In addition to the well-known Landauer–Büttiker scattering theory and the nonequilibrium Green’s function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the particle-number (n)-resolved master equation (n-ME) approach and its systematic applications in quantum measurement and quantum transport problems. The n-ME contains rich dynamical information, allowing efficient study of topics such as shot noise and full counting statistics analysis. Moreover, we also review a newly developed master equation approach (and its n-resolved version) under self-consistent Born approximation. The application potential of this new approach is critically examined via its ability to recover the exact results for noninteracting systems under arbitrary voltage and in presence of strong quantum interference, and the challenging non-equilibrium Kondo effect.
I. L. Aleiner, N. S. Wingreen, and Y. Meir, Dephasing and the orthogonality catastrophe in tunneling through a quantum dot: The “which path?” interferometer, Phys. Rev. Lett. 79(19), 3740 (1997)
https://doi.org/10.1103/PhysRevLett.79.3740
E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V. Umansky, Double-slit experiments in quantum dots, Nature 391(6670), 871 (1998)
https://doi.org/10.1038/36057
S. A. Gurvitz, L. Fedichkin, D. Mozyrsky, and G. P. Berman, Relaxation and the Zeno effect in qubit measurements, Phys. Rev. Lett. 91(6), 066801 (2003)
https://doi.org/10.1103/PhysRevLett.91.066801
12
M. H. Devoret, and R. J. Schoelkopf, Amplifying quantum signals with the single-electron transistor, Nature 406(6799), 1039 (2000)
https://doi.org/10.1038/35023253
13
A. Shnirman and G. Schön, Quantum measurements performed with a single-electron transistor, Phys. Rev. B 57(24), 15400 (1998)
https://doi.org/10.1103/PhysRevB.57.15400
14
Y. Makhlin, G. Schön, and A. Shnirman, Quantum-state engineering with Josephson-junction devices, Rev. Mod. Phys. 73(2), 357 (2001)
https://doi.org/10.1103/RevModPhys.73.357
15
A. A. Clerk, S. M. Girvin, A. K. Nguyen, and A. D. Stone, Resonant cooper-pair tunneling: quantum noise and measurement characteristics, Phys. Rev. Lett. 89(17), 176804 (2002)
https://doi.org/10.1103/PhysRevLett.89.176804
pmid: 12398696
A. N. Korotkov and D. V. Averin, Continuous weak measurement of quantum coherent oscillations, Phys. Rev. B 64(16), 165310 (2001)
https://doi.org/10.1103/PhysRevB.64.165310
18
R. Ruskov and A. N. Korotkov, Spectrum of qubit oscillations from Bloch equations, Phys. Rev. B 67, 075303 (2003), arXiv: cond-mat/0202303
https://doi.org/10.1103/PhysRevB.67.075303
19
H. S. Goan, G. J. Milburn, H. M. Wiseman, and H. B. Sun, Continuous quantum measurement of two coupled quantum dots using a point contact: A quantum trajectory approach, Phys. Rev. B 63(12), 125326 (2001)
https://doi.org/10.1103/PhysRevB.63.125326
20
H. S. Goan and G. J. Milburn, Dynamics of a mesoscopic charge quantum bit under continuous quantum measurement, Phys. Rev. B 64(23), 235307 (2001)
https://doi.org/10.1103/PhysRevB.64.235307
21
X. Q. Li, W. K. Zhang, P. Cui, J. S. Shao, Z. S. Ma, and Y. J. Yan, Quantum measurement of a solid-state qubit: A unified quantum master equation approach revisited, Phys. Rev. B 69, 085315 (2004), arXiv: cond-mat/0309574
https://doi.org/10.1103/PhysRevB.69.085315
22
A. Shnirman, D. Mozyrsky, and I. Martin, Electrical quantum measurement of a two-level system at arbitrary voltage and temperature, arXiv: cond-mat/0211618
23
T. M. Stace and S. D. Barrett, Continuous measurement of a charge qubit with a point contact detector at arbitrary bias: the role of inelastic tunnelling, Phys. Rev. Lett. 92, 136802 (2004), arXiv: cond-mat/0309610
https://doi.org/10.1103/PhysRevLett.92.136802
24
D.V. Averin and A. N. Korotkov, Comment on "Continuous quantum measurement: Inelastic tunneling and lack of current oscillations", arXiv: cond-mat/0404549
25
T. M. Stace and S. D. Barrett, Reply to Comment on "Continuous quantum measurement: Inelastic tunneling and lack of current oscillations", Phys. Rev. Lett. 94, 069702 (2005), arXiv: cond-mat/0406751
https://doi.org/10.1103/PhysRevLett.94.069702
26
X. Q. Li, P. Cui, and Y. Yan, Spontaneous relaxation of a charge qubit under electrical measurement, Phys. Rev. Lett. 94(6), 066803 (2005)
https://doi.org/10.1103/PhysRevLett.94.066803
27
X. Q. Li, J. Luo, Y. G. Yang, P. Cui, and Y. J. Yan, Quantum master-equation approach to quantum transport through mesoscopic systems, Phys. Rev. B 71(20), 205304 (2005)
https://doi.org/10.1103/PhysRevB.71.205304
H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Berlin: Springer-Verlag, 1996
30
S. A. Gurvitz and Y. S. Prager, Microscopic derivation of rate equations for quantum transport, Phys. Rev. B 53(23), 15932 (1996)
https://doi.org/10.1103/PhysRevB.53.15932
31
S. A. Gurvitz, H. J. Lipkin, and Ya. S. Prager, Interference effects in resonant tunneling and the Pauli principle, Phys. Lett. A 212(1-2), 91 (1996)
https://doi.org/10.1016/0375-9601(96)00015-1
L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, JETP Lett. 58, 230 (1993)
35
L. S. Levitov, H. W. Lee, and G. B. Lesovik, Electron counting statistics and coherent states of electric current, J. Math. Phys. 37(10), 4845 (1996)
https://doi.org/10.1063/1.531672
36
W. Belzig and Y. V. Nazarov, Full current statistics in diffusive normal-superconductor structures, Phys. Rev. Lett. 87(6), 067006 (2001)
https://doi.org/10.1103/PhysRevLett.87.067006
37
W. Belzig and Y. V. Nazarov, Full counting statistics of electron transfer between superconductors, Phys. Rev. Lett. 87(19), 197006 (2001)
https://doi.org/10.1103/PhysRevLett.87.197006
38
P. Samuelsson and M. Büttiker, Chaotic dot-superconductor analog of the Hanbury Brown-Twiss effect, Phys. Rev. Lett. 89(4), 046601 (2002)
https://doi.org/10.1103/PhysRevLett.89.046601
39
P. Samuelsson and M. Büttiker, Semiclassical theory of current correlations in chaotic dot-superconductor systems, Phys. Rev. B 66(20), 201306 (2002)
https://doi.org/10.1103/PhysRevB.66.201306
40
S. Pilgram and P. Samuelsson, Noise and full counting statistics of incoherent multiple Andreev reflection, Phys. Rev. Lett. 94(8), 086806 (2005)
https://doi.org/10.1103/PhysRevLett.94.086806
41
A. Thielmann, M. H. Hettler, J. König, and G. Schön, Super-Poissonian noise, negative differential conductance, and relaxation effects in transport through molecules, quantum dots, and nanotubes, Phys. Rev. B 71(4), 045341 (2005)
https://doi.org/10.1103/PhysRevB.71.045341
42
J. Aghassi, A. Thielmann, M. H. Hettler, and G. Schön, Shot noise in transport through two coherent strongly coupled quantum dots, Phys. Rev. B 73(19), 195323 (2006)
https://doi.org/10.1103/PhysRevB.73.195323
43
A. Thielmann, M. H. Hettler, J. König, and G. Schön, Cotunneling current and shot noise in quantum dots, Phys. Rev. Lett. 95(14), 146806 (2005)
https://doi.org/10.1103/PhysRevLett.95.146806
44
W. Belzig, Full counting statistics of super-Poissonian shot noise in multilevel quantum dots, Phys. Rev. B 71, 161301(R) (2005)
45
B. R. Bulka, Current and power spectrum in a magnetic tunnel device with an atomic-size spacer, Phys. Rev. B 62(2), 1186 (2000)
https://doi.org/10.1103/PhysRevB.62.1186
46
A. Cottet, W. Belzig, and C. Bruder, Positive cross correlations in a three-terminal quantum dot with ferromagnetic contacts, Phys. Rev. Lett. 92(20), 206801 (2004)
https://doi.org/10.1103/PhysRevLett.92.206801
47
Y. M. Blanter, O. Usmani, and Y. V. Nazarov, Single-electron tunneling with strong mechanical feedback, Phys. Rev. Lett. 93(13), 136802 (2004)
https://doi.org/10.1103/PhysRevLett.93.136802
C. Flindt, T. Novotny, and A. P. Jauho, Full counting statistics of nano-electromechanical systems, Europhys. Lett. 69(3), 475 (2005)
https://doi.org/10.1209/epl/i2004-10351-x
50
C. W. Groth, B. Michaelis, and C. W. J. Beenakker, Counting statistics of coherent population trapping in quantum dots, Phys. Rev. B 74(12), 125315 (2006)
https://doi.org/10.1103/PhysRevB.74.125315
51
S. K. Wang, H. J. Jiao, F. Li, X. Q. Li, and Y. J. Yan, Full counting statistics of transport through two-channel Coulomb blockade systems, Phys. Rev. B 76(12), 125416 (2007)
https://doi.org/10.1103/PhysRevB.76.125416
52
S. Gustavsson, R. Leturcq, B. Simovič, R. Schleser, T. Ihn, P. Studerus, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys. Rev. Lett. 96, 076605 (2006)
https://doi.org/10.1103/PhysRevLett.96.076605
53
T. Fujisawa, T. Hayashi, R. Tomita, and Y. Hirayama, Bidirectional counting of single electrons, Science 312(5780), 1634 (2006)
https://doi.org/10.1126/science.1126788
J. Y. Luo, X. Q. Li, and Y. J. Yan, Calculation of the current noise spectrum in mesoscopic transport: A quantum master equation approach, Phys. Rev. B 76(8), 085325 (2007)
https://doi.org/10.1103/PhysRevB.76.085325
S. K. Wang, H. J. Jiao, F. Li, X. Q. Li, and Y. J. Yan, Full counting statistics of transport through two-channel Coulomb blockade systems, Phys. Rev. B 76(12), 125416 (2007)
https://doi.org/10.1103/PhysRevB.76.125416
63
J. Li, Y. Liu, J. Ping, S. S. Li, X. Q. Li, and Y. J. Yan, Large-deviation analysis for counting statistics in mesoscopic transport, Phys. Rev. B 84(11), 115319 (2011)
https://doi.org/10.1103/PhysRevB.84.115319
A. N. Korotkov, Selective quantum evolution of a qubit state due to continuous measurement, Phys. Rev. B 63(11), 115403 (2001)
https://doi.org/10.1103/PhysRevB.63.115403
66
D. Mozyrsky, I. Martin, and M. B. Hastings, Quantum-limited sensitivity of single-electron-transistor-based displacement detectors, Phys. Rev. Lett. 92(1), 018303 (2004)
https://doi.org/10.1103/PhysRevLett.92.018303
67
N. P. Oxtoby, H. M. Wiseman, and H. B. Sun, Sensitivity and back action in charge qubit measurements by a strongly coupled single-electron transistor, Phys. Rev. B 74(4), 045328 (2006)
https://doi.org/10.1103/PhysRevB.74.045328
68
S. A. Gurvitz and G. P. Berman, Single qubit measurements with an asymmetric single-electron transistor, Phys. Rev. B 72(7), 073303 (2005)
https://doi.org/10.1103/PhysRevB.72.073303
69
A. N. Korotkov and D. V. Averin, Continuous weak measurement of quantum coherent oscillations, Phys. Rev. B 64(16), 165310 (2001)
https://doi.org/10.1103/PhysRevB.64.165310
S. K. Wang, J. S. Jin, and X. Q. Li, Continuous weak measurement and feedback control of a solid-state charge qubit: A physical unravelling of non-Lindblad master equation, Phys. Rev. B 75(15), 155304 (2007)
https://doi.org/10.1103/PhysRevB.75.155304
73
A. N. Jordan and M. Büttiker, Continuous quantum measurement with independent detector cross correlations, Phys. Rev. Lett. 95(22), 220401 (2005)
https://doi.org/10.1103/PhysRevLett.95.220401
74
H. J. Jiao, F. Li, S. K. Wang, and X. Q. Li, Weak measurement of qubit oscillations with strong response detectors: Violation of the fundamental bound imposed on linear detectors, Phys. Rev. B 79(7), 075320 (2009)
https://doi.org/10.1103/PhysRevB.79.075320
75
A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick, Coherent coupling of two quantum dots embedded in an Aharonov-Bohm interferometer, Phys. Rev. Lett. 87(25), 256802 (2001)
https://doi.org/10.1103/PhysRevLett.87.256802
76
A. W. Holleitner, R. H. Blick, A. K. Huttel, K. Eberl, and J. P. Kotthaus, Probing and controlling the bonds of an artificial molecule, Science 297(5578), 70 (2002)
https://doi.org/10.1126/science.1071215
77
J. C. Chen, A. M. Chang, and M. R. Melloch, Transition between quantum states in a parallel-coupled double quantum dot, Phys. Rev. Lett. 92(17), 176801 (2004)
https://doi.org/10.1103/PhysRevLett.92.176801
78
M. Sigrist, T. Ihn, K. Ensslin, D. Loss, M. Reinwald, and W. Wegscheider, Phase coherence in the inelastic cotunneling regime, Phys. Rev. Lett. 96(3), 036804 (2006)
https://doi.org/10.1103/PhysRevLett.96.036804
J. König and Y. Gefen, Aharonov-Bohm interferometry with interacting quantum dots: Spin configurations, asymmetric interference patterns, bias-voltage-induced Aharonov-Bohm oscillations, and symmetries of transport coefficients, Phys. Rev. B 65, 045316 (2002)
https://doi.org/10.1103/PhysRevB.65.045316
F. Li, X. Q. Li, W. M. Zhang, and S. Gurvitz, Magnetic field switching in parallel quantum dots, Europhys. Lett. 88(3), 37001 (2009)
https://doi.org/10.1209/0295-5075/88/37001
83
F. Li, H. J. Jiao, J. Y. Luo, X. Q. Li, and S. A. Gurvitz, Coulomb blockade double-dot Aharonov–Bohm interferometer: Giant fluctuations, Physica E 41(9), 1707 (2009)
https://doi.org/10.1016/j.physe.2009.06.006
84
Y. Cao, P. Wang, G. Xiong, M. Gong, and X. Q. Li, Probing the existence and dynamics of Majorana fermion via transport through a quantum dot, Phys. Rev. B 86(11), 115311 (2012)
https://doi.org/10.1103/PhysRevB.86.115311
85
P. Wang, Y. Cao, M. Gong, G. Xiong, and X. Q. Li, Cross-correlations mediated by Majorana bound states, Europhys. Lett. 103(5), 57016 (2013)
https://doi.org/10.1209/0295-5075/103/57016
86
P. Wang, Y. Cao, M. Gong, S. S. Li, and X. Q. Li, Demonstrating nonlocality-induced teleportation through Majorana bound states in a semiconductor nanowire, Phys. Lett. A 378(13), 937 (2014)
https://doi.org/10.1016/j.physleta.2014.01.039
R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures, Phys. Rev. Lett. 105(7), 077001 (2010)
https://doi.org/10.1103/PhysRevLett.105.077001
92
Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)
https://doi.org/10.1103/PhysRevLett.105.177002
93
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
https://doi.org/10.1103/PhysRevLett.104.040502
94
J. D. Sau, S. Tewari, and S. Das Sarma, Experimental and materials considerations for the topological superconducting state in electron- and hole-doped semiconductors: Searching for non-Abelian Majorana modes in 1D nanowires and 2D heterostructures, Phys. Rev. B 85(6), 064512 (2012)
https://doi.org/10.1103/PhysRevB.85.064512
95
L. Fu and C. L. Kane, Superconducting proximity effect and majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
https://doi.org/10.1103/PhysRevLett.100.096407
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336(6084), 1003 (2012)
https://doi.org/10.1126/science.1222360
C. J. Bolech and E. Demler, Observing Majorana bound states in p-wave superconductors using noise measurements in tunneling experiments, Phys. Rev. Lett. 98(23), 237002 (2007)
https://doi.org/10.1103/PhysRevLett.98.237002
S. Tewari, C. Zhang, S. Das Sarma, C. Nayak, and D. H. Lee, Testable signatures of quantum nonlocality in a two-dimensional chiral p-wave superconductor, Phys. Rev. Lett. 100(2), 027001 (2008)
https://doi.org/10.1103/PhysRevLett.100.027001
102
L. Y. Chen and C. S. Ting, Theoretical investigation of noise characteristics of double-barrier resonant-tunneling systems, Phys. Rev. B 43(5), 4534 (1991)
https://doi.org/10.1103/PhysRevB.43.4534
pmid: 9997817
103
J. Jin, J. Li, Y. Liu, X. Q. Li, and Y. Yan, Improved master equation approach to quantum transport: From Born to self-consistent Born approximation, J. Chem. Phys. 140(24), 244111 (2014)
https://doi.org/10.1063/1.4884390
104
Y. Liu, J. S. Jin, J. Li, X. Q. Li, and Y. J. Yan, Nonequilibrium shot noise spectrum through a quantum dot in the Kondo Regime: A master equation approach under self-consistent born approximation, Commum. Theor. Phys. 60(4), 503 (2013)
https://doi.org/10.1088/0253-6102/60/4/20
105
Y. Liu, J. S. Jin, J. Li, X. Q. Li, and Y. J. Yan, Number-resolved master equation approach to quantum transport under the self-consistent Born approximation, Science China – Phys. Mech. & Astron. 56(10), 1866 (2013)
https://doi.org/10.1007/s11433-013-5238-7
106
H. Schoeller and G. Schön, Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction, Phys. Rev. B 50(24), 18436 (1994)
https://doi.org/10.1103/PhysRevB.50.18436
107
J. König, H. Schoeller, and G. Schön, Zero-bias anomalies and boson-assisted tunneling through quantum dots, Phys. Rev. Lett. 76(10), 1715 (1996)
https://doi.org/10.1103/PhysRevLett.76.1715
108
J. König, J. Schmid, H. Schoeller, and G. Schön, Resonant tunneling through ultrasmall quantum dots: Zero-bias anomalies, magnetic-field dependence, and boson-assisted transport, Phys. Rev. B 54(23), 16820 (1996)
https://doi.org/10.1103/PhysRevB.54.16820
109
A. Thielmann, M. H. Hettler, J. König, and G. Schön, Cotunneling current and shot noise in quantum dots, Phys. Rev. Lett. 95(14), 146806 (2005)
https://doi.org/10.1103/PhysRevLett.95.146806
110
J. Jin, X. Zheng, and Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys. 128(23), 234703 (2008)
https://doi.org/10.1063/1.2938087
X. Zheng, J. Jin, S. Welack, M. Luo, and Y. Yan, Numerical approach to time-dependent quantum transport and dynamical Kondo transition, J. Chem. Phys. 130(16), 164708 (2009)
https://doi.org/10.1063/1.3123526
113
Z. Li, N. Tong, X. Zheng, D. Hou, J. Wei, J. Hu, and Y. Yan, Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems, Phys. Rev. Lett. 109(26), 266403 (2012)
https://doi.org/10.1103/PhysRevLett.109.266403
114
J. N. Pedersen and A. Wacker, Tunneling through nanosystems: Combining broadening with many-particle states, Phys. Rev. B 72(19), 195330 (2005)
https://doi.org/10.1103/PhysRevB.72.195330
P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime, Phys. Rev. B 80(11), 115107 (2009)
https://doi.org/10.1103/PhysRevB.80.115107
118
M. Esposito and M. Galperin, Transport in molecular states language: Generalized quantum master equation approach, Phys. Rev. B 79(20), 205303 (2009)
https://doi.org/10.1103/PhysRevB.79.205303
119
M. Esposito and M. Galperin, Self-consistent quantum master equation approach to molecular transport, J. Phys. Chem. C 114(48), 20362 (2010)
https://doi.org/10.1021/jp103369s
120
J. Kern and M. Grifoni, Transport across an Anderson quantum dot in the intermediate coupling regime, Eur. Phys. J. B 86(9), 384 (2013)
https://doi.org/10.1140/epjb/e2013-40618-9
121
R. D. Mattuck, A guide to Feynman diagrams in the many-body problem, New York: Dover publications, 1974
122
D. C. Ralph and R. A. Buhrman, Kondo-assisted and resonant tunneling via a single charge trap: A realization of the Anderson model out of equilibrium, Phys. Rev. Lett. 72(21), 3401 (1994)
https://doi.org/10.1103/PhysRevLett.72.3401
123
J. S. Jin, X. Q. Li, M. Luo, and Y. J. Yan, Non-Markovian shot noise spectrum of quantum transport through quantum dots, J. Appl. Phys. 109(5), 053704 (2011)
https://doi.org/10.1063/1.3555586
124
D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, Kondo effect in a single-electron transistor, Nature 391, 156 (1998)
https://doi.org/10.1038/34373
L. I. Glazman and M. Pustilnik, in: Lectures notes of the Les Houches Summer School 2004 in “Nanophysics: Coherence and Transport", edited by H. Bouchiat, et al., Elsevier, 2005, pp. 427–478
S. Hershfield, J. H. Davies, and J. W. Wilkins, Probing the Kondo resonance by resonant tunneling through an Anderson impurity, Phys. Rev. Lett. 67(26), 3720 (1991)
https://doi.org/10.1103/PhysRevLett.67.3720
129
Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68(16), 2512 (1992)
https://doi.org/10.1103/PhysRevLett.68.2512
130
Y. Meir, N. S. Wingreen, and P. A. Lee, Low-temperature transport through a quantum dot: The Anderson model out of equilibrium, Phys. Rev. Lett. 70(17), 2601 (1993)
https://doi.org/10.1103/PhysRevLett.70.2601
131
D. C. Ralph and R. A. Buhrman, Kondo-assisted and resonant tunneling via a single charge trap: A realization of the Anderson model out of equilibrium, Phys. Rev. Lett. 72(21), 3401 (1994)
https://doi.org/10.1103/PhysRevLett.72.3401
132
J. Paaske, A. Rosch, P. Wölfle, N. Mason, C. M. Marcus, and J. Nygard, Non-equilibrium singlet–triplet Kondo effect in carbon nanotubes, Nat. Phys. 2(7), 460 (2006)
https://doi.org/10.1038/nphys340
133
M. Grobis, I. G. Rau, R. M. Potok, H. Shtrikman, and D. Goldhaber-Gordon, Universal scaling in nonequilibrium transport through a single channel Kondo dot, Phys. Rev. Lett. 100(24), 246601 (2008)
https://doi.org/10.1103/PhysRevLett.100.246601
134
Z. Li, N. Tong, X. Zheng, D. Hou, J. Wei, J. Hu, and Y. Yan, Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems, Phys. Rev. Lett. 109(26), 266403 (2012)
https://doi.org/10.1103/PhysRevLett.109.266403
135
T. Delattre, C. Feuillet-Palma, L. G. Herrmann, P. Morfin, J. M. Berroir, G. Fève, B. Plaçais, D. C. Glattli, M. S. Choi, C. Mora, and T. Kontos, Noisy Kondo impurities, Nat. Phys. 5(3), 208 (2009)
https://doi.org/10.1038/nphys1186
136
O. Zarchin, M. Zaffalon, M. Heiblum, D. Mahalu, and V. Umansky, Two-electron bunching in transport through a quantum dot induced by Kondo correlations, Phys. Rev. B 77(24), 241303 (2008)
https://doi.org/10.1103/PhysRevB.77.241303
137
G. H. Ding and T. K. Ng, Shot noise in out-of equilibrium resonant tunneling through an Anderson impurity, Phys. Rev. B 56, R15521 (1997)
https://doi.org/10.1103/PhysRevB.56.R15521
138
A. Schiller and S. Hershfield, Toulouse limit for the nonequilibrium Kondo impurity: Currents, noise spectra, and magnetic properties, Phys. Rev. B 58(22), 14978 (1998)
https://doi.org/10.1103/PhysRevB.58.14978
139
T. Korb, F. Reininghaus, H. Schoeller, and J. König, Real-time renormalization group and cutoff scales in nonequilibrium applied to an arbitrary quantum dot in the Coulomb blockade regime, Phys. Rev. B 76(16), 165316 (2007)
https://doi.org/10.1103/PhysRevB.76.165316
140
C. P. Moca, P. Simon, C. H. Chung, and G. Zarand, Nonequilibrium frequency-dependent noise through a quantum dot: A real-time functional renormalization group approach, Phys. Rev. B 83, 201303(R) (2011)