|
|
Tuning up-conversion luminescence in Er3+-doped glass ceramic by phase-shaped femtosecond laser field with optimal feedback control |
Lian-Zhong Deng1, Yun-Hua Yao1, Li Deng1, Huai-Yuan Jia4, Ye Zheng1, Cheng Xu2, Jian-Ping Li1, Tian-Qing Jia1, Jian-Rong Qiu2, Zhen-Rong Sun1, Shi-An Zhang1,3( ) |
1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China 2. State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China 3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China 4. State Key Laboratory of Robatics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract Tuning the color output of rare-earth ion doped luminescent nanomaterials has important scientific significance for further extending applications in color displays, laser sources, optoelectronic devices, and biolabeling. In previous studies, pre-designed phase modulation of the femtosecond laser field has been proven to be effective in tuning the luminescence of doped rare-earth ions. Owing to the complex light–matter interaction in the actual experiment, the dynamic range and optimal efficiency for color tuning cannot be determined with the pre-designed phase modulation. This article shares the development of an adaptive femtosecond pulse shaping method based on a genetic algorithm, and its use to manipulate the green and red luminescence tuning in an Er3+-doped glass ceramic under 800-nm femtosecond laser field excitation for the first time. Experimental results show that the intensity ratio of the green and red UC luminescence of the doped Er3+ ions can be either increased or decreased conveniently by the phase-shaped femtosecond laser field with an optimal feedback control. The physical control mechanisms for the color tuning are also explained in detail. This article demonstrates the potential applications of the adaptive femtosecond pulse shaping technique in controlling the color output of doped rare-earth ions.
|
Keywords
nonlinear optics
upconversion luminescence
rare earth ions
luminescent nanomaterials
|
Corresponding Author(s):
Shi-An Zhang
|
Issue Date: 01 January 2019
|
|
1 |
E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, A three-color, solid-state, three-dimensional display, Science 273(5279), 1185 (1996)
https://doi.org/10.1126/science.273.5279.1185
|
2 |
R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, Temporal full-colour tuning through non-steadystate upconversion, Nat. Nanotechnol. 10(3), 237 (2015)
https://doi.org/10.1038/nnano.2014.317
|
3 |
J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S. Alam, and A. B. Grudinin, Highpower wavelength-tunable cladding-pumped rare-earthdoped silica fiber lasers, Opt. Fiber Technol. 10(1), 5 (2004)
https://doi.org/10.1016/j.yofte.2003.07.001
|
4 |
E. Wintner, E. Sorokin, and I. T. Sorokina, Recent developments in diode-pumped ultrashort pulse solid-state Lasers, Laser Phys. 11(11), 1193 (2001)
|
5 |
L. Wang, Y. Li, Y. Zhang, H. Gu, and W. Chen, Rare earth compound nanowires: Synthesis, properties and applications, Rev. Nanosci. Nanotechnol. 3(1), 1 (2014)
https://doi.org/10.1166/rnn.2014.1041
|
6 |
T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals, Nat. Commun. 6(1), 8206 (2015)
https://doi.org/10.1038/ncomms9206
|
7 |
F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, Luminescent nanomaterials for biological labeling, Nanotechnology 17(1), R1 (2006)
https://doi.org/10.1088/0957-4484/17/1/R01
|
8 |
E. Wolska, J. Kaszewski, P. Kiełbik, J. Grzyb, M. M. Godlewski, and M. Godlewski, Rare earth activated ZnO nanoparticles as biomarkers, Opt. Mater. 36(10), 1655 (2014)
https://doi.org/10.1016/j.optmat.2013.12.032
|
9 |
S. Han, R. Deng, X. Xie, and X. Liu, Enhancing luminescence in lanthanide-doped upconversion nanoparticles, Angew. Chem. Int. Ed. 53(44), 11702 (2014)
https://doi.org/10.1002/anie.201403408
|
10 |
S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals, Adv. Mater. 16(23–24), 2102 (2004)
https://doi.org/10.1002/adma.200400772
|
11 |
F. Wang and X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles, J. Am. Chem. Soc. 130(17), 5642 (2008)
https://doi.org/10.1021/ja800868a
|
12 |
F. Wang, X. Xue, and X. Liu, Multicolor Tuning of (Ln, P)-Doped YVO4 nanoparticles by single-wavelength excitation, Angew. Chem. Int. Ed. 47(5), 906 (2008)
https://doi.org/10.1002/anie.200704520
|
13 |
X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects, J. Phys. Chem. C 111(36), 13611 (2007)
https://doi.org/10.1021/jp070122e
|
14 |
Y. Sheng, L. Liao, A. Bandla, Y. Liu, N. Thakor, and M. C. Tan, Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earthdoped nanoparticles for infrared photoacoustic imaging, ACS Biomater Sci. & Eng. 2(5), 809 (2016)
https://doi.org/10.1021/acsbiomaterials.6b00012
|
15 |
Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, and H. Zhang, Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals, Nanotechnology 18(27), 275609 (2007)
https://doi.org/10.1088/0957-4484/18/27/275609
|
16 |
J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors, J. Phys. Chem. B 105(5), 948 (2001)
https://doi.org/10.1021/jp002778c
|
17 |
Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, and N. Hashemi, The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures, J. Mater. Chem. C 2(9), 1736 (2014)
https://doi.org/10.1039/c3tc32143f
|
18 |
G. Yi and G. Chow, Water-soluble NaYF4:Yb, Er (Tm)/ NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence, Chem. Mater. 19(3), 341 (2007)
https://doi.org/10.1021/cm062447y
|
19 |
F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater. 10(12), 968 (2011)
https://doi.org/10.1038/nmat3149
|
20 |
X. Chen, D. Peng, Q. Ju, and F. Wang, Photon upconversion in core-shell nanoparticles, Chem. Soc. Rev. 44(6), 1318 (2015)
https://doi.org/10.1039/C4CS00151F
|
21 |
W. Feng, L. Sun, and C. Yan, Ag nanowires enhanced upconversion emission of NaYF4: Yb, Er nanocrystals via a direct assembly method,Chem. Commun. 0(29), 4393 (2009)
https://doi.org/10.1039/b909164e
|
22 |
S. Schietinger, T. Aichele, H. Wang, T. Nann, and O. Benson, Plasmon-enhanced upconversion in single NaYF4: Yb3+/Er3+ codoped nanocrystals, Nano Lett. 10(1), 134 (2010)
https://doi.org/10.1021/nl903046r
|
23 |
H. Zhang, D. Xu, Y. Huang, and X. Duan, Highly spectral dependent enhancement of upconversion emission with sputtered gold island films, Chem. Commun. 47(3), 979 (2011)
https://doi.org/10.1039/C0CC03566A
|
24 |
J. Hao, Y. Zhang, and X. Wei, Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films, Angew. Chem. 123(30), 7008 (2011)
https://doi.org/10.1002/ange.201101374
|
25 |
Y. Liu, D. Wang, J. Shi, Q. Peng, and Y. Li, Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals, Angew. Chem. Int. Ed. 52(16), 4366 (2013)
https://doi.org/10.1002/anie.201209884
|
26 |
P. Chen, Z. Zhong, H. Jia, J. Zhou, J. Han, X. Liu, and J. Qiu, Magnetic field enhanced upconversion luminescence and magnetic-optical hysteresis behaviors in NaYF4: Yb, Ho nanoparticles, RSC Advances 6(9), 7391 (2016)
https://doi.org/10.1039/C5RA25657G
|
27 |
B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides, Adv. Mater. 24(15), 1987 (2012)
https://doi.org/10.1002/adma.201200431
|
28 |
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz De La Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, Temperature sensing using fluorescent nanothermometers, ACS Nano 4(6), 3254 (2010)
https://doi.org/10.1021/nn100244a
|
29 |
G. Franzò, F. Iacona, V. Vinciguerra, and F. Priolo, Enhanced rare earth luminescence in silicon nanocrystals, Mater. Sci. Eng. B69–70, 335 (2000)
https://doi.org/10.1016/S0921-5107(99)00406-7
|
30 |
X. Xue, M. Thitsa, T. Cheng, W. Gao, D. Deng, T. Suzuki, and Y. Ohishi, Laser power density dependent energy transfer between Tm3+ and Tb3+: tunable upconversion emissions in NaYF4: Tm3+, Tb3+, Yb3+ microcrystals, Opt. Express 24(23), 26307 (2016)
https://doi.org/10.1364/OE.24.026307
|
31 |
C. Zhang, L. Yang, J. Zhao, B. Liu, M. Y. Han, and Z. Zhang, White-light emission from an integrated upconversion nanostructure: Toward multicolor displays modulated by laser power, Angew. Chem. Int. Ed. 54(39), 11531 (2015)
https://doi.org/10.1002/anie.201504518
|
32 |
C. F. Gainer, G. S. Joshua, and M. Romanowski, Toward the use of two-color emission control in upconverting NaYF4:Er3+,Yb3+ nanoparticles for biomedical imaging, Proc. SPIE 8231, 82310I, 82310I-8 (2012)
https://doi.org/10.1117/12.909343
|
33 |
C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, Control of green and red upconversion in NaYF4: Yb3+, Er3+ nanoparticles by excitation modulation, J. Mater. Chem. 21(46), 18530 (2011)
https://doi.org/10.1039/c1jm13684d
|
34 |
S. Zhang, C. Lu, T. Jia, J. Qiu, and Z. Sun, Coherent phase control of resonance-mediated two-photon absorption in rare-earth ions, Appl. Phys. Lett. 103(19), 194104 (2013)
https://doi.org/10.1063/1.4830224
|
35 |
Y. Yao, S. Zhang, H. Zhang, J. Ding, T. Jia, J. Qiu, and Z. Sun, Laser polarization and phase control of upconversion fluorescence in rare-earth ions, Sci. Rep. 4(1), 7295 (2015)
https://doi.org/10.1038/srep07295
|
36 |
S. Zhang, Y. Yao, X. S. Wu, P. Liu, J. Ding, T. Jia, J. Qiu, and Z. Sun, Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method, Sci. Rep. 5(1), 13337 (2015)
https://doi.org/10.1038/srep13337
|
37 |
P. Chen, S. Yu, B. Xu, J. Wang, X. Sang, X. Liu, and J. Qiu, Enhanced upconversion luminescence in NaYF4: Er nanoparticles with multi-wavelength excitation, Mater. Lett. 128, 299 (2014)
https://doi.org/10.1016/j.matlet.2014.04.179
|
38 |
Y. Yao, C. Xu, Y. Zheng, C. Yang, P. Liu, J. Ding, T. Jia, J. Qiu, S. Zhang, and Z. Sun, Enhancing up-conversion luminescence of Er3+/Yb3+-codoped glass by two-color laser field excitation, RSC Advances 6(5), 3440 (2016)
https://doi.org/10.1039/C5RA23464F
|
39 |
S. Lee, K. Jung, J. H. Sung, K. Hong, and C. H. Nam, Adaptive quantum control of DCM fluorescence in the liquid phase, J. Chem. Phys. 117(21), 9858 (2002)
https://doi.org/10.1063/1.1519000
|
40 |
A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses, Science 282(5390), 919 (1998)
https://doi.org/10.1126/science.282.5390.919
|
41 |
R. J. Levis, G. M. Menkir, and H. Rabitz, Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses, Science 292(5517), 709 (2001)
https://doi.org/10.1126/science.1059133
|
42 |
R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Shapedpulse optimization of coherent emission of high-harmonic soft X-rays, Nature 406(6792), 164 (2000)
https://doi.org/10.1038/35018029
|
43 |
M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. De Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, Adaptive subwavelength control of nano-optical fields, Nature 446(7133), 301 (2007)
https://doi.org/10.1038/nature05595
|
44 |
J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, Quantum control of energy flow in light harvesting, Nature 417(6888), 533 (2002)
https://doi.org/10.1038/417533a
|
45 |
C. Brif, R. Chakrabarti, and H. Rabitz, Control of quantum phenomena: Past, present and future, New J. Phys. 12(7), 075008 (2010)
https://doi.org/10.1088/1367-2630/12/7/075008
|
46 |
N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, Transform-limited pulses are not optimal for resonant multiphoton transitions, Phys. Rev. Lett. 86(1), 47 (2001)
https://doi.org/10.1103/PhysRevLett.86.47
|
47 |
D. Qi, Y. Zheng, W. Cheng, Y. Yao, L. Deng, D. Feng, T. Jia, Z. Sun, and S. Zhang, Simulating resonancemediated two-photon absorption enhancement in rareearth ions by a rectangle phase modulation, Chin. Phys. B27(1), 013202 (2018)
https://doi.org/10.1088/1674-1056/27/1/013202
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|