|
|
Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions |
Ning Zhan-Yu(宁展宇)2,Qiao Jing-Si(乔婧思)1,Ji Wei(季威)1,2( ),Guo Hong(郭鸿)2,*( ) |
1. Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing 100872, China
2. Centre for the Physics of Materials and Department of Physics, McGill University, Montreal, QC, Canada H3A 2T8 |
|
|
Abstract We report theoretical investigations on the role of interfacial bonding mechanism and its resulting structures to quantum transport in molecular wires. Two bonding mechanisms for the Au-S bond in an Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio calculation, confirmed by a recent experiment, which, we showed, critically control charge conduction. It was found, for Au/BDT/Aujunctions, the hydrogen atom, bound by a dative bond to the Sulfur, is energetically non-dissociativeafter the interface formation. The calculated conductance and junction breakdown forces of H-non-dissociative Au/BDT/Au devices are consistent with the experimental values, while the H-dissociated devices, with the interface governed by typical covalent bonding, give conductance more than an order of magnitude larger. By examining the scattering states that traverse the junctions, we have revealed that mechanical and electric properties of a junction have strong correlation with the bonding configuration. This work clearly demonstrates that the interfacial details, rather than previously believed many-body effects, is of vital importance for correctly predicting equilibrium conductance of molecular junctions; and manifests that the interfacial contact must be carefully understood for investigating quantum transport properties of molecular nanoelectronics.
|
Keywords
molecular electronics
contact formation
bonding mechanism
quantum transport
|
Corresponding Author(s):
Ji Wei(季威)and Guo Hong(郭鸿)
|
Issue Date: 24 December 2014
|
|
1 |
H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Observation of molecular orbital gating, Nature, 2009, 462(7276): 1039
https://doi.org/10.1038/nature08639
|
2 |
X. Y. Xiao, B. Q. Xu and N. J. Tao, Measurement of single mol<?Pub Caret?>ecule conductance: Benzenedithiol and benzenedimethanethiol, Nano Lett., 2004, 4(2): 267
https://doi.org/10.1021/nl035000m
|
3 |
M. Tsutsui, M. Taniguchi, and T. Kawai, Atomistic mechanics and formation mechanism of metal-molecule-metal junctions, Nano Lett., 2009, 9(6): 2433
https://doi.org/10.1021/nl901142s
|
4 |
M. Di Ventra, S. T. Pantelides, and N. D. Lang, The benzene molecule as a molecular resonant-tunneling transistor, Appl. Phys. Lett., 2000, 76(23): 3448
https://doi.org/10.1063/1.126673
|
5 |
K. Stokbro, J. Taylor, M. Brandbyge, J. L. Mozos, and P. Ordejón, Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds, Comput. Mater. Sci., 2003, 27(1-2): 151
https://doi.org/10.1016/S0927-0256(02)00439-1
|
6 |
T. Tada, M. Kondo, and K. Yoshizawa, Green’s function formalism coupled with Gaussian broadening of discrete states for quantum transport: Application to atomic and molecular wires, J. Chem. Phys., 2004, 121(16): 8050
https://doi.org/10.1063/1.1799991
|
7 |
S.-H. Ke, H. U. Baranger, and W. Yang, Molecular conductance: Chemical trends of anchoring groups, Journal of the American Chemical Society, 2004, 126(48): 15897
https://doi.org/10.1021/ja047367e
|
8 |
P. Delaney and J. C. Greer, Correlated electron transport in molecular electronics, Phys. Rev. Lett., 2004, 93(3): 036805
https://doi.org/10.1103/PhysRevLett.93.036805
|
9 |
G. C. Solomon, J. R. Reimers, and N. S. Hush, Overcoming computational uncertainties to reveal chemical sensitivity in single molecule conduction calculations, J. Chem. Phys., 2005, 122(22): 224502
https://doi.org/10.1063/1.1926280
|
10 |
R. B. Pontes, F. D. Novaes, A. Fazzio, and A. J. R. da Silva, Adsorption of benzene-1,4-dithiol on the Au(111) surface and its possible role in molecular conductance, Journal of the American Chemical Society, 2006, 128(28): 8996
https://doi.org/10.1021/ja0612495
|
11 |
D. Q. Andrews, R. P. Van Duyne, and M. A. Ratner, Stochastic modulation in molecular electronic transport junctions: molecular dynamics coupled with charge transport calculations, Nano Lett., 2008, 8(4): 1120
https://doi.org/10.1021/nl073265l
|
12 |
J. Nara, W. T. Geng, H. Kino, N. Kobayashi, and T. Ohno, Theoretical investigation on electron transport through an organic molecule: Effect of the contact structure, J. Chem. Phys., 2004, 121(13): 6485
https://doi.org/10.1063/1.1783251
|
13 |
C. Toher and S. Sanvito, Efficient atomic self-interaction correction scheme for nonequilibrium quantum transport, Phys. Rev. Lett., 2007, 99(5): 056801
https://doi.org/10.1103/PhysRevLett.99.056801
|
14 |
C. Toher and S. Sanvito, Effects of self-interaction corrections on the transport properties of phenyl-based molecular junctions, Phys. Rev. B, 2008, 77(15): 155402
https://doi.org/10.1103/PhysRevB.77.155402
|
15 |
M. Strange, I. S. Kristensen, K. S. Thygesen, and K. W. Jacobsen, Benchmark density functional theory calculations for nanoscale conductance, J. Chem. Phys., 2008, 128(11): 114714
https://doi.org/10.1063/1.2839275
|
16 |
S. Y. Quek, H. J. Choi, S. G. Louie, and J. B. Neaton, Length dependence of conductance in aromatic single-molecule junctions, Nano Lett., 2009, 9(11): 3949
https://doi.org/10.1021/nl9021336
|
17 |
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science, 1997, 278(5336): 252
https://doi.org/10.1126/science.278.5336.252
|
18 |
Z. Huang, B. Q. Xu, Y. C. Chen, M. Di Ventra, and N. J. Tao, Measurement of current-induced local heating in a single molecule junction, Nano Lett., 2006, 6(6): 1240
https://doi.org/10.1021/nl0608285
|
19 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
20 |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
|
21 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
|
22 |
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
https://doi.org/10.1103/PhysRevB.63.245407
|
23 |
Z. Ning, Y. Zhu, J. Wang, and H. Guo, Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions, Phys. Rev. Lett., 2008, 100(5): 056803
https://doi.org/10.1103/PhysRevLett.100.056803
|
24 |
Y. Hu, Y. Zhu, H. Gao, and H. Guo, Conductance of an ensemble of molecular wires: A statistical analysis, Phys. Rev. Lett., 2005, 95(15): 156803
https://doi.org/10.1103/PhysRevLett.95.156803
|
25 |
M. Kamenetska, M. Koentopp, A. C. Whalley, Y. S. Park, M. L. Steigerwald, C. Nuckolls, M. S. Hybertsen, and L. Venkataraman, Formation and evolution of single-molecule junctions, Phys. Rev. Lett., 2009, 102(12): 126803
https://doi.org/10.1103/PhysRevLett.102.126803
|
26 |
C.-C. Kaun and H. Guo, Resistance of alkanethiol molecular wires, Nano Lett., 2003, 3(11): 1521
https://doi.org/10.1021/nl0346023
|
27 |
F.-S. Li, W. Zhou, and Q. Guo, Uncovering the hidden gold atoms in a self-assembled monolayer of alkanethiol molecules on Au(111), Phys. Rev. B, 2009, 79(11): 113412
https://doi.org/10.1103/PhysRevB.79.113412
|
28 |
I. I. Rze?nicka, J. Lee, P. Maksymovych, and J. T. Yates, Nondissociative chemisorption of short chain alkanethiols on Au(111), J. Phys. Chem. B, 2005, 109(33): 15992
https://doi.org/10.1021/jp058124r
|
29 |
J.-G. Zhou and F. Hagelberg, Do Methanethiol adsorbates on the Au(111) surface dissociate? Phys. Rev. Lett., 2006,97(4): 045505
https://doi.org/10.1103/PhysRevLett.97.045505
|
30 |
T. Rangel, A. Ferretti, P. E. Trevisanutto, V. Olevano, and G. M. Rignanese, Transport properties of molecular junctions from many-body perturbation theory, Phys. Rev. B, 2011, 84(4): 045426
https://doi.org/10.1103/PhysRevB.84.045426
|
31 |
M. Strange, C. Rostgaard, H. H?kkinen, and K. S. Thygesen, Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions, Phys. Rev. B, 2011, 83(11): 115108
https://doi.org/10.1103/PhysRevB.83.115108
|
32 |
W. Ji, Z.-Y. Lu, and H.-J. Gao, Multichannel interaction mechanism in a molecule-metal interface, Phys. Rev. B, 2008, 77(11): 113406
https://doi.org/10.1103/PhysRevB.77.113406
|
33 |
W. Ji, Z.-Y. Lu, and H. Gao, Electron core-hole interaction and its induced ionic structural relaxation in molecular systems under X-ray irradiation, Phys. Rev. Lett., 2006, 97(24): 246101
https://doi.org/10.1103/PhysRevLett.97.246101
|
34 |
Z.-X. Hu, H. Lan, and W. Ji, Role of the dispersion force in modeling the interfacial properties of molecule-metal interfaces: Adsorption of thiophene on copper surfaces, Sci. Rep., 2014, 4: 5036
|
35 |
L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation, Nature, 2006, 442(7105): 904
https://doi.org/10.1038/nature05037
|
36 |
Y. Jiang, Q. Huan, L. Fabris, G. C. Bazan, and W. Ho, Submolecular control, spectroscopy and imaging of bondselective chemistry in single functionalized molecules, Nat. Chem., 2013, 5(1): 36
https://doi.org/10.1038/nchem.1488
|
37 |
F. Cheng, W. Ji, L. Leung, Z. Ning, J. C. Polanyi, and C.-G. Wang, How adsorbate alignment leads to selective reaction, ACS Nano, 2014, 8(8): 8669
https://doi.org/10.1021/nn503721h
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|