Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (1) : 13602    https://doi.org/10.1007/s11467-018-0858-z
RESEARCH ARTICLE
Tuning up-conversion luminescence in Er3+-doped glass ceramic by phase-shaped femtosecond laser field with optimal feedback control
Lian-Zhong Deng1, Yun-Hua Yao1, Li Deng1, Huai-Yuan Jia4, Ye Zheng1, Cheng Xu2, Jian-Ping Li1, Tian-Qing Jia1, Jian-Rong Qiu2, Zhen-Rong Sun1, Shi-An Zhang1,3()
1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
2. State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
4. State Key Laboratory of Robatics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
 Download: PDF(2284 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tuning the color output of rare-earth ion doped luminescent nanomaterials has important scientific significance for further extending applications in color displays, laser sources, optoelectronic devices, and biolabeling. In previous studies, pre-designed phase modulation of the femtosecond laser field has been proven to be effective in tuning the luminescence of doped rare-earth ions. Owing to the complex light–matter interaction in the actual experiment, the dynamic range and optimal efficiency for color tuning cannot be determined with the pre-designed phase modulation. This article shares the development of an adaptive femtosecond pulse shaping method based on a genetic algorithm, and its use to manipulate the green and red luminescence tuning in an Er3+-doped glass ceramic under 800-nm femtosecond laser field excitation for the first time. Experimental results show that the intensity ratio of the green and red UC luminescence of the doped Er3+ ions can be either increased or decreased conveniently by the phase-shaped femtosecond laser field with an optimal feedback control. The physical control mechanisms for the color tuning are also explained in detail. This article demonstrates the potential applications of the adaptive femtosecond pulse shaping technique in controlling the color output of doped rare-earth ions.

Keywords nonlinear optics      upconversion luminescence      rare earth ions      luminescent nanomaterials     
Corresponding Author(s): Shi-An Zhang   
Issue Date: 01 January 2019
 Cite this article:   
Lian-Zhong Deng,Yun-Hua Yao,Li Deng, et al. Tuning up-conversion luminescence in Er3+-doped glass ceramic by phase-shaped femtosecond laser field with optimal feedback control[J]. Front. Phys. , 2019, 14(1): 13602.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0858-z
https://academic.hep.com.cn/fop/EN/Y2019/V14/I1/13602
1 E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, A three-color, solid-state, three-dimensional display, Science 273(5279), 1185 (1996)
https://doi.org/10.1126/science.273.5279.1185
2 R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, Temporal full-colour tuning through non-steadystate upconversion, Nat. Nanotechnol. 10(3), 237 (2015)
https://doi.org/10.1038/nnano.2014.317
3 J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. Alam, and A. B. Grudinin, Highpower wavelength-tunable cladding-pumped rare-earthdoped silica fiber lasers, Opt. Fiber Technol. 10(1), 5 (2004)
https://doi.org/10.1016/j.yofte.2003.07.001
4 E. Wintner, E. Sorokin, and I. T. Sorokina, Recent developments in diode-pumped ultrashort pulse solid-state Lasers, Laser Phys. 11(11), 1193 (2001)
5 L. Wang, Y. Li, Y. Zhang, H. Gu, and W. Chen, Rare earth compound nanowires: Synthesis, properties and applications, Rev. Nanosci. Nanotechnol. 3(1), 1 (2014)
https://doi.org/10.1166/rnn.2014.1041
6 T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals, Nat. Commun. 6(1), 8206 (2015)
https://doi.org/10.1038/ncomms9206
7 F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, Luminescent nanomaterials for biological labeling, Nanotechnology 17(1), R1 (2006)
https://doi.org/10.1088/0957-4484/17/1/R01
8 E. Wolska, J. Kaszewski, P. Kiełbik, J. Grzyb, M. M. Godlewski, and M. Godlewski, Rare earth activated ZnO nanoparticles as biomarkers, Opt. Mater. 36(10), 1655 (2014)
https://doi.org/10.1016/j.optmat.2013.12.032
9 S. Han, R. Deng, X. Xie, and X. Liu, Enhancing luminescence in lanthanide-doped upconversion nanoparticles, Angew. Chem. Int. Ed. 53(44), 11702 (2014)
https://doi.org/10.1002/anie.201403408
10 S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals, Adv. Mater. 16(23–24), 2102 (2004)
https://doi.org/10.1002/adma.200400772
11 F. Wang and X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles, J. Am. Chem. Soc. 130(17), 5642 (2008)
https://doi.org/10.1021/ja800868a
12 F. Wang, X. Xue, and X. Liu, Multicolor Tuning of (Ln, P)-Doped YVO4 nanoparticles by single-wavelength excitation, Angew. Chem. Int. Ed. 47(5), 906 (2008)
https://doi.org/10.1002/anie.200704520
13 X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects, J. Phys. Chem. C 111(36), 13611 (2007)
https://doi.org/10.1021/jp070122e
14 Y. Sheng, L. Liao, A. Bandla, Y. Liu, N. Thakor, and M. C. Tan, Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earthdoped nanoparticles for infrared photoacoustic imaging, ACS Biomater Sci. & Eng. 2(5), 809 (2016)
https://doi.org/10.1021/acsbiomaterials.6b00012
15 Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals, Nanotechnology 18(27), 275609 (2007)
https://doi.org/10.1088/0957-4484/18/27/275609
16 J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors, J. Phys. Chem. B 105(5), 948 (2001)
https://doi.org/10.1021/jp002778c
17 Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures, J. Mater. Chem. C 2(9), 1736 (2014)
https://doi.org/10.1039/c3tc32143f
18 G. Yi and G. Chow, Water-soluble NaYF4:Yb, Er (Tm)/ NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence, Chem. Mater. 19(3), 341 (2007)
https://doi.org/10.1021/cm062447y
19 F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater. 10(12), 968 (2011)
https://doi.org/10.1038/nmat3149
20 X. Chen, D. Peng, Q. Ju, and F. Wang, Photon upconversion in core-shell nanoparticles, Chem. Soc. Rev. 44(6), 1318 (2015)
https://doi.org/10.1039/C4CS00151F
21 W. Feng, L. Sun, and C. Yan, Ag nanowires enhanced upconversion emission of NaYF4: Yb, Er nanocrystals via a direct assembly method,Chem. Commun. 0(29), 4393 (2009)
https://doi.org/10.1039/b909164e
22 S. Schietinger, T. Aichele, H. Wang, T. Nann, and O. Benson, Plasmon-enhanced upconversion in single NaYF4: Yb3+/Er3+ codoped nanocrystals, Nano Lett. 10(1), 134 (2010)
https://doi.org/10.1021/nl903046r
23 H. Zhang, D. Xu, Y. Huang, and X. Duan, Highly spectral dependent enhancement of upconversion emission with sputtered gold island films, Chem. Commun. 47(3), 979 (2011)
https://doi.org/10.1039/C0CC03566A
24 J. Hao, Y. Zhang, and X. Wei, Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films, Angew. Chem. 123(30), 7008 (2011)
https://doi.org/10.1002/ange.201101374
25 Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals, Angew. Chem. Int. Ed. 52(16), 4366 (2013)
https://doi.org/10.1002/anie.201209884
26 P. Chen, Z. Zhong, H. Jia, J. Zhou, J. Han, X. Liu, and J. Qiu, Magnetic field enhanced upconversion luminescence and magnetic-optical hysteresis behaviors in NaYF4: Yb, Ho nanoparticles, RSC Advances 6(9), 7391 (2016)
https://doi.org/10.1039/C5RA25657G
27 B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides, Adv. Mater. 24(15), 1987 (2012)
https://doi.org/10.1002/adma.201200431
28 F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz De La Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, Temperature sensing using fluorescent nanothermometers, ACS Nano 4(6), 3254 (2010)
https://doi.org/10.1021/nn100244a
29 G. Franzò, F. Iacona, V. Vinciguerra, and F. Priolo, Enhanced rare earth luminescence in silicon nanocrystals, Mater. Sci. Eng. B69–70, 335 (2000)
https://doi.org/10.1016/S0921-5107(99)00406-7
30 X. Xue, M. Thitsa, T. Cheng, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, Laser power density dependent energy transfer between Tm3+ and Tb3+: tunable upconversion emissions in NaYF4: Tm3+, Tb3+, Yb3+ microcrystals, Opt. Express 24(23), 26307 (2016)
https://doi.org/10.1364/OE.24.026307
31 C. Zhang, L. Yang, J. Zhao, B. Liu, M. Y. Han, and Z. Zhang, White-light emission from an integrated upconversion nanostructure: Toward multicolor displays modulated by laser power, Angew. Chem. Int. Ed. 54(39), 11531 (2015)
https://doi.org/10.1002/anie.201504518
32 C. F. Gainer, G. S. Joshua, and M. Romanowski, Toward the use of two-color emission control in upconverting NaYF4:Er3+,Yb3+ nanoparticles for biomedical imaging, Proc. SPIE 8231, 82310I, 82310I-8 (2012)
https://doi.org/10.1117/12.909343
33 C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, Control of green and red upconversion in NaYF4: Yb3+, Er3+ nanoparticles by excitation modulation, J. Mater. Chem. 21(46), 18530 (2011)
https://doi.org/10.1039/c1jm13684d
34 S. Zhang, C. Lu, T. Jia, J. Qiu, and Z. Sun, Coherent phase control of resonance-mediated two-photon absorption in rare-earth ions, Appl. Phys. Lett. 103(19), 194104 (2013)
https://doi.org/10.1063/1.4830224
35 Y. Yao, S. Zhang, H. Zhang, J. Ding, T. Jia, J. Qiu, and Z. Sun, Laser polarization and phase control of upconversion fluorescence in rare-earth ions, Sci. Rep. 4(1), 7295 (2015)
https://doi.org/10.1038/srep07295
36 S. Zhang, Y. Yao, X. S. Wu, P. Liu, J. Ding, T. Jia, J. Qiu, and Z. Sun, Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method, Sci. Rep. 5(1), 13337 (2015)
https://doi.org/10.1038/srep13337
37 P. Chen, S. Yu, B. Xu, J. Wang, X. Sang, X. Liu, and J. Qiu, Enhanced upconversion luminescence in NaYF4: Er nanoparticles with multi-wavelength excitation, Mater. Lett. 128, 299 (2014)
https://doi.org/10.1016/j.matlet.2014.04.179
38 Y. Yao, C. Xu, Y. Zheng, C. Yang, P. Liu, J. Ding, T. Jia, J. Qiu, S. Zhang, and Z. Sun, Enhancing up-conversion luminescence of Er3+/Yb3+-codoped glass by two-color laser field excitation, RSC Advances 6(5), 3440 (2016)
https://doi.org/10.1039/C5RA23464F
39 S. Lee, K. Jung, J. H. Sung, K. Hong, and C. H. Nam, Adaptive quantum control of DCM fluorescence in the liquid phase, J. Chem. Phys. 117(21), 9858 (2002)
https://doi.org/10.1063/1.1519000
40 A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses, Science 282(5390), 919 (1998)
https://doi.org/10.1126/science.282.5390.919
41 R. J. Levis, G. M. Menkir, and H. Rabitz, Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses, Science 292(5517), 709 (2001)
https://doi.org/10.1126/science.1059133
42 R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Shapedpulse optimization of coherent emission of high-harmonic soft X-rays, Nature 406(6792), 164 (2000)
https://doi.org/10.1038/35018029
43 M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. De Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, Adaptive subwavelength control of nano-optical fields, Nature 446(7133), 301 (2007)
https://doi.org/10.1038/nature05595
44 J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, Quantum control of energy flow in light harvesting, Nature 417(6888), 533 (2002)
https://doi.org/10.1038/417533a
45 C. Brif, R. Chakrabarti, and H. Rabitz, Control of quantum phenomena: Past, present and future, New J. Phys. 12(7), 075008 (2010)
https://doi.org/10.1088/1367-2630/12/7/075008
46 N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, Transform-limited pulses are not optimal for resonant multiphoton transitions, Phys. Rev. Lett. 86(1), 47 (2001)
https://doi.org/10.1103/PhysRevLett.86.47
47 D. Qi, Y. Zheng, W. Cheng, Y. Yao, L. Deng, D. Feng, T. Jia, Z. Sun, and S. Zhang, Simulating resonancemediated two-photon absorption enhancement in rareearth ions by a rectangle phase modulation, Chin. Phys. B27(1), 013202 (2018)
https://doi.org/10.1088/1674-1056/27/1/013202
[1] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[2] Jian-Ping Li, Lian-Zhong Deng, Ye Zheng, Peng-Peng Ding, Tian-Qing Jia, Zhen-Rong Sun, Jian-Rong Qiu, Shi-An Zhang. Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm3+:NaYF4 glass[J]. Front. Phys. , 2020, 15(2): 22603-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed