Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (6) : 780-788    https://doi.org/10.1007/s11467-014-0453-x
RESEARCH ARTICLE
Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions
Ning Zhan-Yu(宁展宇)2,Qiao Jing-Si(乔婧思)1,Ji Wei(季威)1,2(),Guo Hong(郭鸿)2,*()
1. Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing 100872, China
2. Centre for the Physics of Materials and Department of Physics, McGill University, Montreal, QC, Canada H3A 2T8
 Download: PDF(496 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report theoretical investigations on the role of interfacial bonding mechanism and its resulting structures to quantum transport in molecular wires. Two bonding mechanisms for the Au-S bond in an Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio calculation, confirmed by a recent experiment, which, we showed, critically control charge conduction. It was found, for Au/BDT/Aujunctions, the hydrogen atom, bound by a dative bond to the Sulfur, is energetically non-dissociativeafter the interface formation. The calculated conductance and junction breakdown forces of H-non-dissociative Au/BDT/Au devices are consistent with the experimental values, while the H-dissociated devices, with the interface governed by typical covalent bonding, give conductance more than an order of magnitude larger. By examining the scattering states that traverse the junctions, we have revealed that mechanical and electric properties of a junction have strong correlation with the bonding configuration. This work clearly demonstrates that the interfacial details, rather than previously believed many-body effects, is of vital importance for correctly predicting equilibrium conductance of molecular junctions; and manifests that the interfacial contact must be carefully understood for investigating quantum transport properties of molecular nanoelectronics.

Keywords molecular electronics      contact formation      bonding mechanism      quantum transport     
Corresponding Author(s): Ji Wei(季威)and Guo Hong(郭鸿)   
Issue Date: 24 December 2014
 Cite this article:   
Ning Zhan-Yu(宁展宇),Guo Hong(郭鸿),Qiao Jing-Si(乔婧思), et al. Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions[J]. Front. Phys. , 2014, 9(6): 780-788.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0453-x
https://academic.hep.com.cn/fop/EN/Y2014/V9/I6/780
1 H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Observation of molecular orbital gating, Nature, 2009, 462(7276): 1039
https://doi.org/10.1038/nature08639
2 X. Y. Xiao, B. Q. Xu and N. J. Tao, Measurement of single mol<?Pub Caret?>ecule conductance: Benzenedithiol and benzenedimethanethiol, Nano Lett., 2004, 4(2): 267
https://doi.org/10.1021/nl035000m
3 M. Tsutsui, M. Taniguchi, and T. Kawai, Atomistic mechanics and formation mechanism of metal-molecule-metal junctions, Nano Lett., 2009, 9(6): 2433
https://doi.org/10.1021/nl901142s
4 M. Di Ventra, S. T. Pantelides, and N. D. Lang, The benzene molecule as a molecular resonant-tunneling transistor, Appl. Phys. Lett., 2000, 76(23): 3448
https://doi.org/10.1063/1.126673
5 K. Stokbro, J. Taylor, M. Brandbyge, J. L. Mozos, and P. Ordejón, Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds, Comput. Mater. Sci., 2003, 27(1-2): 151
https://doi.org/10.1016/S0927-0256(02)00439-1
6 T. Tada, M. Kondo, and K. Yoshizawa, Green’s function formalism coupled with Gaussian broadening of discrete states for quantum transport: Application to atomic and molecular wires, J. Chem. Phys., 2004, 121(16): 8050
https://doi.org/10.1063/1.1799991
7 S.-H. Ke, H. U. Baranger, and W. Yang, Molecular conductance: Chemical trends of anchoring groups, Journal of the American Chemical Society, 2004, 126(48): 15897
https://doi.org/10.1021/ja047367e
8 P. Delaney and J. C. Greer, Correlated electron transport in molecular electronics, Phys. Rev. Lett., 2004, 93(3): 036805
https://doi.org/10.1103/PhysRevLett.93.036805
9 G. C. Solomon, J. R. Reimers, and N. S. Hush, Overcoming computational uncertainties to reveal chemical sensitivity in single molecule conduction calculations, J. Chem. Phys., 2005, 122(22): 224502
https://doi.org/10.1063/1.1926280
10 R. B. Pontes, F. D. Novaes, A. Fazzio, and A. J. R. da Silva, Adsorption of benzene-1,4-dithiol on the Au(111) surface and its possible role in molecular conductance, Journal of the American Chemical Society, 2006, 128(28): 8996
https://doi.org/10.1021/ja0612495
11 D. Q. Andrews, R. P. Van Duyne, and M. A. Ratner, Stochastic modulation in molecular electronic transport junctions: molecular dynamics coupled with charge transport calculations, Nano Lett., 2008, 8(4): 1120
https://doi.org/10.1021/nl073265l
12 J. Nara, W. T. Geng, H. Kino, N. Kobayashi, and T. Ohno, Theoretical investigation on electron transport through an organic molecule: Effect of the contact structure, J. Chem. Phys., 2004, 121(13): 6485
https://doi.org/10.1063/1.1783251
13 C. Toher and S. Sanvito, Efficient atomic self-interaction correction scheme for nonequilibrium quantum transport, Phys. Rev. Lett., 2007, 99(5): 056801
https://doi.org/10.1103/PhysRevLett.99.056801
14 C. Toher and S. Sanvito, Effects of self-interaction corrections on the transport properties of phenyl-based molecular junctions, Phys. Rev. B, 2008, 77(15): 155402
https://doi.org/10.1103/PhysRevB.77.155402
15 M. Strange, I. S. Kristensen, K. S. Thygesen, and K. W. Jacobsen, Benchmark density functional theory calculations for nanoscale conductance, J. Chem. Phys., 2008, 128(11): 114714
https://doi.org/10.1063/1.2839275
16 S. Y. Quek, H. J. Choi, S. G. Louie, and J. B. Neaton, Length dependence of conductance in aromatic single-molecule junctions, Nano Lett., 2009, 9(11): 3949
https://doi.org/10.1021/nl9021336
17 M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science, 1997, 278(5336): 252
https://doi.org/10.1126/science.278.5336.252
18 Z. Huang, B. Q. Xu, Y. C. Chen, M. Di Ventra, and N. J. Tao, Measurement of current-induced local heating in a single molecule junction, Nano Lett., 2006, 6(6): 1240
https://doi.org/10.1021/nl0608285
19 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
20 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
21 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
22 J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
https://doi.org/10.1103/PhysRevB.63.245407
23 Z. Ning, Y. Zhu, J. Wang, and H. Guo, Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions, Phys. Rev. Lett., 2008, 100(5): 056803
https://doi.org/10.1103/PhysRevLett.100.056803
24 Y. Hu, Y. Zhu, H. Gao, and H. Guo, Conductance of an ensemble of molecular wires: A statistical analysis, Phys. Rev. Lett., 2005, 95(15): 156803
https://doi.org/10.1103/PhysRevLett.95.156803
25 M. Kamenetska, M. Koentopp, A. C. Whalley, Y. S. Park, M. L. Steigerwald, C. Nuckolls, M. S. Hybertsen, and L. Venkataraman, Formation and evolution of single-molecule junctions, Phys. Rev. Lett., 2009, 102(12): 126803
https://doi.org/10.1103/PhysRevLett.102.126803
26 C.-C. Kaun and H. Guo, Resistance of alkanethiol molecular wires, Nano Lett., 2003, 3(11): 1521
https://doi.org/10.1021/nl0346023
27 F.-S. Li, W. Zhou, and Q. Guo, Uncovering the hidden gold atoms in a self-assembled monolayer of alkanethiol molecules on Au(111), Phys. Rev. B, 2009, 79(11): 113412
https://doi.org/10.1103/PhysRevB.79.113412
28 I. I. Rze?nicka, J. Lee, P. Maksymovych, and J. T. Yates, Nondissociative chemisorption of short chain alkanethiols on Au(111), J. Phys. Chem. B, 2005, 109(33): 15992
https://doi.org/10.1021/jp058124r
29 J.-G. Zhou and F. Hagelberg, Do Methanethiol adsorbates on the Au(111) surface dissociate? Phys. Rev. Lett., 2006,97(4): 045505
https://doi.org/10.1103/PhysRevLett.97.045505
30 T. Rangel, A. Ferretti, P. E. Trevisanutto, V. Olevano, and G. M. Rignanese, Transport properties of molecular junctions from many-body perturbation theory, Phys. Rev. B, 2011, 84(4): 045426
https://doi.org/10.1103/PhysRevB.84.045426
31 M. Strange, C. Rostgaard, H. H?kkinen, and K. S. Thygesen, Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions, Phys. Rev. B, 2011, 83(11): 115108
https://doi.org/10.1103/PhysRevB.83.115108
32 W. Ji, Z.-Y. Lu, and H.-J. Gao, Multichannel interaction mechanism in a molecule-metal interface, Phys. Rev. B, 2008, 77(11): 113406
https://doi.org/10.1103/PhysRevB.77.113406
33 W. Ji, Z.-Y. Lu, and H. Gao, Electron core-hole interaction and its induced ionic structural relaxation in molecular systems under X-ray irradiation, Phys. Rev. Lett., 2006, 97(24): 246101
https://doi.org/10.1103/PhysRevLett.97.246101
34 Z.-X. Hu, H. Lan, and W. Ji, Role of the dispersion force in modeling the interfacial properties of molecule-metal interfaces: Adsorption of thiophene on copper surfaces, Sci. Rep., 2014, 4: 5036
35 L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation, Nature, 2006, 442(7105): 904
https://doi.org/10.1038/nature05037
36 Y. Jiang, Q. Huan, L. Fabris, G. C. Bazan, and W. Ho, Submolecular control, spectroscopy and imaging of bondselective chemistry in single functionalized molecules, Nat. Chem., 2013, 5(1): 36
https://doi.org/10.1038/nchem.1488
37 F. Cheng, W. Ji, L. Leung, Z. Ning, J. C. Polanyi, and C.-G. Wang, How adsorbate alignment leads to selective reaction, ACS Nano, 2014, 8(8): 8669
https://doi.org/10.1021/nn503721h
[1] Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions[J]. Front. Phys. , 2018, 13(3): 138501-.
[2] Kun Peng Dou (豆坤鵬),Chao-Cheng Kaun (關肇正). Conductance switching of a phthalocyanine molecule on an insulating surface[J]. Front. Phys. , 2017, 12(4): 127303-.
[3] Shmuel Gurvitz. Wave-function approach to Master equations for quantum transport and measurement[J]. Front. Phys. , 2017, 12(4): 120303-.
[4] Pei-Yun Yang,Wei-Min Zhang. Master equation approach to transient quantum transport in nanostructures[J]. Front. Phys. , 2017, 12(4): 127204-.
[5] Dazhi Xu,Jianshu Cao. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach[J]. Front. Phys. , 2016, 11(4): 110308-110308.
[6] Xin-Qi Li. Number-resolved master equation approach to quantum measurement and quantum transport[J]. Front. Phys. , 2016, 11(4): 110307-.
[7] YiJing Yan,Jinshuang Jin,Rui-Xue Xu,Xiao Zheng. Dissipation equation of motion approach to open quantum systems[J]. Front. Phys. , 2016, 11(4): 110306-.
[8] Xiao-Fei Li, Yi Luo. Conductivity of carbon-based molecular junctions from ab-initio methods[J]. Front. Phys. , 2014, 9(6): 748-759.
[9] Yanho Kwok, Yu Zhang, GuanHua Chen. Time-dependent density functional theory for quantum transport[J]. Front. Phys. , 2014, 9(6): 698-710.
[10] Chuan-kui WANG (王传奎), Bin ZOU (邹斌), Xiu-neng SONG (宋秀能), Ying-de LI (李英德), Zong-liang LI (李宗良), Li-li LIN (蔺丽丽). Simulations of inelastic electron tunneling spectroscopy of semifluorinated hexadecanethiol junctions[J]. Front Phys Chin, 2009, 4(3): 415-419.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed