y. Chen, and J. Tian, Nonlinear optical properties of graphene-based materials, Chin. Sci. Bull. 57(23), 2971 (2012)
https://doi.org/10.1007/s11434-012-5270-4
340 X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res. 1(3), 203 (2008)
https://doi.org/10.1007/s12274-008-8021-8
341 Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, Photoluminescence and band gap modulation in graphene oxide, Appl. Phys. Lett. 94(11), 111909 (2009)
https://doi.org/10.1063/1.3098358
342 G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide, Adv. Mater. 22(4), 505 (2010)
https://doi.org/10.1002/adma.200901996
343 S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, F. Bonaccorso, K. P. Bohnen, H. Löhneysen, M. M. Kappes, P. M. Ajayan, M. C. Hersam, A. C. Ferrari, and R. Krupke, Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene, Nano Lett. 10(5), 1589 (2010)
https://doi.org/10.1021/nl9039795
344 D. Sharma, S. Kanchi, M. I. Sabela, and K. Bisetty, Insight into the biosensing of graphene oxide: Present and future prospects, Arab. J. Chem. 9(2), 238 (2016)
https://doi.org/10.1016/j.arabjc.2015.07.015
345 C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, Graphene based sensors and biosensors, Trends Analyt. Chem. 91, 53 (2017)
https://doi.org/10.1016/j.trac.2017.04.003
346 X. Zhao, Z. B. Liu, W. B. Yan, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide, Appl. Phys. Lett. 98(12), 121905 (2011)
https://doi.org/10.1063/1.3570640
347 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)
https://doi.org/10.1038/nphoton.2010.186
348 G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser, Opt. Express 20(17), 19463 (2012)
https://doi.org/10.1364/OE.20.019463
349 X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, Allnormal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber, Laser Phys. Lett. 10(7), 075108 (2013)
https://doi.org/10.1088/1612-2011/10/7/075108
350 L. Hou, Q. Lin, Y. Wang, Z. Chen, J. Sun, H. Guo, Y. Bai, H. Chen, B. Lu, and J. Bai, Femtosecond ytterbiumdoped fiber laser mode-locked by carboxyl-functionalized graphene oxide saturable absorber, Appl. Phys. Express 11(1), 012702 (2018)
https://doi.org/10.7567/APEX.11.012702
351 Z. B. Liu, X. He, and D. N. Wang, Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution, Opt. Lett. 36(16), 3024 (2011)
https://doi.org/10.1364/OL.36.003024
352 J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, Graphene oxide mode-locked femtosecond erbium-doped fiber lasers, Opt. Express 20(14), 15474 (2012)
https://doi.org/10.1364/OE.20.015474
353 J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q. H. Yang, and P. Wang, Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser, Opt. Express 20(21), 23653 (2012)
https://doi.org/10.1364/OE.20.023653
354 J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers, Photon. Res. 3(4), 119 (2015)
https://doi.org/10.1364/PRJ.3.000119
355 X. Li, K. Wu, Z. Sun, B. Meng, Y. Wang, X. Yu, Y. Zhang, P. P. Shum, and Q. J. Wang, Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers, Sci. Rep. 6(1), 25266 (2016)
https://doi.org/10.1038/srep25266
356 M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, A. mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field, Appl. Phys. Express 5(11), 112702 (2012)
https://doi.org/10.1143/APEX.5.112702
357 R. Zhang, X. Li, S. Dai, J. Li, L. Cao, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, All-fiber 2 mm mode-locked thulium-doped fiber laser with the graphene oxide film, Optik (Stuttg.) 157, 1292 (2018)
https://doi.org/10.1016/j.ijleo.2017.12.087
358 L. Gao, T. Zhu, K. S. Chiang, and W. Huang, Polarization switching in a mode-locked fiber laser based on reduced graphene oxide, IEEE Photonic. Tech. L. 27(24), 2535 (2015)
https://doi.org/10.1109/LPT.2015.2474709
359 Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers, Nanotechnology 22(45), 455203 (2011)
https://doi.org/10.1088/0957-4484/22/45/455203
360 S. W. Harun, M. B. S. Sabran, S. M. Azooz, A. Z. Zulkifli, M. A. Ismail, and H. Ahmad, Q-switching and modelocking pulse generation with graphene oxide paper-based saturable absorber, J. Eng. (Stevenage) 2015(6), 208 (2015)
https://doi.org/10.1049/joe.2014.0321
361 G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, K. Librant, M. Zdrojek, L. Lipinska, and K. M. Abramski, Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber, Appl. Phys. Lett. 101(24), 241106 (2012)
https://doi.org/10.1063/1.4770373
362 C. Liu, C. Ye, Z. Luo, H. Cheng, D. Wu, Y. Zheng, Z. Liu, and B. Qu, High-energy passively Q-switched 2 mm Tm3+-doped double-clad fiber laser using grapheneoxide-deposited fiber taper, Opt. Express 21(1), 204 (2013)
https://doi.org/10.1364/OE.21.000204
363 H. Y. Lin, X. H. Huang, X. Liu, D. Sun, W. Z. Zhu, and Y. C. Xu, Passively Q-switched c-cut Nd:YVO4 laser using graphene-oxide as a saturable absorber, Optik (Stuttg.) 127(10), 4545 (2016)
https://doi.org/10.1016/j.ijleo.2016.01.200
364 J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber, Laser Phys. Lett. 10(3), 035103 (2013)
https://doi.org/10.1088/1612-2011/10/3/035103
365 Q. Song, G. Wang, B. Zhang, W. Wang, M. Wang, Q. Zhang, G. Sun, Y. Bo, and Q. Peng, Diode-pumped passively dual-wavelength Q-switched Nd:GYSGG laser using graphene oxide as the saturable absorber, Appl. Opt. 54(10), 2688 (2015)
https://doi.org/10.1364/AO.54.002688
366 J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, J. Q. Cheng, G. G. Du, Y. Q. Yu, G. L. Zhang, H. F. Wei, J. Luo, and Y. H. Tsang, Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation, Chin. Phys. Lett. 29(11), 114206 (2012)
https://doi.org/10.1088/0256-307X/29/11/114206
367 X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses, J. Phys. Chem. Lett. 3(6), 785 (2012)
https://doi.org/10.1021/jz300119t
368 N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids, J. Phys. Chem. C 117(13), 6842 (2013)
https://doi.org/10.1021/jp400559q
369 N. Liaros, K. Iliopoulos, M. M. Stylianakis, E. Koudoumas, and S. Couris, Optical limiting action of few layered graphene oxide dispersed in different solvents, Opt. Mater. 36(1), 112 (2013)
https://doi.org/10.1016/j.optmat.2013.04.036
370 S. Roy, and C. Yadav, Femtosecond all-optical parallel logic gates based on tunable saturable to reverse saturable absorption in graphene-oxide thin films, Appl. Phys. Lett. 103(24), 241113 (2013)
https://doi.org/10.1063/1.4846535
371 Z. Cheng, H. Li, H. Shi, J. Ren, Q. H. Yang, and P. Wang, Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normaldispersion Yb-doped fiber laser, Opt. Express 23(6), 7000 (2015)
https://doi.org/10.1364/OE.23.007000
372 C. Fang, B. Dai, R. Hong, C. Tao, Q. Wang, X. Wang, D. Zhang, and S. Zhuang, Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol, Sci. Rep. 5(1), 15362 (2015)
https://doi.org/10.1038/srep15362
373 A. Wang, W. Yu, Y. Fang, Y. Song, D. Jia, L. Long, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, Facile hydrothermal synthesis and optical limiting properties of TiO2-reduced graphene oxide nanocomposites, Carbon 89, 130 (2015)
https://doi.org/10.1016/j.carbon.2015.03.037
374 S. R. Bongu, P. B. Bisht, T. V. Thu, and A. Sandhu, Multiple nonlinear optical response of gold decorated-reduced graphene oxide-nanocomposite for photonic applications, J. At. Mol. Condens. Nano Phys. 2(3), 207 (2015)
https://doi.org/10.1063/1.4866613
375 G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, Giant broadband nonlinear optical absorption response in dispersed graphene single sheets, Nat. Photonics 5(9), 554 (2011)
https://doi.org/10.1038/nphoton.2011.177
376 N. Liaros, J. Tucek, K. Dimos, A. Bakandritsos, K. S. Andrikopoulos, D. Gournis, R. Zboril, and S. Couris, The effect of the degree of oxidation on broadband nonlinear absorption and ferromagnetic ordering in graphene oxide, Nanoscale 8(5), 2908 (2016)
https://doi.org/10.1039/C5NR07832F
377 Z. B. Liu, Y. F. Xu, X. Y. Zhang, X. L. Zhang, Y. S. Chen, and J. G. Tian, Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties, J. Phys. Chem. B 113(29), 9681 (2009)
https://doi.org/10.1021/jp9004357
378 J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W. J. Blau, Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting, Carbon 49(6), 1900 (2011)
https://doi.org/10.1016/j.carbon.2011.01.014
379 M. Bala Murali Krishna, N. Venkatramaiah, R. Venkatesan, and D. Narayana Rao, Synthesis and structural, spectroscopic and nonlinear optical measurements of graphene oxide and its composites with metal and metal free porphyrins, J. Mater. Chem. 22(7), 3059 (2012)
https://doi.org/10.1039/c1jm14822b
380 M. K. Kavitha, H. John, P. Gopinath, and R. Philip, Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties, J. Mater. Chem. C 1(23), 3669 (2013)
https://doi.org/10.1039/c3tc30323c
381 B. Chen, C. He, W. Song, C. Zhao, Y. Gao, Z. Chen, Y. Dong, Y. Wu, and R. Li, Enhanced reverse saturable absorption of electrostatic self-assembled layer by layer films containing (8-quinolineoxy-5-sulfonic acid)phthalocyanine cobalt and graphene oxide, RSC Adv. 5(68), 55150 (2015)
https://doi.org/10.1039/C5RA04988A
382 E. Garmire, Overview of nonlinear optics, in: Nonlinear Optics, N. Kamanina (Ed.), 2012, INTECH Open Access Publisher: Croatia, pp 1–50
https://doi.org/10.5772/37416
383 Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes, Appl. Phys. Lett. 94(2), 021902 (2009)
https://doi.org/10.1063/1.3068498
384 Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, Ultrafast dynamics and nonlinear optical responses from sp2- and sp3-hybridized domains in graphene oxide, J. Phys. Chem. Lett. 2(16), 1972 (2011)
https://doi.org/10.1021/jz2008374
385 H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S. A. Redfern, and G. Yang, Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction, Opt. Express 22(16), 19375 (2014)
https://doi.org/10.1364/OE.22.019375
386 S. Bhattachraya, R. Maiti, A. C. Das, S. Saha, S. Mondal, S. K. Ray, S. N. B. Bhaktha, and P. K. Datta, Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction, J. Appl. Phys. 120(1), 013101 (2016)
https://doi.org/10.1063/1.4955140
387 S. Guang, S. Yin, H. Xu, W. Zhu, Y. Gao, and Y. Song, Synthesis and properties of long conjugated organic optical limiting materials with different p-electron conjugation bridge structure, Dyes Pigments 73(3), 285 (2007)
https://doi.org/10.1016/j.dyepig.2005.12.005
388 M. Feng, H. Zhan, and Y. Chen, Nonlinear optical and optical limiting properties of graphene families, Appl. Phys. Lett. 96(3), 033107 (2010)
https://doi.org/10.1063/1.3279148
389 J. Balapanuru, J. X. Yang, S. Xiao, Q. Bao, M. Jahan, L. Polavarapu, J. Wei, Q. H. Xu, and K. P. Loh, A graphene oxide-organic dye ionic complex with DNAsensing and optical-limiting properties, Angew. Chem. Int. Ed. 49(37), 6549 (2010)
https://doi.org/10.1002/anie.201001004
390 H. I. Elim, J. Ouyang, S. H. Goh, and W. Ji, Opticallimiting-based materials of mono-functional, multifunctional and supramolecular C60-containing polymers, Thin Solid Films 477(1–2), 63 (2005)
https://doi.org/10.1016/j.tsf.2004.08.112
391 X. L. Zhang, X. Zhao, Z. B. Liu, S. Shi, W. Y. Zhou, J. G. Tian, Y. F. Xu, and Y. S. Chen, Nonlinear optical and optical limiting properties of graphene oxide–Fe3O4hybrid material, J. Opt. 13(7), 075202 (2011)
https://doi.org/10.1088/2040-8978/13/7/075202
392 T. He, W. Wei, L. Ma, R. Chen, S. Wu, H. Zhang, Y. Yang, J. Ma, L. Huang, G. G. Gurzadyan, and H. Sun, Mechanism studies on the superior optical limiting observed in graphene oxide covalently functionalized with upconversion NaYF4:Yb3+/Er3+ nanoparticles, Small 8(14), 2163 (2012)
https://doi.org/10.1002/smll.201200249
393 T. Remyamol, H. John, and P. Gopinath, Synthesis and nonlinear optical properties of reduced graphene oxide covalently functionalized with polyaniline, Carbon 59, 308 (2013)
https://doi.org/10.1016/j.carbon.2013.03.023
394 W. Song, C. He, W. Zhang, Y. Gao, Y. Yang, Y. Wu, Z. Chen, X. Li, and Y. Dong, Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine, Carbon 77, 1020 (2014)
https://doi.org/10.1016/j.carbon.2014.06.018
395 C. Zheng, W. Li, X. Xiao, X. Ye, and W. Chen, Synthesis and optical limiting properties of graphene oxide/ bimetallic nanoparticles, Optik (Stuttg.) 127(4), 1792 (2016)
https://doi.org/10.1016/j.ijleo.2015.11.094
396 S. Biswas, A. K. Kole, C. S. Tiwary, and P. Kumbhakar, Enhanced nonlinear optical properties of graphene oxide-silver nanocomposites measured by Z-scan technique, RSC Adv. 6(13), 10319 (2016)
https://doi.org/10.1039/C5RA21000C
397 D. M. A. S. Dissanayake, M. P. Cifuentes, and M. G. Humphrey, Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes, Coord. Chem. Rev. 375, 489 (2018)
https://doi.org/10.1016/j.ccr.2018.05.003
398 M. N. Muralidharan, S. Mathew, A. Seema, P. Radhakrishnan, and T. Kurian, Optical limiting properties of in situ reduced graphene oxide/polymer nanocomposites, Mater. Chem. Phys. 171, 367 (2016)
https://doi.org/10.1016/j.matchemphys.2016.01.030
399 X. Zheng, M. Feng, and H. Zhan, Giant optical limiting effect in Ormosil gel glasses doped with graphene oxide materials, J. Mater. Chem. C 1(41), 6759 (2013)
https://doi.org/10.1039/c3tc31314j
400 L. Tao, B. Zhou, G. Bai, Y. Wang, S. F. Yu, S. P. Lau, Y. H. Tsang, J. Yao, and D. Xu, Fabrication of covalently functionalized graphene oxide incorporated solidstate hybrid silica gel glasses and their improved nonlinear optical response, J. Phys. Chem. C 117(44), 23108 (2013)
https://doi.org/10.1021/jp404463g
401 J. Wang, M. Feng, and H. Zhan, Preparation, characterization, and nonlinear optical properties of graphene oxide-carboxymethyl cellulose composite films, Opt. Laser Technol. 57, 84 (2014)
https://doi.org/10.1016/j.optlastec.2013.09.040
402 X. F. Jiang, L. Polavarapu, H. Zhu, R. Ma, and Q. H. Xu, Flexible, robust and highly efficient broadband nonlinear optical materials based on graphene oxide impregnated polymer sheets, Photon. Res. 3(3), A87 (2015)
https://doi.org/10.1364/PRJ.3.000A87
403 S. Perumbilavil, P. Sankar, T. Priya Rose, and R. Philip, White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region, Appl. Phys. Lett. 107(5), 051104 (2015)
https://doi.org/10.1063/1.4928124
404 N. Liaros, E. Koudoumas, and S. Couris, Broadband near infrared optical power limiting of few layered graphene oxides, Appl. Phys. Lett. 104(19), 191112 (2014)
https://doi.org/10.1063/1.4878660
405 W. K. C. Yung, G. Li, H. M. Liem, H. S. Choy, and Z. Cai, Eye-friendly reduced graphene oxide circuits with nonlinear optical transparency on flexible poly(ethylene terephthalate) substrates, J. Mater. Chem. C 3(43), 11294 (2015)
https://doi.org/10.1039/C5TC02405F
[1] Zhucheng Zhang, Jiancheng Pei, Yi-Ping Wang, Xiaoguang Wang. Measuring orbital angular momentum of vortex beams in optomechanics[J]. Front. Phys. , 2021, 16(3): 32503-.
[2] Xiao-Bo Yan, He-Lin Lu, Feng Gao, Feng Gao, Liu Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system[J]. Front. Phys. , 2019, 14(5): 52601-.
[3] Miao-Miao Zhao, Zhuo Qian, Bang-Pin Hou, Yong Liu, Yong-Hong Zhao. Optomechanical properties of a degenerate nonperiodic cavity chain[J]. Front. Phys. , 2019, 14(2): 22601-.
[4] Lian-Zhong Deng, Yun-Hua Yao, Li Deng, Huai-Yuan Jia, Ye Zheng, Cheng Xu, Jian-Ping Li, Tian-Qing Jia, Jian-Rong Qiu, Zhen-Rong Sun, Shi-An Zhang. Tuning up-conversion luminescence in Er3+-doped glass ceramic by phase-shaped femtosecond laser field with optimal feedback control[J]. Front. Phys. , 2019, 14(1): 13602-.
[5] Jun-Hao Liu, Yu-Bao Zhang, Ya-Fei Yu, Zhi-Ming Zhang. Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom[J]. Front. Phys. , 2019, 14(1): 12601-.
[6] A. S. Sanz. Bohm’s approach to quantum mechanics: Alternative theory or practical picture?[J]. Front. Phys. , 2019, 14(1): 11301-.
[7] Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics[J]. Front. Phys. , 2018, 13(4): 138114-.
[8] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[9] Kun Peng Dou (豆坤鵬),Chao-Cheng Kaun (關肇正). Conductance switching of a phthalocyanine molecule on an insulating surface[J]. Front. Phys. , 2017, 12(4): 127303-.
[10] Xin-Fang Zhang (张鑫方),Zheng-Wei Zhang (张正伟),Yan-Lan He (何焰兰),Yi-Xing Liu (刘一星),Shuang Li (黎双),Jing-Yue Fang (方靖越),Xue-Ao Zhang (张学骜),Gang Peng (彭刚). Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor[J]. Front. Phys. , 2016, 11(2): 116801-.
[11] Xiao-Bo Yan, W. Z. Jia, Yong Li, Jin-Hui Wu, Xian-Li Li, Hai-Wei Mu. Optomechanically induced amplification and perfect transparency in double-cavity optomechanics[J]. Front. Phys. , 2015, 10(3): 104202-.
[12] Ning Zhan-Yu(宁展宇), Qiao Jing-Si(乔婧思), Ji Wei(季威), Guo Hong(郭鸿). Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions[J]. Front. Phys. , 2014, 9(6): 780-788.
[13] Wan-Ju Li, Dao-Xin Yao, E. W. Carlson. Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon[J]. Front. Phys. , 2014, 9(4): 472-476.
[14] Halqem Nizamidin,Abduwali Anwar,Sayipjamal Dulat,Kang Li. Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics[J]. Front. Phys. , 2014, 9(4): 446-450.
[15] Xiao-Li Yuan, Mi-An Xue, Wen Chen, Tian-Qing An. Concentration-dependent crystal structure, elastic constants and electronic structure of ZrxTi1-x alloys under high pressure[J]. Front. Phys. , 2014, 9(2): 219-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed