Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (4) : 127204    https://doi.org/10.1007/s11467-016-0640-z
REVIEW ARTICLE
Master equation approach to transient quantum transport in nanostructures
Pei-Yun Yang(),Wei-Min Zhang()
Department of Physics and Centre for Quantum Information Science, Cheng Kung University, Tainan 70101
 Download: PDF(4235 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this review article, we present a non-equilibrium quantum transport theory for transient electron dynamics in nanodevices based on exact Master equation derived with the path integral method in the fermion coherent-state representation. Applying the exact Master equation to nanodevices, we also establish the connection of the reduced density matrix and the transient quantum transport current with the Keldysh nonequilibrium Green functions. The theory enables us to study transient quantum transport in nanostructures with back-reaction effects from the contacts, with non-Markovian dissipation and decoherence being fully taken into account. In applications, we utilize the theory to specific quantum transport systems, a variety of quantum decoherence and quantum transport phenomena involving the non-Markovian memory effect are investigated in both transient and stationary scenarios at arbitrary initial temperatures of the contacts.

Keywords quantum transport      Master equation      open systems      nanostructures     
Corresponding Author(s): Pei-Yun Yang,Wei-Min Zhang   
Issue Date: 25 November 2016
 Cite this article:   
Pei-Yun Yang,Wei-Min Zhang. Master equation approach to transient quantum transport in nanostructures[J]. Front. Phys. , 2017, 12(4): 127204.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0640-z
https://academic.hep.com.cn/fop/EN/Y2017/V12/I4/127204
1 M. A. Kastner, Artificial atoms, Phys. Today 46(1), 24 (1993)
https://doi.org/10.1063/1.881393
2 L. L. Chang, L. Esaki, and R. Tsu, Resonant tunneling in semiconductor double barriers, Appl. Phys. Lett. 24(12), 593 (1974)
https://doi.org/10.1063/1.1655067
3 T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54(2), 437 (1982)
https://doi.org/10.1103/RevModPhys.54.437
4 E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes, Appl. Phys. Lett. 58(20), 2291 (1991)
https://doi.org/10.1063/1.104902
5 K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
6 Y. Imry, Introduction to Mesoscopic Physics, 2nd Ed., Oxford, 2002
7 M. Büttiker, Scattering theory of current and intensity noise correlations in conductors and wave guides, Phys. Rev. B 46(19), 12485 (1992)
https://doi.org/10.1103/PhysRevB.46.12485
8 H. Ohnishi, T. Inata, S. Muto, N. Yokoyama, and A. Shibatomi, Selfconsistent analysis of resonant tunneling current, Appl. Phys. Lett. 49(19), 1248 (1986)
https://doi.org/10.1063/1.97428
9 A. Szafer and A. D. Stone, Theory of quantum conduction through a constriction, Phys. Rev. Lett. 62(3), 300 (1989)
https://doi.org/10.1103/PhysRevLett.62.300
10 J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2(3), 407 (1961)
https://doi.org/10.1063/1.1703727
11 L. P. Kadano and G. Baym, Quantum Statistical Mechanics, New York: Benjamin, 1962
12 K. C. Chou, Z. B. Su, B. L. Hao, and L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rep. 118(1–2), 1 (1985)
https://doi.org/10.1016/0370-1573(85)90136-X
13 J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys. 58(2), 323 (1986)
https://doi.org/10.1103/RevModPhys.58.323
14 J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
https://doi.org/10.1007/s11467-013-0340-x
15 H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid-State Sciences Vol. 123, 2008
16 N. S. Wingreen, A. P. Jauho, and Y. Meir, Tim dependent transport through a mesoscopic structure, Phys. Rev. B 48(11), 8487 (1993)
https://doi.org/10.1103/PhysRevB.48.8487
17 A. P. Jauho, N. S. Wingreen, and Y. Meir, Time dependent transport in interacting and noninteracting resonant-tunneling systems, Phys. Rev. B 50(8), 5528 (1994)
https://doi.org/10.1103/PhysRevB.50.5528
18 H. Schoeller and G. Schön, Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction, Phys. Rev. B 50(24), 18436 (1994)
https://doi.org/10.1103/PhysRevB.50.18436
19 S. A. Gurvitz and Ya. S. Prager, Microscopic derivation of rate equations for quantum transport, Phys. Rev. B 53(23), 15932 (1996)
https://doi.org/10.1103/PhysRevB.53.15932
20 J. S. Jin, X. Zheng, and Y. J. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys. 128(23), 234703 (2008)
https://doi.org/10.1063/1.2938087
21 M. W.-Y. Tu and W. M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit, Phys. Rev. B 78(23), 235311 (2008)
https://doi.org/10.1103/PhysRevB.78.235311
22 M. W.-Y. Tu, M. T. Lee, and W. M. Zhang, Exact Master equation and non-Markovian decoherence for quantum dot quantum computing, Quantum Inf. Processing 8(6), 631 (2009)
https://doi.org/10.1007/s11128-009-0143-8
23 J. S. Jin, M. W.-Y. Tu, W. M. Zhang, and Y. J. Yan, Non-equilibrium quantum theory for nanodevices based on the Feynman–Vernon influence functional, New J. Phys. 12(8), 083013 (2010)
https://doi.org/10.1088/1367-2630/12/8/083013
24 X. Q. Li, Number-resolved Master equation approach to quantum measurement and quantum transport, Front. Phys. 11(4), 110307 (2016)
https://doi.org/10.1007/s11467-016-0539-8
25 Y. J. Yan, J. S. Jin, R. X. Xu, and X. Zheng, Dissipaton equation of motion approach to open quantum systems, Front. Phys. 11(4), 110306 (2016)
https://doi.org/10.1007/s11467-016-0513-5
26 S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
https://doi.org/10.1017/CBO9780511805776
27 R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Develop. 1(3), 223 (1957)
https://doi.org/10.1147/rd.13.0223
28 R. Landauer, Electrical resistance of disordered one dimensional lattices, Philos. Mag. 21(172), 863 (1970)
https://doi.org/10.1080/14786437008238472
29 M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31(10), 6207 (1985)
https://doi.org/10.1103/PhysRevB.31.6207
30 M. Büttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett. 57(14), 1761 (1986)
https://doi.org/10.1103/PhysRevLett.57.1761
31 Ya. M. Blanter and M. Büttiker, Shot noise in mesoscopic conductors, Phys. Rep. 336(1–2), 1 (2000)
https://doi.org/10.1016/S0370-1573(99)00123-4
32 M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B 38(14), 9375 (1988)
https://doi.org/10.1103/PhysRevB.38.9375
33 M. Büttiker, Quantized transmission of a saddle-point constriction, Phys. Rev. B 41(11), 7906 (1990)
https://doi.org/10.1103/PhysRevB.41.7906
34 P. Samuelsson and M. Büttiker, Quantum state tomography with quantum shot noise, Phys. Rev. B 73(4), 041305 (2006)
https://doi.org/10.1103/PhysRevB.73.041305
35 E. A. Rothstein, O. Entin-Wohlman, and A. Aharony, Noise spectra of a biased quantum dot, Phys. Rev. B 79(7), 075307 (2009)
https://doi.org/10.1103/PhysRevB.79.075307
36 M. Moskalets and M. Büttiker, Adiabatic quantum pump in the presence of external ac voltages, Phys. Rev. B 69(20), 205316 (2004)
https://doi.org/10.1103/PhysRevB.69.205316
37 O. Entin-Wohlman, A. Aharony, and Y. Levinson, Adiabatic transport in nanostructures, Phys. Rev. B 65(19), 195411 (2002)
https://doi.org/10.1103/PhysRevB.65.195411
38 M. Moskalets and M. Büttiker, Time-resolved noise of adiabatic quantum pumps, Phys. Rev. B 75(3), 035315 (2007)
https://doi.org/10.1103/PhysRevB.75.035315
39 G. D. Mahan, Many Particle Physics, 2nd Ed., New York: Plenum, 1990
https://doi.org/10.1007/978-1-4613-1469-1
40 L. V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47(4), 1515 (1964) [Sov. Phys. JETP 20(4), 1018 (1965)]
41 G. Stefanucci and C. O. Almbladh, Time-dependent partition-free approach in resonant tunneling systems, Phys. Rev. B 69(19), 195318 (2004)
https://doi.org/10.1103/PhysRevB.69.195318
42 M. Cini, Time-dependent approach to electron transport through junctions: General theory and simple applications, Phys. Rev. B 22(12), 5887 (1980)
https://doi.org/10.1103/PhysRevB.22.5887
43 U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124(6), 1866 (1961)
https://doi.org/10.1103/PhysRev.124.1866
44 P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109(5), 1492 (1958)
https://doi.org/10.1103/PhysRev.109.1492
45 C. Caroli, R. Combescot, P. Nozìeres, and D. Saint- James, Direct calculation of the tunneling current, J. Phys. Chem. 4, 916 (1971)
46 C. Caroli, R. Combescot, P. Nozìeres, and D. Saint- James, A direct calculation of the tunnelling current (II): Free electron description, J. Phys. Chem. 4(16), 2598 (1971)
47 D. C. Langreth, Linear and Nonlinear Electron Transport in Solids, edited by J. T. Devreese and E. Van Doren, New York: Plenum, 1976
48 X. Q. Li, J. Luo, Y. G. Yang, P. Cui, and Y. J. Yan, Quantum master-equation approach to quantum transport through mesoscopic systems, Phys. Rev. B 71(20), 205304 (2005)
https://doi.org/10.1103/PhysRevB.71.205304
49 R. P. Feynman and F. L. Jr Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963)
https://doi.org/10.1016/0003-4916(63)90068-X
50 W. M. Zhang, D. H. Feng, and R. Gilmore, Coherent states: Theory and some applications, Rev. Mod. Phys. 62(4), 867 (1990)
https://doi.org/10.1103/RevModPhys.62.867
51 M. W. Y. Tu, W. M. Zhang, and J. S. Jin, Intrinsic coherence dynamics and phase localization in nanoscale Aharonov–Bohm interferometers, Phys. Rev. B 83(11), 115318 (2011)
https://doi.org/10.1103/PhysRevB.83.115318
52 C. Y. Lin and W. M. Zhang, Single-electron turnstile pumping with high frequencies, Appl. Phys. Lett. 99(7), 072105 (2011)
https://doi.org/10.1063/1.3626585
53 M. W.-Y. Tu, W. M. Zhang, J. S. Jin, O. Entin- Wohlman, and A. Aharony, Transient quantum transport in double-dot Aharonov–Bohm interferometers, Phys. Rev. B 86(11), 115453 (2012)
https://doi.org/10.1103/PhysRevB.86.115453
54 M. W.-Y. Tu, W.M. Zhang, J. Jin, O. Entin-Wohlman, and A. Aharony, Transient quantum transport in double-dot Aharonov–Bohm interferometers, Phys. Rev. B 86(11), 115453 (2012)
https://doi.org/10.1103/PhysRevB.86.115453
55 J. S. Jin, M. W.-Y. Tu, N. E. Wang, and W. M. Zhang, Precision control of charge coherence in parallel double dot systems through spin–orbit interaction, J. Chem. Phys. 139(6), 064706 (2013)
https://doi.org/10.1063/1.4817850
56 M. W.-Y. Tu, A. Aharony, W. M. Zhang, and O. Entin- Wohlman, Real-time dynamics of spin-dependent transport through a double-quantum-dot Aharonov–Bohm interferometer with spin–orbit interaction, Phys. Rev. B 90(16), 165422 (2014)
https://doi.org/10.1103/PhysRevB.90.165422
57 P. Y. Yang, C. Y. Lin, and W. M. Zhang, Transient current–current correlations and noise spectra, Phys. Rev. B 89(11), 115411 (2014)
https://doi.org/10.1103/PhysRevB.89.115411
58 P. Y. Yang, C. Y. Lin, and W. M. Zhang, Master equation approach to transient quantum transport in nanostructures incorporating initial correlations, Phys. Rev. B 92(16), 165403 (2015)
https://doi.org/10.1103/PhysRevB.92.165403
59 M. W.-Y. Tu, A. Aharony, O. Entin-Wohlman, A. Schiller, and W. M. Zhang, Transient probing of the symmetry and the asymmetry of electron interference, Phys. Rev. B 93(12), 125437 (2016)
https://doi.org/10.1103/PhysRevB.93.125437
60 J. H. Liu, M. W.-Y. Tu, and W. M. Zhang, Quantum coherence of the molecular states and their corresponding currents in nanoscale Aharonov–Bohm interferometers, Phys. Rev. B 94(4), 045403 (2016)
https://doi.org/10.1103/PhysRevB.94.045403
61 A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59(1), 1 (1987)
https://doi.org/10.1103/RevModPhys.59.1
62 R. Landauer, Condensed-matter physics: The noise is the signal, Nature 392(6677), 658 (1998)
https://doi.org/10.1038/33551
63 C. Beenakker and C. Schonenberger, Quantum shot noise, Phys. Today 56(5), 37 (2003)
https://doi.org/10.1063/1.1583532
64 T. Gramespacher and M. Büttiker, Quantum shot noise at local tunneling contacts on mesoscopic multiprobe conductors, Phys. Rev. Lett. 81(13), 2763 (1998)
https://doi.org/10.1103/PhysRevLett.81.2763
65 L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Observation of the e/3 Fractionally Charged Laughlin Quasiparticle, Phys. Rev. Lett. 79(13), 2526 (1997)
https://doi.org/10.1103/PhysRevLett.79.2526
66 F. Lefloch, C. Hoffmann, M. Sanquer, and D. Quirion, Doubled full shot noise in quantum coherent superconductor–semiconductor junctions, Phys. Rev. Lett. 90(6), 067002 (2003)
https://doi.org/10.1103/PhysRevLett.90.067002
67 R. J. Schoelkopf, P. J. Burke, A. A. Kozhevnikov, D. E. Prober, and M. J. Rooks, Frequency dependence of shot noise in a diffusive mesoscopic conductor, Phys. Rev. Lett. 78(17), 3370 (1997)
https://doi.org/10.1103/PhysRevLett.78.3370
68 R. Deblock, E. Onac, L. Gurevich, and L. P. Kouwenhoven, Detection of quantum noise from an electrically driven two-level system, Science 301(5630), 203 (2003)
https://doi.org/10.1126/science.1084175
69 E. Onac, F. Balestro, L. H. W. van Beveren, U. Hartmann, Y. V. Nazarov, and L. P. Kouwenhoven, Using a quantum dot as a high-frequency shot noise detector, Phys. Rev. Lett. 96(17), 176601 (2006)
https://doi.org/10.1103/PhysRevLett.96.176601
70 E. Zakka-Bajjani, J. Ségala, F. Portier, P. Roche, D. C. Glattli, A. Cavanna, and Y. Jin, Experimental test of the high-frequency quantum shot noise theory in a quantum point contact, Phys. Rev. Lett. 99(23), 236803 (2007)
https://doi.org/10.1103/PhysRevLett.99.236803
71 N. Lambert, R. Aguado, and T. Brandes, Nonequilibrium entanglement and noise in coupled qubits, Phys. Rev. B 75(4), 045340 (2007)
https://doi.org/10.1103/PhysRevB.75.045340
72 R. Aguado and T. Brandes, Shot noise spectrum of open dissipative quantum two-level systems, Phys. Rev. Lett. 92(20), 206601 (2004)
https://doi.org/10.1103/PhysRevLett.92.206601
73 B. H. Wu and C. Timm, Noise spectra of ac-driven quantum dots: Floquet master-equation approach, Phys. Rev. B 81(7), 075309 (2010)
https://doi.org/10.1103/PhysRevB.81.075309
74 H. A. Engel and D. Loss, Asymmetric quantum shot noise in quantum dots, Phys. Rev. Lett. 93(13), 136602 (2004)
https://doi.org/10.1103/PhysRevLett.93.136602
75 O. Entin-Wohlman, Y. Imry, S. A. Gurvitz, and A. Aharony, Steps and dips in the ac conductance and noise of mesoscopic structures, Phys. Rev. B 75(19), 193308 (2007)
https://doi.org/10.1103/PhysRevB.75.193308
76 C. P. Orth, D. F. Urban, and A. Komnik, Finite frequency noise properties of the nonequilibrium Anderson impurity model, Phys. Rev. B 86(12), 125324 (2012)
https://doi.org/10.1103/PhysRevB.86.125324
77 U. Gavish, Y. Levinson, and Y. Imry, Detection of quantum noise, Phys. Rev. B 62(16), 10637 (2000)
https://doi.org/10.1103/PhysRevB.62.R10637
78 R. Aguado and L. P. Kouwenhoven, Double quantum dots as detectors of high-frequency quantum noise in mesoscopic conductors, Phys. Rev. Lett. 84(9), 1986 (2000)
https://doi.org/10.1103/PhysRevLett.84.1986
79 P. Billangeon, F. Pierre, R. Deblock, and H. Bouchiat, Out of equilibrium noise in electronic devices: from the classical to the quantum regime, J. Stat. Mech. 1, P01041 (2009)
https://doi.org/10.1088/1742-5468/2009/01/p01041
80 N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, and R. J. Haug, Measurement of finite-frequency current statistics in a single-electron transistor, Nat. Commun. 3, 612 (2012)
https://doi.org/10.1038/ncomms1620
81 A. Zazunov, M. Creux, E. Paladino, A. Crépieux, and T. Martin, Detection of finite-frequency current moments with a dissipative resonant circuit, Phys. Rev. Lett. 99(6), 066601 (2007)
https://doi.org/10.1103/PhysRevLett.99.066601
82 Z. Feng, J. Maciejko, J. Wang, and H. Guo, Current fluctuations in the transient regime: An exact formulation for mesoscopic systems, Phys. Rev. B 77(7), 075302 (2008)
https://doi.org/10.1103/PhysRevB.77.075302
83 K. Joho, S. Maier, and A. Komnik, Transient noise spectra in resonant tunneling setups: Exactly solvable models, Phys. Rev. B 86(15), 155304 (2012)
https://doi.org/10.1103/PhysRevB.86.155304
84 R. Zwanzig, Nonequilibrium Statistical Mechanics, New York: Oxford University Press, 2001
85 G. F. Mazenlo, Nonequilibrium Statistics Mechanics, Weinheim: Wiley-VCH, 2006
https://doi.org/10.1002/9783527618958
86 J. Maciejko, J. Wang, and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory, Phys. Rev. B 74(8), 085324 (2006)
https://doi.org/10.1103/PhysRevB.74.085324
87 W. Lu, Z. Ji, L. Pfeiffer, K. W. West, and A. J. Rimberg, Real-time detection of electron tunnelling in a quantum dot, Nature 423(6938), 422 (2003)
https://doi.org/10.1038/nature01642
88 J. Bylander, T. Duty, and P. Delsing, Current measurement by real-time counting of single electrons, Nature 434(7031), 361 (2005)
https://doi.org/10.1038/nature03375
89 S. Gustavsson, I. Shorubalko, R. Leturcq, S. Schön, and K. Ensslin, Measuring current by counting electrons in a nanowire quantum dot, Appl. Phys. Lett. 92(15), 152101 (2008)
https://doi.org/10.1063/1.2892679
90 G. Stefanucci, Bound states in ab initio approaches to quantum transport: A time-dependent formulation, Phys. Rev. B 75(19), 195115 (2007)
https://doi.org/10.1103/PhysRevB.75.195115
91 R. Kubo, S. J. Muyake, and N. Hashitsume, Solid State Physics, edited by H. Ehrenreich and D. Turnbull, New York: Academic, New York, Vol. 17, p. 269 (1965)
92 C. Cercignani, Theory and Application of the Boltzmann Equation, Edinburgh: Scottish Academic Press, 1975
93 H. Smith and H. H. Jensen, Transport Phenomena, Oxford: Clarendon, 1989
94 P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, New York: Oxford University Press, 2002
95 S. Nakajima, On quantum theory of transport phenomena, Prog. Theor. Phys. 20(6), 948 (1958)
https://doi.org/10.1143/PTP.20.948
96 R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys. 33(5), 1338 (1960)
https://doi.org/10.1063/1.1731409
97 P. Y. Yang and W. M. Zhang, Exact homogeneous Master equation for open quantum systems incorporating initial correlations, arXiv: 1605.08521 (2016)
98 H. L. Lai and W. M. Zhang, Non-Markovian decoherence dynamics of Majorana fermions (in preparation)
99 W. M. Zhang, P. Y. Lo, H. N. Xiong, M. W. Y. Tu, and F. Nori, General non-Markovian dynamics of open quantum systems, Phys. Rev. Lett. 109(17), 170402 (2012)
https://doi.org/10.1103/PhysRevLett.109.170402
100 X. L. Yin, M. W.-Y. Tu, P. Y. Lo, and W. M. Zhang, Localized state effect in quantum transport (in preparation)
101 S. P. Giblin, M. Kataoka, J. D. Fletcher, P. See, T. J. B. M. Janssen, J. P. Griffiths, G. A. C. Jones, I. Farrer, and D. A. Ritchie, Towards a quantum representation of the ampere using single electron pumps, Nat. Commun. 3, 930 (2012)
https://doi.org/10.1038/ncomms1935
102 P. Y. Lo, H. N. Xiong, and W. M. Zhang, Breakdown of Bose–Einstein distribution in photonic crystals, Sci. Rep. 5, 9423 (2015)
https://doi.org/10.1038/srep09423
103 J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
https://doi.org/10.1103/PhysRevB.63.245407
104 P. Pomorski, L. Pastewka, C. Roland, H. Guo, and J. Wang, Capacitance, induced charges, and bound states of biased carbon nanotube systems, Phys. Rev. B 69(11), 115418 (2004)
https://doi.org/10.1103/PhysRevB.69.115418
105 V. Vettchinkina, A. Kartsev, D. Karlsson, and C. Verdozzi, Interacting fermions in one-dimensional disordered lattices: Exploring localization and transport properties with lattice density-functional theories, Phys. Rev. B 87(11), 115117 (2013)
https://doi.org/10.1103/PhysRevB.87.115117
106 A. Dhar and D. Sen, Nonequilibrium Greens function formalism and the problem of bound states, Phys. Rev. B 73(8), 085119 (2006)
https://doi.org/10.1103/PhysRevB.73.085119
107 D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
https://doi.org/10.1103/PhysRevA.57.120
108 T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama, Coherent manipulation of electronic states in a double quantum dot, Phys. Rev. Lett. 91(22), 226804 (2003)
https://doi.org/10.1103/PhysRevLett.91.226804
109 J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Fewelectron quantum dot circuit with integrated charge read out, Phys. Rev. B 67(16), 161308(R) (2003)
110 J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Manipulation of a single charge in a double quantum dot, Phys. Rev. Lett. 93(18), 186802 (2004)
https://doi.org/10.1103/PhysRevLett.93.186802
111 J. Gorman, D. G. Hasko, and D. A. Williams, Chargequbit operation of an isolated double quantum dot, Phys. Rev. Lett. 95(9), 090502 (2005)
https://doi.org/10.1103/PhysRevLett.95.090502
112 A. C. Johnson, J. R. Petta, J. M. Taylor, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Triplet-singlet spin relaxation via nuclei in a double quantum dot, Nature 435(7044), 925 (2005)
https://doi.org/10.1038/nature03815
113 J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots, Science 309(5744), 2180 (2005)
https://doi.org/10.1126/science.1116955
114 K. D. Petersson, C. G. Smith, D. Anderson, P. Atkinson, G. A. C. Jones, and D. A. Ritchie, Charge and spin state readout of a double quantum dot coupled to a resonator, Nano Lett. 10(8), 2789 (2010)
https://doi.org/10.1021/nl100663w
115 B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W. Deelman, K. S. Holabird, A. A. Kiselev, I. Alvarado- Rodriguez, R. S. Ross, A. E. Schmitz, M. Sokolich, C. A. Watson, M. F. Gyure, and A. T. Hunter, Coherent singlet-triplet oscillations in a silicon-based double quantum dot, Nature 481(7381), 344 (2012)
https://doi.org/10.1038/nature10707
116 L. Fricke, M. Wulf, B. Kaestner, V. Kashcheyevs, J. Timoshenko, P. Nazarov, F. Hohls, P. Mirovsky, B. Mackrodt, R. Dolata, T. Weimann, K. Pierz, and H. W. Schumacher, Counting statistics for electron capture in a dynamic quantum dot, Phys. Rev. Lett. 110(12), 126803 (2013)
https://doi.org/10.1103/PhysRevLett.110.126803
117 Z. Shi, C. B. Simmons, D. R. Ward, J. R. Prance, X. Wu, T. S. Koh, J. K. Gamble, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, and M. A. Eriksson, Fast coherent manipulation of three-electron states in a double quantum dot, Nat. Commun. 5, 3020 (2014)
https://doi.org/10.1038/ncomms4020
118 T. Fujisawa, T. Hayashi, and S. Sasaki, Time-dependent single-electron transport through quantum dots, Rep. Prog. Phys. 69(3), 759 (2006)
https://doi.org/10.1088/0034-4885/69/3/R05
119 R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Spins in few-electron quantum dots, Rev. Mod. Phys. 79(4), 1217 (2007)
https://doi.org/10.1103/RevModPhys.79.1217
120 D. Kim, Z. Shi, C. B. Simmons, D. R. Ward, J. R. Prance, T. S. Koh, J. K. Gamble, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, and M. A. Eriksson, Quantum control and process tomography of a semiconductor quantum dot hybrid qubit, Nature 511(7507), 70 (2014)
https://doi.org/10.1038/nature13407
121 Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot, Phys. Rev. Lett. 96(8), 087402 (2006)
https://doi.org/10.1103/PhysRevLett.96.087402
122 S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, and A. Yacoby, Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization, Nat. Phys. 5(12), 903 (2009)
https://doi.org/10.1038/nphys1424
123 J. Medford, J. Beil, J. M. Taylor, S. D. Bartlett, A. C. Doherty, E. I. Rashba, D. P. DiVincenzo, H. Lu, A. C. Gossard, and C. M. Marcus, Self-consistent measurement and state tomography of an exchange-only spin qubit, Nat. Nanotechnol. 8(9), 654 (2013)
https://doi.org/10.1038/nnano.2013.168
124 Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115(3), 485 (1959)
https://doi.org/10.1103/PhysRev.115.485
125 A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick, Coherent coupling of two quantum dots embedded in an Aharonov–Bohm interferometer, Phys. Rev. Lett. 87(25), 256802 (2001)
https://doi.org/10.1103/PhysRevLett.87.256802
126 T. Hatano, M. Stopa, W. Izumida, T. Yamaguchi, T. Ota, and S. Tarucha, Gate-voltage dependence of inter dot coupling and Aharanov–Bohm oscillation in laterally coupled vertical double dot, Physica E 22(1–3), 534 (2004)
https://doi.org/10.1016/j.physe.2003.12.063
127 M. Sigrist, A. Fuhrer, T. Ihn, K. Ensslin, S. E. Ulloa, W. Wegscheider, and M. Bichler, Magnetic-field-dependent transmission phase of a double-dot system in a quantum ring, Phys. Rev. Lett. 93(6), 066802 (2004)
https://doi.org/10.1103/PhysRevLett.93.066802
128 D. Loss and E. V. Sukhorukov, Probing entanglement and nonlocality of electrons in a double-dot via transport and noise, Phys. Rev. Lett. 84(5), 1035 (2000)
https://doi.org/10.1103/PhysRevLett.84.1035
129 K. Kang and S. Y. Cho, Tunable molecular resonances of a double quantum dot Aharonov–Bohm interferometer,J. Phys.: Condens. Matter 16(1), 117 (2004)
https://doi.org/10.1088/0953-8984/16/1/011
130 T. Kubo, Y. Tokura, T. Hatano, and S. Tarucha, Electron transport through Aharonov–Bohm interferometer with laterally coupled double quantum dots, Phys. Rev. B 74(20), 205310 (2006)
https://doi.org/10.1103/PhysRevB.74.205310
131 T. Hatano, T. Kubo, Y. Tokura, S. Amaha, S. Teraoka, and S. Tarucha, Aharonov–Bohm oscillations changed by indirect interdot tunneling via electrodes in parallelcoupled vertical double quantum dots, Phys. Rev. Lett. 106(7), 076801 (2011)
https://doi.org/10.1103/PhysRevLett.106.076801
[1] Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions[J]. Front. Phys. , 2018, 13(3): 138501-.
[2] Shmuel Gurvitz. Wave-function approach to Master equations for quantum transport and measurement[J]. Front. Phys. , 2017, 12(4): 120303-.
[3] Dazhi Xu,Jianshu Cao. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach[J]. Front. Phys. , 2016, 11(4): 110308-110308.
[4] Xin-Qi Li. Number-resolved master equation approach to quantum measurement and quantum transport[J]. Front. Phys. , 2016, 11(4): 110307-.
[5] YiJing Yan,Jinshuang Jin,Rui-Xue Xu,Xiao Zheng. Dissipation equation of motion approach to open quantum systems[J]. Front. Phys. , 2016, 11(4): 110306-.
[6] Jia-He Lin, Hong Zhang, Xin-Lu Cheng. First-principle study on the optical response of phosphorene[J]. Front. Phys. , 2015, 10(4): 107301-.
[7] Wenxi Lai, Chao Zhang, Zhongshui Ma. Single molecular shuttle-junction: Shot noise and decoherence[J]. Front. Phys. , 2015, 10(1): 108501-.
[8] Xiao-Fei Li, Yi Luo. Conductivity of carbon-based molecular junctions from ab-initio methods[J]. Front. Phys. , 2014, 9(6): 748-759.
[9] Yanho Kwok, Yu Zhang, GuanHua Chen. Time-dependent density functional theory for quantum transport[J]. Front. Phys. , 2014, 9(6): 698-710.
[10] Ning Zhan-Yu(宁展宇), Qiao Jing-Si(乔婧思), Ji Wei(季威), Guo Hong(郭鸿). Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions[J]. Front. Phys. , 2014, 9(6): 780-788.
[11] Ondrej Stranik, Jacqueline Jatschka, Andrea Csáki, Wolfgang Fritzsche. Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding[J]. Front. Phys. , 2014, 9(5): 652-664.
[12] Jun-Hua Chen(陈俊华), Hong-Yi Fan(范洪义). New application of non-Hermitian Hamiltonian operator in solving master equation for laser process[J]. Front. Phys. , 2012, 7(6): 632-636.
[13] Christoph Stampfer, Stefan Fringes, Johannes Güttinger, Francoise Molitor, Christian Volk, Bernat Terrés, Jan Dauber, Stephan Engels, Stefan Schnez, Arnhild Jacobsen, Susanne Droscher, Thomas Ihn, Klaus Ensslin. Transport in graphene nanostructures[J]. Front. Phys. , 2011, 6(3): 271-293.
[14] Jing-feng LIU(刘景锋), Xue-hua WANG(王雪华), . Spontaneous emission in micro- and nano-structures[J]. Front. Phys. , 2010, 5(3): 245-259.
[15] Qiang FU (付强), Lan-feng YUAN (袁岚峰), Yi LUO (罗毅), Jin-long YANG (杨金龙). Exploring at nanoscale from first principles[J]. Front Phys Chin, 2009, 4(3): 256-268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed